首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
基于HYSPLIT4的一次四川盆地夏季暴雨水汽路径和源地分析   总被引:12,自引:6,他引:6  
王佳津  王春学  陈朝平  任伟 《气象》2015,41(11):1315-1327
利用四川省156站气象资料、全球同化系统(GDAS)资料,引入拉格朗日混合单粒子轨道模型(HYSPLIT4),定量分析了2013年7月7—11日四川盆地西部暴雨的水汽输送情况。结果表明:此次暴雨过程的水汽主要来自950和850 hPa,并且两者的水汽路径和来源有着显著差别。后向追踪1天,950和850 hPa的水汽来源大值区都出现在四川盆地区;追踪3天,950 hPa的水汽来源大值区仍然在四川盆地附近,但是850 hPa上则追踪到孟加拉湾东部;追踪到9天时,950 hPa的水汽主要来源出现在阿拉伯海到我国南海地区,850 hPa上则追踪到索马里半岛东部。总体上950 hPa的水汽输送路径有五条,其中两条是北方路径,另外三条为南方路径。850 hPa的水汽输送路径有两条,一条是北方路径,另一条是南方路径。定量分析指出,950 hPa的水汽源地主要有四个,其中阿拉伯海—孟加拉湾地区的水汽输送贡献率最大(44.1%),中南半岛—南海地区的水汽贡献率次之(33.1%),巴尔喀什湖地区(15.7%)和贝加尔湖地区(7.1%)的水汽贡献率相对较弱。850 hPa上的水汽源地也有四个,其中从阿拉伯海地区,沿南亚夏季风爆发路径而来的暖湿空气最重要(89.4%),其次从西北部巴尔喀什湖—贝加尔湖地区而来的干冷空气相对较弱(6.3%),而来自孟加拉湾(3%)和局地(1.3%)的水汽则非常少。  相似文献   

2.
利用高空、地面常规观测资料、NCEP/NCAR再分析资料,诊断分析了2017年2月新疆天山北坡一次区域性暴雪过程的特征及成因,结合GDAS再分析资料并采用HYSPLIT模式,模拟追踪水汽源地、主要水汽输送通道及其对水汽输送的贡献。结果表明:此次天山北坡暴雪是在典型后倾结构的高低空系统配置下产生的,中、高纬地区短波槽在东移过程中同位相叠加,为暴雪长时间维持提供了稳定的天气尺度背景;暴雪发生时位势不稳定性加强,中低层持续冷垫抬升是主要的动力机制,较强垂直风切变是降雪强度较大的重要原因,高低空急流耦合激发中尺度垂直上升支和次级环流圈,地形作用对暴雪有增幅作用;暴雪主要水汽源地位于阿拉伯半岛西侧的红海和伊朗高原西南侧的波斯湾至阿拉伯海北部一带,水汽通道主要集中在500~850 hPa,水汽辐合区位于700~850 hPa,中高层有偏西气流、中层有西南气流、低层有西北急流将水汽接力输送至暴雪区;利用HYSPLIT模式模拟发现,暴雪期间,西、东、南边界水汽输入均起重要作用,主要水汽输送通道分别为偏西路径、偏西南路径、局地水汽路径,1500 m高度的追踪,三者贡献率大致相当,3000 m高度,局地水汽和偏西路径水汽贡献率更大。  相似文献   

3.
近50a东北冷涡暴雨水汽源地分布及其水汽贡献率分析   总被引:2,自引:1,他引:1  
用HYSPLIT v4.9轨迹追踪模式,以分辨率为2.5°×2.5°的再分析资料驱动模式,对东北地区308例冷涡暴雨过程中的目标气块,进行后向轨迹追踪模拟。结果显示东北冷涡暴雨主要有4个水汽源地,(Ⅰ)西太平洋及相邻海域(包括鄂霍次克海、日本海、黄海、渤海和东海)水汽贡献率最大,平均水汽贡献率达39.8%;依次是(Ⅱ)孟加拉湾—南海海域为32.1%;(Ⅲ)欧亚大陆,尤其是贝加尔湖附近为20.9%;(Ⅳ)东北地区的水汽贡献率最小,仅为7.2%。欧亚大陆主要输送700 hPa高度附近的干冷气团,而各海域则输送800 hPa高度以下的暖湿气团。  相似文献   

