首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 949 毫秒
1.
The evolution of energy, energy flux and modal structure of the internal tides(ITs) in the northeastern South China Sea is examined using the measurements at two moorings along a cross-slope section from the deep continental slope to the shallow continental shelf. The energy of both diurnal and semidiurnal ITs clearly shows a~14-day spring-neap cycle, but their phases lag that of barotropic tides, indicating that ITs are not generated on the continental slope. Observations of internal tidal energy flux suggest that they may be generated at the Luzon Strait and propagate west-northwest to the continental slope in the northwestern SCS. Because the continental slope is critical-supercritical with respect to diurnal ITs, about 4.6 kJ/m~2 of the incident energy and 8.7 kW/m of energy flux of diurnal ITs are reduced from the continental slope to the continental shelf. In contrast, the semidiurnal internal tides enter the shelf because of the sub-critical topography with respect to semidiurnal ITs.From the continental slope to the shelf, the vertical structure of diurnal ITs shows significant variation, with dominant Mode 1 on the deep slope and dominant higher modes on the shelf. On the contrary, the vertical structure of the semidiurnal ITs is stable, with dominant Mode 1.  相似文献   

2.
孔压探杆贯入及潮汐作用下超孔压响应规律研究   总被引:1,自引:0,他引:1  
Excess pore water pressure is an important parameter that can be used to analyze certain physical characteristics of sediment. In this paper, the excess pore water pressure of subseafloor sediment and its variation with tidal movement was measured following the installation of a wharf in Qingdao, China by using a fiber Bragg grating(FBG) piezometer. The results indicated that this FBG piezometer is effective in the field. The measured variation of excess pore water pressure after installation is largely explained by the dissipation of excess pore water pressure. The dissipation rate can be used to estimate the horizontal consolidation coefficient, which ranged from1.3×10~(–6) m~2/s to 8.1×10~(–6) m~2/s. The measured values during tidal phases are associated with the variability of tidal pressure on the seafloor and can be used to estimate the compressibility and the permeability of the sediment during tidal movement. The volume compression coefficient estimated from tidal oscillation was approximately2.0×10~(–11) Pa~(–1), which was consistent with the data from the laboratory test. The findings of this paper can provide useful information for in situ investigations of subseafloor sediment.  相似文献   

3.
The effects of tidal currents (i.e., barotropic and internal tides) are important in the biogeochemistry of a coastal shelf sea. The high-frequency of currents and near-bottom temperatures collected in three consecutive southwest monsoon seasons (May, June, July and August of 2013 until 2015) is presented to reveal the role of the tidal currents to the temperature variability in the coastal shelf sea of the east coast of Peninsular Malaysia (ECPM), south of the South China Sea (SCS). The results of a spectral density and harmonic analysis demonstrate that the near-bottom temperature variability and the tidal currents are influenced by diurnal (O1 and K1) and semidiurnal (M2) tidal currents. The spectral density of residual currents (detided data) at 5, 10 and 16 m depth also shows significant peaks at the diurnal tidal frequency (K1) and small peaks at the semidiurnal tidal frequency (M2) indicating the existence of internal tides. The result of the horizontal kinetic energy (HKE) shows a strong intermittent energy of internal tides in the ECPM with the strongest energy is found at 16 m depth during a sporadic cooling event in June and July. A high horizontal cross-shore heat flux (16 m) also indicates strong intrusions of cooler water into the ECPM in June and July. During the short duration of cold pulse water observed in June and July, a cross-wavelet analysis also reveals the strong relationship between the near-bottom temperatures and the internal tidal currents at the diurnal tidal frequency. The intrusion of this cooler water is probably related to the monsoon-induced upwelling in June. It is loosely interpreted that the interaction between the strong barotropic tides and the steep slope in the central basin of the SCS under the stratified condition in southwest monsoon has generated these internal tides. The dissipation of internal tides from the slope area probably has driven the cold-upwelled water into the ECPM coastal shelf sea when the upwelling intensity is the highest in June and July.  相似文献   

