首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 446 毫秒
1.
南京北郊冬季大气气溶胶及其湿清除特征研究   总被引:18,自引:0,他引:18  
利用WPS(宽范围颗粒粒径谱仪)、雨滴潜仪和雾滴谱仪测量了2007~2008年冬季南京北郊大气气溶胶数浓度谱分布和降水强度,分析了气溶胶粒子的分布特征以及气溶胶粒径与湿清除系数的关系.结果表明:气溶胶粒子具有明显的双峰型R变化特征,数浓度主要集中在0.02~O.2μm粒径范围内,受汽车尾气排放、混合层高度变化以及颗粒物水平输送的影响较大.降雨、降雪和雾过程都对气溶胶粒子有不同程度的清除,降雨和浓雾对核模态和粗模态的气溶胶粒子的清除能力显著,降雪对粒径小于0.03μm的气溶胶粒子的清除能力较强.  相似文献   

2.
利用2014年7月黄山光明顶观测获得的气溶胶数浓度、气溶胶数谱数据,对黄山夏季气溶胶数浓度及谱分布特征进行分析,并在此基础上对气溶胶数谱进行了对数正态分布拟合。研究结果表明:黄山夏季气溶胶平均数浓度约为3 518.27 cm~(-3),主要集中在爱根核模态;气溶胶平均数浓度日变化呈双峰分布,峰值浓度的出现伴随着小粒子的增多。气溶胶数浓度与相对湿度和风速成负相关,高浓度的气溶胶多出现在较弱的东南风时;积聚模态气溶胶数浓度受风向影响显著。不同气团背景下气溶胶数谱差异集中在小于100 nm和500~1 000 nm粒径范围。爱根核模态气溶胶在高湿的西南气团影响下数浓度最低、谱较窄,而高温、低湿的东南气团对应的气溶胶数浓度最高、谱最宽,北方气团对应的气溶胶数浓度和谱宽居中;500~1 000 nm粒径范围气溶胶数谱分布特征与之相反。不同背景的气溶胶数谱和体积谱均可采用爱根模态、积聚模态1和积聚模态2三个模态进行对数正态分布拟合,但不同气团背景下的各模态谱型参数差异较大。  相似文献   

3.
张盼想  张鹏  陈林  王维和  车慧正 《气象科技》2018,46(6):1258-1265
粒子尺度谱和复折射率指数是描述大气气溶胶的基本物理参数,也是遥感大气气溶胶光学厚度的基本假定量,决定了光学厚度遥感的准确程度。本文分析了中国气溶胶遥感网反演的北京周边的沙尘和霾天气下大气气溶胶的体积谱和复折射指数,结果表明:沙尘和霾天气下气溶胶的体积谱均呈现双峰对数正态分布,霾气溶胶粒子体积谱在细模态(0.1~1μm)和粗模态(1~10μm)的占比大体相当,沙尘气溶胶粒子体积谱中粗模态占比远远高于细模态,以粗粒子为主;将实际测量的复折射率同HITRAN 2008数据库中各种类型的气溶胶复折射率光谱数据相比,类沙尘粒子的复折射指数同沙尘气溶胶最为接近,水溶性粒子同霾气溶胶最为接近,在大气气溶胶遥感中如果缺少复折射率的光谱数据,可考虑将类沙尘粒子和水溶性粒子的复折射率光谱数据(0.2~40μm)外推近似代替沙尘和霾气溶胶用于紫外和红外遥感。本研究可为利用紫外光谱和红外光谱定量遥感沙尘和霾气溶胶研究提供参考和依据。  相似文献   

