共查询到18条相似文献,搜索用时 46 毫秒
1.
卫星自主定轨是提高全球卫星导航系统(GNSS)可靠性、稳健性、完整性和生存能力的重要保证。新一代的北斗卫星已可以进行星间链路测距,从而达到提高卫星全球跟踪能力以及实现整个卫星导航系统的自主定轨。然而由于卫星运行会受到多种摄动力的影响,如果不能对这些摄动力进行精密的改正,在没有地面或其他天体提供绝对约束的条件下,导航系统会随着自主定轨时间的延长出现星座整体旋转。卫星所受摄动力分为保守力和非保守力两部分:对于保守力,如地球非球形摄动、潮汐摄动、太阳月球和其他三体引力,现在已有的力学模型可以很精确地进行改正;而非保守力(如太阳光压摄动),则难以用精确的模型进行改正,因此成为影响卫星定轨精度的主要因素。星载加速度计可以高精度地测量非保守力,并已成功应用于重力卫星(CHAMP、GRACE、GOCE)的重力场反演与大气研究中。本文研究主要探讨采用星上加速度计提高北斗卫星自主定轨精度和延长自主定轨时长的可行性。利用模拟的卫星轨道和星间链路数据,以及现有的星载加速度计误差模型,对北斗卫星系统分别使用星间链路数据和星间链路与加速度计组合数据,进行自主定轨与精度评定。计算结果表明,使用星间链路与星载加速度计数据进行自主定轨,较单纯使用星间链路数据精度具有明显改进。在模拟的星间测距观测数据具有0.33m随机噪声以及分米级系统误差,自主定轨两个月的情况下,联合使用加速度计数据的自主定轨IGSO和MEO卫星精度为分米级,而仅使用星间链路数据的定轨精度约为3~6m,比使用加速度计精度低一个量级。 相似文献
2.
基于地面监测网的多星精密定轨可以同时解算出北斗卫星轨道和卫星钟差。由于轨道和钟差的耦合影响,卫星钟差时序难免会出现周期性波动。此外,受限于目前并不完善的北斗全球监测网络分布、系统导航文件缺失以及定轨后处理软件的设置问题,3类卫星的钟差均存在大量数据间断问题。本文利用适用于间断数据的谱分析方法,对多星定轨条件下的北斗卫星钟差数据进行了周期项提取,并利用周期项改进后的钟差预报模型评估了24h以内的预报精度。基于近一年的数据分析表明,北斗GEO卫星钟差3个主周期依次为12、24和8h,IGSO卫星钟差的3个主周期依次为24、12和8h,而MEO卫星钟差的3个主周期依次为12.91、6.44和24h。与改进前相比,周期项改进后的钟差预报模型将北斗卫星钟差在24h以内的预报精度提高了20%~40%。 相似文献
3.
针对不同太阳光压模型在北斗三号MEO卫星定轨中适用性不同的问题,借助全球卫星导航系统数据对ECOM1-9模型、ECOM1-5模型、ECOM2模型、ECOMC模型在北斗三号MEO卫星中的适用性进行了分析,并分别采用国际激光测距服务中心提供的卫星激光测距数据、重叠弧段数据进行内外符合精度评估。结果表明,采用ECOMC模型定轨时,不同北斗三号MEO卫星内外符合精度均最佳,外符合精度最佳时,RMSE为3.3 cm,STD为3.0 cm。与ECOM1-9模型、ECOM1-5模型、ECOM2模型相比,ECOMC模型定轨内符合精度在径向分别提升了39.54%、16.84%、12.55%;在切向分别提升了51.33%、27.43%、10.46%;在法向分别提升了48.99%、21.42%、11.22%。 相似文献
4.
针对北斗卫星姿轨控后的轨道快速确定难题,系统地研究了基于多项式拟合和基于星历拟合两种运动学定轨方法,推导建立了相应的运动学定轨模型。同时针对接收机系统差和顽固多径问题,利用基于并置比对的接收机系统差解算方法和CNMC的多径削弱方法,实现了超短弧跟踪条件下接收机数据质量的有效控制。利用北斗GEO/IGSO/MEO卫星的实测伪距数据进行了试验验证,结果表明在10min超短弧跟踪条件下,GEO、IGSO和MEO卫星的运动学定轨位置精度分别为3.27m、8.19m和5.90m,实现了超短弧跟踪条件下的北斗卫星快速定轨,满足了卫星机动期间的北斗RDSS服务对轨道精度的需求,为北斗RDSS服务走向全球提供了技术支撑。 相似文献
5.
当前的北斗卫星导航系统尚缺乏合适的太阳光压模型,由GPS的ECOM模型衍生而来的多种经验光压模型常被用于北斗定轨中。从观测值残差、轨道内、外符精度以及外推精度等方面比较分析了目前常用的4种经验光压模型对于北斗卫星定轨的适用性。结果表明,不同(类型)卫星适用不同的经验光压模型,但总体来看,9参数模型的适用性最差,而5参数和7参数模型的适用性相对较好。 相似文献
6.
7.