4.
东海沿海季节性海平面异常成因   总被引:1,自引:0,他引:1  
Based on the analysis of sea level, air temperature, sea surface temperature(SST), air pressure and wind data during 1980–2013, the causes of seasonal sea level anomalies in the coastal region of the East China Sea(ECS) are investigated. The research results show:(1) sea level along the coastal region of the ECS takes on strong seasonal variation. The annual range is 30–45 cm, larger in the north than in the south. From north to south, the phase of sea level changes from 140° to 231°, with a difference of nearly 3 months.(2) Monthly mean sea level(MSL)anomalies often occur from August to next February along the coast region of the ECS. The number of sea level anomalies is at most from January to February and from August to October, showing a growing trend in recent years.(3) Anomalous wind field is an important factor to affect the sea level variation in the coastal region of the ECS. Monthly MSL anomaly is closely related to wind field anomaly and air pressure field anomaly. Wind-driven current is essentially consistent with sea surface height. In August 2012, the sea surface heights at the coastal stations driven by wind field have contributed 50%–80% of MSL anomalies.(4) The annual variations for sea level,SST and air temperature along the coastal region of the ECS are mainly caused by solar radiation with a period of12 months. But the correlation coefficients of sea level anomalies with SST anomalies and air temperature anomalies are all less than 0.1.(5) Seasonal sea level variations contain the long-term trends and all kinds of periodic changes. Sea level oscillations vary in different seasons in the coastal region of the ECS. In winter and spring, the oscillation of 4–7 a related to El Ni?o is stronger and its amplitude exceeds 2 cm. In summer and autumn, the oscillations of 2–3 a and quasi 9 a are most significant, and their amplitudes also exceed 2 cm. The height of sea level is lifted up when the different oscillations superposed. On the other hand, the height of sea level is fallen down.  相似文献   

5.
Near-diurnal vertically-standing waves with high vertical wavenumbers k z were observed in the velocity and shear fi elds from a set of 75-d long ADCP moored in the northeastern South China Sea(SCS)away from the“critical”latitude of 28.8°.These enhanced near-diurnal internal waves followed a fortnightly spring-neap cycle.However,they always happened during semidiurnal spring tides rather than diurnal springs although strong diurnal internal tides with the fortnightly spring-neap cycle were prevailing,suggesting that they were generated via subharmonic instability(PSI)of dominant semidiurnal M 2 internal tides.When two semidiurnal internal tidal waves with opposite vertical propagation direction intersected,both semidiurnal subharmonic and super harmonic waves were largely intensifi ed.The observed maximum diurnal velocity amplitudes were up to 0.25 m/s.The kinetic energy and shear spectra further suggested that frequencies of daughter waves were not always perfectly equal to M 2/2.The superposition of two daughter waves with nearly equal frequencies and nearly opposite k z in a PSI-triad leaded to the vertically-standing waves.  相似文献   

6.
On the basis of the satellite maps of sea level anomaly(MSLA) data and in situ tidal gauge sea level data,correlation analysis and empirical mode decomposition(EMD) are employed to investigate the applicability of MSLA data,sea level correlation,long-term sea level variability(SLV) trend,sea level rise(SLR) rate and its geographic distribution in the South China Sea(SCS).The findings show that for Dongfang Station,Haikou Station,Shanwei Station and Zhapo Station,the minimum correlation coefficient between the closest MSLA grid point and tidal station is 0.61.This suggests that the satellite altimeter MSLA data are effective to observe the coastal SLV in the SCS.On the monthly scale,coastal SLV in the western and northern part of SCS are highly associated with coastal currents.On the seasonal scale,SLV of the coastal area in the western part of the SCS is still strongly influenced by the coastal current system in summer and winter.The Pacific change can affect the SCS mainly in winter rather than summer and the affected area mostly concentrated in the northeastern and eastern parts of the SCS.Overall,the average SLR in the SCS is 90.8 mm with a rising rate of(5.0±0.4) mm/a during1993–2010.The SLR rate from the southern Luzon Strait through the Huangyan Seamount area to the Xisha Islands area is higher than that of other areas of the SCS.  相似文献   