4.
根据2008年4—7月黄山大气气溶胶观测资料,研究了气溶胶粒子的数浓度、谱分布特征及其与气象因子的关系,探讨了雾天和非雾天气溶胶颗粒物时间和尺度分布特点。分析发现,黄山光明顶春、夏季大气气溶胶数浓度的平均值分别为3.14×103个/cm3和1.80×103个/cm3,其中超细粒子(粒径小于0.1μm的粒子)在春夏季分别约占总粒子数浓度的79%和68%;高数浓度值集中在粒径0.04~0.12μm;积聚模态气溶胶粒子(0.1~1.0μm)在体积浓度分布和表面积分布中占很大比例。结合气象资料比较了雾天与非雾天气溶胶分布的差异,发现细粒子浓度非雾天大于雾天,而气溶胶数浓度与温度呈正相关,与相对湿度成反相关。结果还发现,黄山在春季以西北风和偏南风为主,西北风时气溶胶数浓度较高,在夏季主要以偏南风,特别是西南风为主,但是气溶胶数浓度的高值多发生在偏东风的条件下。  相似文献   

5.
利用2010年8月30日河北省石家庄一次霾天气条件下的气溶胶飞行探测资料,分析了石家庄地区上空658—6933 m高度范围内大气气溶胶粒子平均数浓度、平均直径的垂直分布特征和9个水平飞行高度上的谱分布特征。结果表明:轻度霾天气条件下的气溶胶平均数浓度为325个/cm3,平均直径为0.169μm。在约1000 m高度以下,气溶胶平均数浓度随高度的增加呈线性减少趋势。粒径也随高度增加而减小,由0.187μm减小至0.164μm。1000 m高度以上,气溶胶平均数浓度随高度减少趋势变缓,粒子平均直径在0.167~0.171μm范围内波动。9个不同高度上的谱分布都呈单峰型,随着高度增加,谱宽变小,峰值向小尺度方向移动。后向轨迹计算分析表明:污染气团的远距离输送可能是导致大气1500 m高度层气溶胶数浓度突增的原因。  相似文献   

6.
感应电机矢量控制系统的仿真研究   总被引:6,自引:0,他引:6  
根据2008年4—7月黄山大气气溶胶观测资料,研究了气溶胶粒子的数浓度、谱分布特征及其与气象因子的关系,探讨了雾天和非雾天气溶胶颗粒物时间和尺度分布特点。分析发现,黄山光明顶春、夏季大气气溶胶数浓度的平均值分别为3.14×103个/cm3和1.80×103个/cm3,其中超细粒子(粒径小于0.1μm的粒子)在春夏季分别约占总粒子数浓度的79%和68%;高数浓度值集中在粒径0.04~0.12μm;积聚模态气溶胶粒子(0.1~1.0μm)在体积浓度分布和表面积分布中占很大比例。结合气象资料比较了雾天与非雾天气溶胶分布的差异,发现细粒子浓度非雾天大于雾天,而气溶胶数浓度与温度呈正相关,与相对湿度成反相关。结果还发现,黄山在春季以西北风和偏南风为主,西北风时气溶胶数浓度较高,在夏季主要以偏南风,特别是西南风为主,但是气溶胶数浓度的高值多发生在偏东风的条件下。  相似文献   

7.
利用2010年春夏之交石家庄地区11架次的气溶胶和云凝结核(CCN)飞机同步观测资料,对比分析该地区云天和晴天气溶胶粒子的垂直廓线、不同高度气溶胶数谱特征,以及CCN的垂直分布、活化特性等。结果表明:云天气溶胶数浓度均值为1 553.28 cm~(-3),有效直径均值为0.52μm,比晴天数浓度(883.82 cm~(-3))大76%,有效直径(0.37μm)大41%。云天气溶胶数浓度呈指数型递减分布,有效半径在2 500 m以下随高度变化不明显,2 500 m以上随高度逐渐增大。晴天气溶胶数浓度在800~1 500 m内有累积,有效半径随高度没有明显的变化趋势。不同高度上气溶胶谱型基本一致,云天和晴天在气溶胶小尺度端(0.3μm)谱分布是连续的,在0.3μm处数谱均明显下降。云天和晴天CCN数浓度均随高度增大而减小,且各个高度层上云天CCN数浓度均大于晴天。云天CCN活化比率随高度变化不明显,晴天CCN活化比率随高度增大。气溶胶粒子尺度与CCN活化比率之间呈线性正相关。  相似文献   