4.
2007年7月新疆三次暴雨过程的水汽特征分析   总被引:6,自引:0,他引:6  
杨莲梅  张云惠  汤浩 《高原气象》2012,31(4):963-973
利用新疆99个气象站日降水量资料和NECP/NCAR一天4次1°×1°再分析资料,分析了2007年7月8-11日、15-17日和27-29日新疆3次暴雨过程的水汽输送和收支特征。雨型I(8-11日)的雨带位于天山山区及其北麓,雨型II(15-17日)的雨带位于新疆东部地区,雨型III(27-29日)的雨带位于天山以北的北疆地区。结果表明,这3种典型雨型的水汽输送路径有明显的差异,雨型I存在西风气流、河西走廊至新疆的低空偏东急流和青藏高原向北气流3支水汽输送路径,西方路径水汽输送量最大,这3支水汽输送气流在天山山区及其北麓强辐合并引发暴雨。这是由700hPa贝加尔湖脊发展、对流层中亚低涡强烈发展、快速东移和500hPa新疆脊逐渐东移所造成的。雨型II的水汽输送为西方、东方、南方和北方路径,4支水汽在东—西向和南—北向强辐合并引发暴雨。这种异常的水汽输送是由700hPa柴达木低压发展、500hPa乌拉尔脊东北向发展、中亚低涡东南移动和新疆脊配置所致。雨型III主要为西风气流和贝加尔湖至新疆低空偏东急流输送水汽,东、西方水汽在天山以北区域发生强辐合并造成暴雨,偏东水汽输送来自于贝加尔湖、孟加拉湾、南海和热带西太平洋,其水汽输送量大于西方路径。这种异常水汽输送是由中亚低涡东移、西太平洋副热带高压北伸与贝加尔湖脊叠加且贝加尔湖脊西伸配置所造成的。  相似文献   

5.
利用常规气象观测资料、NCEP逐6 h再分析资料(1°×1°)、微波辐射计资料以及HYSPLIT模式等,对2021年7月5日冀中平原一次暖区暴雨过程的水汽输送特征进行对比分析。结果表明:应用HYSPLIT模式模拟分析后发现,本次过程中925 hPa和850 hPa降水开始前比湿在12 g/kg以上,是暴雨区的主要水汽贡献者,其主要水汽通道为西南路径,水汽贡献率分别占57.57%和63.64%。源自黄海或途径黄海、渤海等地的气块在东南转西南气流的引导下为暴雨区低层带来丰富的水汽,同时源自亚欧大陆中高层的气块,随着西风带长波槽脊的运动,为暴雨区上空500 hPa带来干空气,构成上干下湿的不稳定层结。降水开始前,925 hPa和850 hPa在相应引导气流的作用下,水汽不断向冀中平原输送,使得优良的水汽条件主要集中于低层大气,与HYSPLIT模式模拟结果一致。通过微波辐射计对降雨过程的水汽特征进行分析,结果表明在降雨开始前,700 hPa以下高度的水汽含量有明显增加,水汽密度最大达到14 g/m3。分析上述三种不同资料得到相似结论,但HYSPLIT模式和微波辐射计两种高时空分辨率资料的应用,可以及时且多方位分析水汽特征,为暖区暴雨落区、强度等精细化准确预报预警提供一定参考。  相似文献   