7.
Interannual variations of the air-sea CO 2 exchange from 1965 to 2000 in the Pacific Ocean are studied with a Pacific Ocean model.Two numerical experiments are performed,including the control run that is forced by climatological monthly mean physical data and the climate-change run that is forced by interannually varying monthly mean physical data.Climatological monthly winds are used in both runs to calculate the coefficient of air-sea CO 2 exchange.The analysis through the differences between the two runs shows that in the tropical Pacific the variation of export production induced by interannual variations of the physical fields is negatively correlated with that of the air-sea CO 2 flux,while there is no correlation or a weak positive correlation in the subtropical North and South Pacific.It indicates that the variation of the physical fields can modulate the variation of the air-sea CO 2 flux in converse ways in the tropical Pacific by changing the direct transport and biochemical process.Under the interannually varying monthly mean forcing,the simulated EOF1 of the air-sea CO 2 flux is basically consistent with that of sea surface temperature(SST) in the tropical Pacific,but contrary in the two subtropical Pacific Ocean.The correlation coefficient between the regionally integrated air-sea CO 2 flux and area-mean SST shows that when the air-sea CO 2 flux lags SST by about 5 months,the positive coefficient in the three regions is largest,indicating that in the tropical Pacific or on the longer time scale in the three regions,physical processes control the flux-SST relationship.  相似文献   

8.
Sea surface temperature SST obtained from the initial version of the Korea Operational Oceanographic System(KOOS) SST satellite have low accuracy during summer and daytime. This is attributed to the diurnal warming effect. Error estimation of SST data must be carried out to use the real-time forecasting numerical model of the KOOS. This study suggests two quality control methods for the KOOS SST system. To minimize the diurnal warming effect, SSTs of areas where wind speed is higher than 5 m/s were used. Depending on the wind threshold value, KOOS SST data for August 2014 were reduced by 0.15°C. Errors in SST data are considered to be a combination of random, sampling, and bias errors. To estimate bias error, the standard deviation of bias between KOOS SSTs and climatology SSTs were used. KOOS SST data yielded an analysis error standard deviation value similar to OSTIA and NOAA NCDC(OISST) data. The KOOS SST shows lower random and sampling errors with increasing number of observations using six satellite datasets. In further studies, the proposed quality control methods for the KOOS SST system will be applied through more long-term case studies and comparisons with other SST systems.  相似文献   

9.
Hourly sea surface temperature(SST) observations from the geostationary satellite are increasingly used in studies of the diurnal warming of the surface oceans. The aim of this study is to derive the spatial and temporal distribution of diurnal warming in the China seas and northwestern Pacific Ocean from Multi-functional Transport Satellite(MTSAT) SST. The MTSAT SST is validated against drifting buoy measurements firstly. It shows mean biases is about –0.2°C and standard deviation is about 0.6°C comparable to other satellite SST accuracy. The results show that the tropics, mid-latitudes controlled by subtropical high and marginal seas are frequently affected by large diurnal warming. The Kuroshio and its extension regions are smaller compared with the surrounding regions. A clear seasonal signal, peaking at spring and summer can be seen from the long time series of diurnal warming in the domain in average. It may due to large insolation and low wind speed in spring and summer, while the winter being the opposite. Surface wind speed modulates the amplitude of the diurnal cycle by influencing the surface heat flux and by determining the momentum flux. For the shallow marginal seas, such as the East China Sea, turbidity would be another important factor promoting diurnal warming. It suggests the need for the diurnal variation to be considered in SST measurement, air-sea flux estimation and multiple sensors SST blending.  相似文献   