8.
湛江地区一次冷锋型海雾微物理特征   总被引:1,自引:1,他引:0       下载免费PDF全文
利用2010年3月31日—4月2日冷锋天气系统影响下湛江海雾综合观测资料,分析了海雾的微物理特征及海雾过程中气溶胶粒子谱的演变特征。结果表明,海雾的生消与风场密切相关,海雾生成和发展与较强的ESE气流相联系,而弱的NE气流则会促使海雾减弱或消散。湛江海雾的雾滴数浓度为100~102cm-3,液态含水量为0.001~0.232 g·m-3,雾滴平均半径小于10μm,雾滴峰值半径多位于1.4μm。海雾雾滴谱分布以单调递减谱为主,谱宽超过20μm,且雾发展过程中雾滴谱谱宽存在突然增宽和迅速减小的现象。海雾过程中雾滴数浓度的变化主要是由半径小于5μm的雾滴数密度变化引起的。海雾过程对气溶胶粒子的湿清除效果并不显著,雾过程中粒径小于0.1μm和大于4μm的气溶胶粒子数密度显著减少,但在雾消散后又迅速恢复到雾发生前的水平。  相似文献   

9.
利用2019年7月16日新舟60飞机在广东省沿海的探测资料,分析了广东夏季沿海的气溶胶、云凝结核浓度以及粒子直径的典型空间分布特征.结果表明:随高度上升,气溶胶、云凝结核浓度先增大,后急剧减小,最后缓慢减小.在100~1 496、1 496~2 265、2 265~4 411 m的高度区间内,气溶胶浓度平均值分别为 1 725.3、534.3、13.1 cm-3;在 100~1 383、1 383~2 304、2 304~4 411 m 的高度区间内,云凝结核粒子浓度平均值约为304.0、107.7、4.1cm-3.气溶胶、云凝结核在2 000 m以下各层的浓度粒径谱较宽、谱峰更多、峰值直径较大.在气溶胶浓度高且粒径大、液态水含量高、过饱和度高的区域更有利于提升云凝结核的活化率.  相似文献   

10.
消光法反演腾格里沙漠地区沙尘气溶胶谱分布   总被引:10,自引:5,他引:5  
对腾格里沙漠4~9月份的整层大气气溶胶的光学遥感观测结果进行了分析。结果表明,由于消光因子对大粒径粒子消光效应的不敏感性,决定了消光法仅可较好地反演粒径在0.1~5μm之间的气溶胶谱分布特征,特别是对0.1~1μm的大粒子谱分布的反演结果更为稳定;腾格里沙漠气溶胶粒度谱分布基本符合Junge谱;浮尘天气的谱分布同干洁晴好天气的谱分布有着很大的差异,浮尘天气下粒径在0.1~1.0μm的大粒子以及粒径>1.0μm的巨粒子数有明显的增加,浓度要比干洁天气下的大几个量级。在干洁晴好天气下,腾格里沙漠的气溶胶是均一的、稳定的,而且>1μm的大粒子浓度很小;气溶胶的谱分布几乎是一致的,谱形大致为Junge谱,在粒度0.4~1.0μm范围内有一明显峰值。  相似文献   

11.
利用2009年9月8日华北中南部上空的飞机探测资料,分析了石家庄市和邯郸市区附近大气气溶胶的粒子数浓度、直径、尺度谱分布等时空变化特征。分析表明,降水天气条件下,气溶胶粒子平均数浓度约为137.6个/cm3,平均直径约为0.26μm。气溶胶主要集中于2 000 m以下的对流层低层,气溶胶浓度总体上随高度增加而降低;雨后阴天轻雾天气条件下,气溶胶粒子平均数浓度约为164.7个/cm3,平均直径约为0.16μm。气溶胶在逆温层下累积现象明显,云内气溶胶数浓度明显减少。气溶胶粒子浓度水平变化受下垫面、云区分布等局地因子影响较大。石家庄600 m和6 600 m气溶胶粒子谱呈单峰分布,3 000 m粒子谱呈双峰分布。邯郸6 400 m粒子谱宽较窄,呈单峰分布。  相似文献   