6.
赵克明  黄艳  于碧馨 《气象科技》2017,45(1):122-130
应用南疆西部(35°~42°N,73°~80°E)15个气象站及200个区域自动气象站2013年逐日降水量资料和NCEP/NCAR每日4次1°×1°再分析资料,分析2013年南疆西部4次典型暴雨天气过程的水汽源地、水汽输送及水汽收支特征。结果表明,2013年4场暴雨天气水汽主源地主要分布在阿拉伯海和孟加拉湾,其次是波斯湾,低层东风急流(LLEJ)在南疆西部暴雨过程中作用显著。过程Ⅰ水汽输送路径主要为偏东和西南气流,在南疆西部沿山及偏东平原强烈辐合引发暴雨,偏东路径水汽输送明显大于西南路径,水汽输送的大值区域持续时间为24 h。过程Ⅱ水汽输送有西方、西南和偏东路径,3支水汽输送在南疆西部东—西、南—北产生剧烈的辐合造成大范围、强度强的暴雨天气,东边界水汽输入量接近南边界,水汽输送的大值区域持续时间为60 h。 过程Ⅲ水汽输送为西方、偏南和偏东路径,LLEJ引导的水汽在西风、东风气流的交汇下沿山堆积产生强的辐合,造成暴雨天气。水汽输送的大值区域持续时间为24 h。过程水汽输送主要有西方、偏南和偏东路径,西方路径的输送量远远大于偏东和偏南水汽,水汽输送出现2次高低空大值区域叠置现象,暴雨过程中大值区域持续时间48 h。  相似文献   

7.
2013年5月26~28日和6月15~18日南疆连续出现了2场罕见的暴雨过程,利用常规地面和高空探测资料、NCEP/NCAR每日4时次 1°×1°再分析资料和欧洲ECWMF 0.25°×0.25°细网格数值预报产品,对比分析了这2场暴雨的落区和强度差异的成因。2场暴雨均在有利的环流背景下产生,较强暴雨的高空环流经向度更大、中亚低槽与北支槽打通并南伸更南,低层700hPa以下水汽输送较中高层更为重要,日常预报更应注重低层的水汽输入。对比暴雨强度,低层水汽输送越强(更多水汽路径、更多边界的水汽输入、更强水汽通量和水汽输入量)、低层水汽输送时间越长、低层切变线持续时间长且伸展至中高层,暴雨强度均可能更强。中尺度切变线和涌线在暴雨落区预报中具有一定的指示意义。  相似文献   

8.
2012年7月21日北京特大暴雨过程的水汽输送特征   总被引:6,自引:0,他引:6  
王婧羽  崔春光  王晓芳  崔文君 《气象》2014,40(2):133-145
利用NCEP再分析资料,根据水汽收支方程计算2012年7月21日北京特大暴雨时期华北东北部暴雨区域的水汽收支情况并分析水汽输送特征。得到以下结论:经向水汽输送在此次暴雨过程中起主要作用,暴雨区内水汽主要来源于中、低层(500 hPa以下)的南边界。暴雨区内水汽的辐合与暴雨发生的时间和空间具有较好一致性,在低层水汽的辐合起主要作用,中高层水汽垂直输送作用更为显著。HYSPLIT后向轨迹模拟得到的结果显示根据水汽源地划分影响此次暴雨过程水汽输送路径主要有:从孟加拉湾、南海地区处于中低层直接北上的西南路径,以及中层以下从我国东部海域(黄海、东海为主)进入内陆之后北折向东北偏北方向运动的L形高湿路径;同时高层沿着西风带西北路径的干空气输送也对此次强降水有重要影响。三者中从东部海域到达暴雨区的水汽贡献率最大,而孟加拉湾、南海的水汽输送对于此次强降水起到了明显的增强作用。  相似文献   

9.
利用1981—2020年5—9月天山南坡16个气象站逐日降水资料和NCEP/NCAR GDAS再分析资料,分析天山南坡暖季暴雨过程的环流形势,并采用HYSPLIT模式,模拟追踪水汽源地及输送特征。结果表明:天山南坡暖季暴雨主要发生在南亚高压双体型、500 hPa以上西南急流(气流)、700 hPa切变辐合以及天山地形辐合抬升的重叠区域。水汽主要源自中亚、大西洋及其沿岸、地中海和黑海及其附近,经TKAP(塔吉克斯坦、吉尔吉斯坦、阿富汗东北部、巴基斯坦北部和印度西北部)、南疆、北疆关键区,分别从偏西、偏南、偏北通道输入暴雨区,700 hPa以上偏西通道、以下偏北通道占主导地位,且贡献最大的是南疆关键区。源自中亚的水汽主要输送至暴雨区700 hPa及以下,对暴雨的贡献较大,且沿途损失较大;源自大西洋及其沿岸、地中海和黑海及其附近的水汽主要输送至暴雨区700 hPa以上,对暴雨的贡献较小。另外,中低层还存在源自北疆、南疆、北美洲东部、蒙古的水汽。基于上述特征,建立了天山南坡暖季暴雨过程水汽三维精细化结构模型。  相似文献   