10.
Near-bottom currents play important roles in the formation and dynamics of deep-water sedimentary systems.This study examined the characteristics and temporal variations of near-bottom currents, especially the tidal components, based on two campaigns(2014 and 2016) of in situ observations conducted southeast of the Dongsha Island in the South China Sea. Results demonstrated near-bottom currents are dominated by tidal currents, the variance of which could account for ~70% of the total current variance. Diurnal tidal currents were found stronger than semidiurnal currents for both barotropic and baroclinic components. The diurnal tidal currents were found polarized with predominantly clockwise-rotating constituents, whereas the clockwise and counterclockwise constituents were found comparable for semidiurnal tidal currents. It was established that diurnal tidal currents could induce strong current shear. Baroclinic tidal currents showed pronounced seasonal variation with large magnitude in winter and summer and weak magnitude in spring and autumn in 2014. The coherent components accounted for ~65% and ~50% of the diurnal and semidiurnal tidal current variances,respectively. The proportions of the coherent and incoherent components changed little in different seasons. In addition to tidal currents, it was determined that the passing of mesoscale eddies could induce strong nearbottom currents that have considerable influence on the deep circulation.  相似文献   

11.
在不规则半日潮为主的河口, 半日和全日周期的分潮簇在很大程度上影响了潮位的振幅。但当潮波向三角洲河网内部传播时, 由于不同周期分潮簇的振幅沿程变化速率存在差异, 特别是半月周期分潮簇振幅作用得到增强, 使得不同周期分潮簇对河网内潮位分布的影响具有明显的区域性特征。通过珠江三角洲河网一维水动力模型得到研究区域内高频且长周期的潮位资料, 基于小波分解重构出主要周期分潮簇的振幅, 采用谱聚类图像分割算法, 通过像素分割计算确定综合相似度, 从图像学等角度论证了不同周期分潮簇与复杂河网潮位分布的空间关联性。研究发现, 半日和全日周期的分潮簇影响了复杂河网口门潮位振幅的量值, 但半月周期的分潮簇却影响了复杂河网整体潮位分布的形态特征。  相似文献   

12.
琼州海峡夏季三塘潮流谱分析和余流特征研究   总被引:3,自引:0,他引:3  
无论潮流矢量是反时针旋转(f>0)还是顺时针旋转(f<0),全日潮谱峰都高于半日潮谱峰。2个半日潮周期分别为12、12.4h;2个日潮周期分别为23.9和25.8h;在半日潮和全日潮分量中,反时针分量是主要的:顺时针的半日潮能谱只有反时针的84%;顺时针的日潮能谱只有反时针的65%;浅水分潮6.2、8h和超过24h的3、4.2和5.5d等也有明显表现,但是都未通过显著性检验;夏季余流流速在5~10cm/s范围内变化,方向以南偏西为主。造成这种现象的首要的因素是夏季琼州海峡水交换基本态势和三塘附近海底地形,风对流向变化也有重要影响。  相似文献   

13.
内潮耗散与自吸-负荷潮对南海潮波影响的数值研究   总被引:1,自引:0,他引:1  
利用非结构三角形网格的FVCOM海洋数值模式,在其传统二维潮波方程中加入参数化的内潮耗散项和自吸-负荷潮项,计算了南海及其周边海域的M_2、S_2、K_1和O_1分潮的分布。与实测值的比较表明,引入这两项对模拟准确度的提高有明显效果。根据模式结果本文计算分析了研究海域的潮能输入和耗散。能量输入计算表明,能通量是潮能输入的最主要构成部分,通过吕宋海峡断面进入南海的M_2和K_1分潮能通量分别为38和29GW;半日周期的自吸-负荷潮能量输入以负值居多,而全日周期的自吸-负荷潮能量输入以正值居多,因而自吸-负荷潮减弱了南海的半日潮,并加强了南海的全日潮。引潮力的作用也减弱了半日潮而加强了全日潮,但其作用要小于自吸-负荷潮。潮能耗散的分析显示底摩擦耗散在沿岸浅水区域起主导作用,内潮耗散则主要发生在深水区域。内潮耗散的最大值出现在吕宋海峡,且位于南海之外的海峡东部的耗散量大于位于南海之内的海峡西部的耗散量。对M_2和K_1分潮吕宋海峡的内潮耗散总值分别达到16和23GW。  相似文献   