12.
利用2010年9月1日石家庄市区一次飞机探测的气溶胶资料,分析了石家庄市区上空大气气溶胶的数浓度与直径的垂直、水平分布特征及粒子谱分布。结果表明:600—3000 m高度范围内,气溶胶粒子平均数浓度为1443.1个/cm~3,粒子平均直径为0.194μm。3000—6900 m高度范围,气溶胶粒子平均数浓度为95.3个/cm3,粒子平均直径为0.192μm。气溶胶数浓度随着高度增加而迅速减少,受逆温层与云区分布的影响,数浓度曲线呈现一定程度的波动。由于探测当天高空风的影响,粒子数浓度明显比其他霾天气条件下的研究结果要低。云中,气溶胶数浓度与粒子平均直径数呈负相关性。云层对气溶胶的垂直分布影响较大。气溶胶粒子谱覆盖了0.10~1.05μm的尺度范围,粒子主要集中在0.1~0.3μm的范围内。600 m、1200 m、1800 m和3000 m的气溶胶粒子谱呈双峰分布,粒子谱谱型较为相似,4500 m和6900 m粒子谱呈单峰分布。气溶胶粒子尺度谱峰值随高度增加而减少,谱变窄。气溶胶粒子浓度水平变化幅度远小于垂直方向上的变化幅度,受天气条件及下垫面、云区等局地影响因子的影响较大。  相似文献   

13.
2009年秋季利用夏延飞机观测平台对河北中南部雾霾天气条件下的气溶胶及云凝结核CCN进行观测,得到气溶胶、CCN数浓度及尺度的垂直廓线及粒子谱等特征,研究雾霾天大气气溶胶的分布、来源特征以及气溶胶与云凝结核的转化关系。研究发现:霾天气条件下边界层附近的气溶胶垂直分布特征有很大不同。边界层以上气溶胶浓度随高度递减,数浓度量级约101~102个·cm~(-3);边界层附近和近地面气溶胶浓度有峰值出现,近地面数浓度量级达103个·cm~(-3)。气溶胶粒子平均直径范围为0.16~0.18μm。600 m、1 000~2 000 m之间的气溶胶平均粒子谱大体呈单峰分布;3 000~4 000 m、6 000~6 900 m之间的粒子谱呈双峰分布。受气溶胶来源及特性差异的影响,在0.3%过饱和度下,3 000 m以下的气溶胶活化为CCN的比例不到20%,3 000 m以上活化比例高达50%。Hysplit后向轨迹模拟的气团移动轨迹显示,6 000 m以上的大气高层受我国西北地区远距离输送作用影响,沙尘粒子吸湿活化为CCN。低层气溶胶主要受下垫面及近地面污染排放影响,气溶胶尺度相对较小,气溶胶转化为CCN的比例低于高层。CCN浓度随过饱和度的增加呈增大趋势。利用多项式对气溶胶浓度和CCN浓度进行拟合,拟合结果与实测谱吻合较好。  相似文献   

14.
基于2015年秋末冬初华北地区频繁出现的大范围重污染天气过程,利用无人直升机搭载的气溶胶采样装置和激光粒子计数器对北京顺义及房山地区近地面大气颗粒物进行探测,分析了重雾霾天气大气颗粒物的质量浓度和数浓度廓线及其分布特征。结果表明:北京地区重雾霾天气过程粒径小于1.0μm的气溶胶数浓度随高度变化不明显,粒径大于1.0μm的气溶胶数浓度随高度呈弱的减小趋势,说明重污染天气条件下近地面层大气颗粒物的粒子数相对稳定,亚微米级气溶胶数浓度较高,而粗粒子气溶胶数浓度较低。基于无人直升机搭载的气溶胶采样装置采集的气溶胶样品的质量浓度廓线表明,50 m高度大气颗粒物质量浓度较高,最大浓度达700μg·m-3。  相似文献   