为提升区域地面监测站条件下北斗卫星定轨精度,面向日益丰富的北斗星载数据和即将实现的星间链路技术,提出了联合运用地面监测站数据、低轨卫星星载数据与星间链路数据的北斗卫星精密定轨方法。讨论了低轨卫星星载数据与星间链路数据增强对于导航卫星精密定轨的影响,重点从低轨卫星数量、轨位分布及星间链路等方面进行了仿真分析。结果表明:加入少量低轨卫星与区域监测站联合定轨即可显著提高导航卫星定轨精度约73%,钟差解算精度略有改进但不明显;同等数量且均匀分布的低轨星座,其轨位分布对联合定轨精度影响不大;加入星间链路数据可大幅提升导航卫星定轨精度,且改进效率高于低轨卫星。 相似文献
8.
9.
提供高精度的精密轨道产品对北斗系统的推广应用具有重要意义。给出了一种基于模糊度固定的北斗卫星多系统融合非差精密定轨方法,重点推导论述了模糊度固定的实现方法,并结合实测数据,对其精密定轨效果进行了分析,初步分析结果表明:利用本文方法,北斗GEO、IGSO、MEO卫星三维定轨精度分别达到1.263m、0.214m、0.134m,三类卫星径向定轨精度平均优于10cm,IGSO和MEO已经基本优于5cm;模糊度固定以后,北斗卫星三维定轨精度平均提高了21.8%,轨道切向精度改善最为明显,其中又以GEO卫星改进最大。 相似文献
10.
分析了TDRS卫星的轨道特性及传统的地基测距跟踪技术定轨精度不高的现状,研究了基于空基的用户星精密轨道的TDRS卫星定轨,解决了基于空基的一般GEO卫星定轨问题。 相似文献
11.
我国卫星导航系统lGSO卫星采用动态偏航与零偏航两种姿态控制模式,在太阳矢量与轨道面夹角较小时,采用零偏航。卫星姿态控制模式的切换造成了卫星所受光压力的变化。当处理包含动偏/零偏切换点的数据弧段时,由于卫星精密轨道确定策略及光压模型的不适应,无法用一组光压参数拟合两种状态,造成定轨精度下降。本文提出了利用分段线性模型描述太阳光压的定轨策略,可将定轨重叠弧段URE精度提高75%。解算的光压参数能够反映出两种状态的差异,是解决姿态转换期间轨道确定的有效方法。 相似文献
12.
北斗导航卫星位置计算方法研究 总被引:1,自引:2,他引:1
为了提高北斗卫星轨道的精确性和实时性,在分析星历文件中的开普勒轨道参数和轨道摄动参数的基础上,阐述了卫星轨道计算方法,用VisualC++语言编程实现了卫星轨道位置计算,并用2013年1月13日的北斗导航文件计算出1、5号GEO卫星和6、9号MEO/IGSO卫星位置及其它们外推时刻卫星的位置,通过对比分析,验证了该算法的可行性。 相似文献
13.
北斗GEO卫星轨道算法研究 总被引:2,自引:0,他引:2
通过实际采集的北斗广播星历数据分析了GEO广播星历的相关轨道根数特性,北斗GEO卫星广播星历拟合坐标旋转法,给出了适用于北斗GEO卫星的轨道计算方法,通过理论分析和试验验证了北斗GEO法的可用性与正确性。 相似文献
14.
正北斗卫星导航系统是我国自主建设、独立运行的全球卫星导航系统。作为后起建设的卫星导航系统,北斗卫星精密定轨方法的研究尚处于起步阶段,理论方法还不完善,定轨精度也还有较大的提升空间。有鉴于此,论文围绕精密轨道确定核心问题展开研究,从单系统精密定轨、多系统融合精密定轨、精密定轨后处理、LEO辅助北斗卫星精密定轨以及实时轨道确定等方面对北斗卫星精密定轨方法进行了系统研究,论文的主要贡献总结如下: 相似文献
15.
北斗卫星导航系统精密定轨技术研究现状 总被引:2,自引:0,他引:2
北斗系统开通运行以来,无论是系统建设还是精密定轨技术均获得了长足发展。文中简要介绍了北斗系统目前的建设情况,总结梳理了北斗卫星精密定轨技术发展现状。在此基础上,分析论述了北斗系统精密定轨中亟待解决的主要问题。 相似文献
16.
《测绘科学技术学报》2013,(3)
利用BDS/GPS双模观测数据,研究了高精度北斗卫星精密定轨的实现方法,使用PANDA软件,结合"北斗卫星观测实验网"的实测数据,进行了精密定轨实验,结果表明:北斗卫星径向定轨精度能够达到优于10 cm的水平;其中,GEO三维定轨精度能够优于5 m,但沿迹方向存在系统偏差,IGSO/MEO三维定轨精度优于0.5 m。 相似文献
17.
Linux系统由于其开放性、安全性和稳定性受到众多机构和科研单位的认可,许多知名的卫星导航定位软件都是基于Linux系统开发。Shell脚本语言是Linux系统上一种重要的脚本语言,熟练地使用Shell语言可以解决或简化许多问题。本文总结了Shell语言在卫星定轨软件中的一些应用,包括数据下载、数据合并、数据传输、自动化运行与错误预警等,可以为从事卫星导航定位领域的科研人员或工作人员提供参考。 相似文献
18.
针对北斗GEO、IGSO、MEO的3种卫星类型和动态偏航、零偏航两种姿态控制模式,进行了以ECOM光压模型为基础的轨道预报精度分析。确定了北斗3类卫星的短期、中期、长期预报光压参数选择策略。采用光压参数修正法,通过对北斗卫星光压参数长期变化规律建模,有效提升了地影段轨道长期预报精度。研究结果可同时服务于北斗卫星轨道确定及历书参数生成。 相似文献