14.
潮汐变形是近岸潮汐的一个基本特征,潮汐不对称的判断及量化是一个重要的研究内容。传统的判别方法是通过M2分潮与其倍潮(M4、M6等)以及分潮K1、O1和M2等的相对振幅和相对相位实现。这些方法主要基于满足特定关系的分潮组的调和常数计算,不易应用于研究潮汐不对称在不同时间尺度的变化。针对正规半日潮海域,通过对潮汐不对称的分解,对潮汐不对称在一个涨落潮过程中的产生及量化进行了探讨。研究认为,近岸潮汐一个涨落过程的历时随潮汐过程变化,在一个涨落潮过程中,近岸的潮汐不对称不仅来自于M2分潮及其倍潮或K1、O1和M2等满足一定频率关系的分潮波组合,M2分潮与任何分潮叠加均可能导致涨落潮过程的不对称及其类型的潮间转换。潮汐不对称的大小与所选分潮与M2分潮的相位、振幅之间的关系密切。给出的潮汐不对称分解方法在正规半日潮海域具有一定的适用性,能够将不同分潮对潮汐不对称的贡献进行分离。但对于相对振幅大于1/2的分潮,此分解方法尚需进一步研究。  相似文献   

15.
风暴潮增水是风暴潮与天文潮相互作用理论研究的基本内容,也是风暴潮预报中的重要问题。最大余水位的产生机制对于提高预报精度及海岸带防护有着重要意义。为研究全日潮海域风暴潮增水中的全日扰动和半日扰动,对Horsburgh与Wilson的风暴潮余水位模型进行了改进和扩展,建立了包括多个分潮的余水位分解方法并将其应用于防城港站,对台风"启德"和"山神"影响下的潮位过程进行了分析。结果显示,建立的余水位的分解方法对于全日分潮和半日分潮有良好的适用性。由于高频分潮产生机制的复杂性,该方法对高频分潮应用尚需进一步研究。在全日潮的防城港海域,全日扰动与半日扰动具有相同的量级,二者的和约占总增水的15%~19%。台风过程不同,相位变化项和局地变化项对增水的贡献有较大差异。  相似文献   

16.
为了研究非临界纬度上参量次谐频不稳定(parametric subharmonic instability,PSI)过程生成的近惯性波(near-inertial wave,NIW),本文基于国家重点研发项目的 准实时传输深海潜标资料,对内波速度谱、近惯性流速和动能、D2-f(半日频减惯性频)流速和动能、半日内潮流速和...  相似文献   

17.
根据夏季琼州海峡新海附近15 m处地层潮流谱分析结果可得,无论是f>0 或f<0,全日潮谱峰都高于半日潮谱峰。其中,半日潮周期,约为12 h,12.4 h,日潮存在两个,一个在23.9 h,另一个在25.8 h前后;在半日潮和全日潮分量中,反时针分量是主要的、顺时针的日潮能谱只有反时针的84%;顺时针的半日潮能谱只有反时针的63%;浅水分潮8.3 h,6.2 h和超过24 h的4.2 d,3 d等也很明显,但是未通过显著性检验; 大多数余流流速在5~10 cm/s之间,个别情况超过40 cm/s。受反时针运动涡旋影响,余流主要向偏东北、北、西北方向运动。在这个区间内的流向,占总观测数68%以上;风对余流也有重要影响:东北风将使余流方向偏向西北,偏北向风将使余流方向偏南。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号