15.
一次秋季冷锋降水过程气溶胶与云粒子分布的飞机观测   总被引:2,自引:1,他引:1  
利用机载PMS(Particle Measuring Systems)测量系统,对2008年10月4—5日石家庄地区一次冷锋降水云系的3次气溶胶和云粒子探测资料进行了分析。结果表明,冷锋过境降水前后,气溶胶粒子分布差异较大。降水发生前,气溶胶粒子平均数浓度约为103cm-3,平均直径为0.95μm;气溶胶主要集中于3000m高度以下的对流层低层,云内气溶胶数浓度明显减少。降水发生后,气溶胶粒子平均数浓度约为102cm-3,比降水前约小1个量级,平均直径为1.28μm;气溶胶主要集中于1200m以下的近地面层,其数浓度随高度增加而降低。气溶胶粒子浓度在低层云区内水平变化较小,而在无云区和云下近地层水平起伏较大。云粒子平均浓度比气溶胶小1~2个量级。气溶胶粒子平均谱主要呈双峰型,而云粒子谱主要为单峰型。  相似文献   

16.
北京地区沙尘天气气溶胶飞机观测特征   总被引:5,自引:0,他引:5  
利用3次沙尘天气期间的气溶胶飞机观测资料,分析了北京地区在3种沙尘天气下气溶胶垂直分布特征。结果显示:逆温层的存在对扬沙个例的垂直分布有影响。数密度谱的分布基本呈单调递减,但边界层内扬沙、浮尘和沙尘暴个例都在0.13~0.3μm间存在峰值,而扬沙个例在0.8μm,浮尘个例在6.5μm以及沙尘暴个例在2.8和6.5μm处出现次峰值。沙尘中细粒子的有效直径是人为源气溶胶粒子的4到10倍。浮尘天气整个粒子谱宽从近地面层开始随高度先增大后减小,到3000m达到最大,这与高空输送有关;扬沙个例沙尘粒子谱分布显示近地面层大于50μm段粒子谱无论数浓度还是谱宽都明显高于浮尘和沙尘暴个例,这与扬沙是局地大风扬尘引起有关;沙尘暴个例谱宽在接近云底达到最大,说明大粒子已经被携带到一定高度,与蒙古气旋云系的上升运动有关。  相似文献   

17.
使用差分淌度粒径分析仪(TDMPS)和空气动力学粒径分析仪(APS)对上甸子区域本底站气溶胶(直径3nm~10μm)数谱分布特征进行观测。利用2008年的观测结果,分析了不同天气(包括沙尘天气、干洁天气和雾霾天气)条件下大气气溶胶数谱分布及其与气象要素和气团来源的关系。结果表明,沙尘天气条件下,上甸子站受西北方向的气团控制,风速较大,粗粒子数浓度明显增加,PM10的质量浓度可以迅速增加到毫克每立方米(mg·m-3)的量级。典型的"香蕉型"新粒子生成事件通常发生在比较干洁晴朗的天气条件下,西北气团主导,大气中背景气溶胶数浓度较低,核模态气溶胶数浓度迅速增长,气溶胶的粒径呈现明显的增长过程,核模态可以平稳地增长到约80nm,达到成为云凝结核的尺度。雾霾天气通常是在西南气团影响下,细颗粒物(1μm以下)不断累积、相对湿度不断升高的条件下发生的。雾霾天气条件下数谱分布的几何中值粒径出现在积聚模态,积聚模态数浓度也高于非雾霾天。个例研究表明,雾霾天气条件下,PM2.5质量浓度可以达到非雾霾天的10倍左右,其中以细颗粒物的贡献为主。在雾霾天气条件下,上甸子站数浓度较高的积聚模态颗粒物主要来自城区的传输,因此对背景地区气溶胶数谱的研究可以为解析城区气溶胶复杂来源提供依据。  相似文献   