10.
利用1981—2020年5—9月天山南坡16个气象站逐日降水资料和NCEP/NCAR GDAS再分析资料,分析天山南坡暖季暴雨过程的环流形势,并采用HYSPLIT模式,模拟追踪水汽源地及输送特征。结果表明:天山南坡暖季暴雨主要发生在南亚高压双体型、500 hPa以上西南急流(气流)、700 hPa切变辐合以及天山地形辐合抬升的重叠区域。水汽主要源自中亚、大西洋及其沿岸、地中海和黑海及其附近,经TKAP(塔吉克斯坦、吉尔吉斯坦、阿富汗东北部、巴基斯坦北部和印度西北部)、南疆、北疆关键区,分别从偏西、偏南、偏北通道输入暴雨区,700 hPa以上偏西通道、以下偏北通道占主导地位,且贡献最大的是南疆关键区。源自中亚的水汽主要输送至暴雨区700 hPa及以下,对暴雨的贡献较大,且沿途损失较大;源自大西洋及其沿岸、地中海和黑海及其附近的水汽主要输送至暴雨区700 hPa以上,对暴雨的贡献较小。另外,中低层还存在源自北疆、南疆、北美洲东部、蒙古的水汽。基于上述特征,建立了天山南坡暖季暴雨过程水汽三维精细化结构模型。  相似文献   

11.
黄河流域冬、夏季水汽输送及收支特征   总被引:1,自引:0,他引:1  
李进  李栋梁  张杰 《高原气象》2012,31(2):342-350
利用NCEP/NCAR再分析资料和我国实测雨量资料,对黄河流域1月和7月多年平均及旱、涝年整层积分的水汽通量、辐合(辐散)及各分区水汽收支进行了研究。结果表明,1月黄河流域无明显的水汽输送,而7月水汽沿西南、东南及西北3条路径输送,前两支气流在多年平均时主要影响黄河下游区。涝年时影响到黄河中、下游区,而上游区水汽流入较小;旱年,黄河中、上游区均无明显的水汽输送,只有下游的小范围地区受西南气流影响。各区净水汽通量分别与其地面降水的时空演变相对应,而经向净水汽通量是影响水汽收支变化及供给流域降水的主要水汽来源;涝年的水汽净收支与各边界水汽流入明显大于旱年。1月,西边界和北边界微弱的水汽输入远小于东边界和南边界的输出,各区均为水汽净辐散,不利于降水;7月,大量的水汽主要来自西边界和南边界,涝年各区均为水汽盈余,多年平均也以净辐合为主,而旱年则以水汽亏损为主。  相似文献   

12.
利用常规观测、区域自动站逐小时降水、NCEP/NCAR和GDAS再分析等资料,对比分析了2018-2019年哈密市三次暴雨过程的环流背景、水汽输送、辐合(辐散)和水汽收支等特征。结果表明:三次暴雨过程均发生在巴尔喀什湖地区有低涡、蒙古地区有高压脊的环流背景下,当对流层高层南亚高压中心东移且东部中心强度增强、中亚西风槽前存在强西南急流,对流层中层欧洲高压脊偏强、低涡偏南、西太副高偏西偏北时,有利于暴雨落区偏南、降水强度强,反之暴雨落区偏北、降水偏弱。三次暴雨过程水汽源地、水汽输送路径及水汽贡献有所差异,水汽源地的多源性和源地水汽贡献量的多少会对哈密市降雨的强弱有一定的影响。对流层中低层蒙古的反气旋有利于暖湿空汽沿着河西走廊的偏东急流输送至暴雨区,有利于暴雨的增幅。三次过程不同边界水汽收支量有所差异,东边界的低层和西边界的中高层为水汽的主要输入边界。强降水区各边界水汽净流入的强度、维持时间以及水汽的辐合强度对强降水的发展和维持起关键作用。  相似文献   