18.
利用2006年3~5月天空辐射计观测数据反演得到北京地区春季大气气溶胶光学性质参数,包括大气气溶胶光学厚度(0.5μm)、Angstrm指数、单次散射反射比和粒子谱分布特征。结果表明:北京地区春季气溶胶平均光学厚度0.67,Angstrm指数0.54,单次散射比0.88,粒子吸收性质较弱,粒子谱呈双峰形,以粗粒子为主,粗、细模态粒子粒径分别集中在0.17μm和7.7μm左右。相比2004年此次观测期间气溶胶粒径较大,粒子体积浓度较高,散射作用在其消光特性中的比重略有下降。光学厚度日变化呈单峰型,日间单次散射比随时间逐渐递减,Angstrm指数在上午递减趋势明显,午后变得稳定。对同时观测的天空辐射计与CE-318不同波长光学厚度结果进行比较,结果显示两者得到的光学厚度相关性很好,各波长小时平均结果的相对误差小于7%。  相似文献   

19.
利用飞机微物理探测资料,对2018年3月26日河南中北部地区一次气溶胶分布特征进行综合分析,得出以下结论:郑州市区与郊区积聚模态气溶胶粒子浓度值均在近地面达到最大值,且市区近地面污染排放比郊区严重,污染粒子被大气上升运动输送到高层,两地区浓度均随高度升高而减小。市区浓度值在4500 m附近产生2个量级骤减,郊区在3200 m附近产生2个量级骤减。市区与郊区积聚模态气溶胶粒子有效直径均随高度升高而增大;市区气溶胶粒子有效直径大于郊区的,且尺度范围更广;本地近地面排放粒子有效直径主要集中在0.4μm附近。对比过饱和度值在0.2%、0.4%、0.6%、0.8%、1.0%情况下CCN粒子浓度随高度变化,发现5种情况下粒子浓度均与气溶胶垂直分布一致,说明近地面的颗粒物排放导致近地面CCN浓度值偏高。整个探测过程中积聚模态气溶胶粒子对转化凝结核贡献较多,二者数浓度相关系数R~2为0.61,CCN活化率集中在0.4~0.6。  相似文献   

20.
2014年8月15日,山西省人工降雨防雹办公室在山西忻州开展了气溶胶和浅积云的飞机观测,本文利用机载云物理资料,详细分析了华北地区气溶胶、云凝结核(CCN)和浅积云微物理特性及其相互影响。主要结论有:(1)此次过程的边界层高度约为3600 m,不同层结情况下,0.1~3 μm尺度范围内的气溶胶粒子浓度Na、有效直径Da和CCN数浓度的垂直廓线明显不同,近地面Na可达2500 cm?3。(2)CCN的主要来源为积聚模态、爱根模态或者核模态的气溶胶颗粒,0.2%过饱和度下,气溶胶活化率(AR)在各高度层的结果变化不大;0.4%过饱和度下,AR随着高度增加而降低。(3)后向轨迹模式分析表明,2 km以下的气溶胶主要来自于当地城市排放,由细颗粒污染物组成;2 km以上的气溶胶主要来源于中国西北和蒙古地区的沙漠,由亚微米沙尘组成,溶解度相对较低,可作为潜在的冰核。(4)本文细致分析了两块相邻浅积云(Cu-1和Cu-2)的云物理特性。Cu-1云底高度约4500 m,云厚约600 m,云体松散,夹卷较多;云中液态含水量(LWC)基本保持在0.5 g m?3,云粒子浓度Nc平均值为278.3 cm?3,云滴有效直径Dc整体在15 μm以内;毛毛雨滴粒子浓度最大值为0.002 cm?3,云中几乎无降水粒子;粒子谱宽随着高度增加而增大,主要集中在30 μm以内。Cu-2云底高度约3900 m,云厚约1200 m,云体密实;云中过冷水丰沛,LWC有多个超过1 g m?3的区域,云顶附近出现冰晶,云中粒子从凝结增长状态直接进入到混合相态;积云内部粒子水平分布不均,同一高度Nc相差较大,最大可达1240 cm?3。Dc随着高度增加而增大;粒子谱宽随着高度增加而拓展,最大可达1100 μm,谱型由单峰向多峰转变;降水粒子和冰晶图像大多为霰粒子、针状和板状。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号