13.
静止气象卫星水汽图像的分析和应用(一)   总被引:3,自引:0,他引:3       下载免费PDF全文
长期多次人工增雨试验及探测证明,水汽条件是人工影响天气最主要的基础条件。利用近期开通的GMS-5静止卫星6.7 μm通道提供的水汽图像,并结合常规天气资料、卫星云图等,对黑龙江省1995年7月的3次暴雨过程进行了初步分析。发现在水汽图像上,3次暴雨对应3种不同的类型。并对其中7月25~27日具有明显水汽输送带的持续性暴雨作了综合分析。该水汽图像给出了这次典型气旋发展阶段暖区水汽输送带的清晰直观图像,得到了水汽输送带的宽度和长度数据,并分析了它的温湿结构,估算了暖锋段降水的降水效率。另外,分析了云物理特征及  相似文献   

14.
The 20-year (1976-1995) daily radiosonde data at 17 stations in the tropical western Pacific was ana lyzed. The analysis shows that the atmosphere is more humid in a warmer climate on seasonal, inter-annual and long-term (20-year) time scales, implying a positive water vapor feedback. The vertical structure of the long-term trends in relative humidity (RH) is distinct from that on short-term (seasonal and inter-annual) time scales, suggesting that observed water vapor changes on short time scales could not be considered as a surrogate of long-term climate change. The increasing trend of RH (3%-5%/decade) in the upper troposphere is stronger than that in the lower troposphere (1%-2% / decade). Such vertical structure would amplify positive water vapor feedback in comparison to the common assumption of constant RH changes vertically. The empirical orthogonal function (EOF) analysis of vertical structure of RH variations shows distinct features of the vertical structure of the first three EOFs. The first three EOFs are optimal for repre sentation of water vapor profiles and provide some hints on physical mechanisms responsible for observed humidity variability. Vaisala radiosondes were used at nine stations, and VIZ radiosondes used at other eight stations. The Vaisala data are corrected for temperature-dependence error using the correction scheme developed by NCAR / ATD and Vaisala. The comparison of Vaisala and VIZ data shows that the VIZ-measured RHs after October 1993 have a moist bias of ~ 10% at RHs < 20%. During 1976-1995, several changes in cluding both instruments and reporting practice have been made at Vaisala stations and introduce errors to long-term RH variations.  相似文献   

15.
2002年7月20~25日揭示的热带水汽羽和暴雨的关系   总被引:3,自引:0,他引:3  
利用GMS-5水汽图像和NCEP/NCAR 1°×1°再分析资料,分析了2002年7月20~25日梅雨暴雨过程中热带水汽羽的变化及其与物理量场的配置。结果表明热带水汽羽和暴雨之间存在密切联系,(1)有一条热带水汽羽始终和暴雨相伴,其走向从孟加拉湾向东北方向延伸到朝鲜半岛,热带水汽羽不单体现了水汽在对流层中、高层的平流,实际上还反映了对流层整层深厚的水汽沿着水汽通道向北输送。其中,低空急流对水汽涌的输送起到了积极的作用,每一次水汽向东北方向涌动时,其东南侧都伴有低空急流,并且急流核跟随水汽涌一起移动。中尺度对流云团在急流的左前方生成和发展,它们也跟随水汽涌一起移动。(2)热带水汽羽的北部边界大致与高空急流轴平行,暴雨云团一般出现在西南风高空急流入口区的右后方,距离急流轴约3个纬距的地方。高空急流的存在为MCS提供了很好的质量外流途径,即辐散机制,有利于MCS的发展。(3)在暴雨过程期间,热带水汽羽内维持有一条θse≥350 K的脊轴,走向和热带水汽羽平行。低空θse脊轴不单指示了低空高能量的位置,其上或附近也最有可能存在明显不稳定的区域,因此也是暴雨容易出现的地方。另外,在热带水汽羽中也维持着一条窄而强的正涡度带,位置和走向均和低空sθe脊轴相吻合,体现了低层的动力抬升机制,正涡度中心基本和MCS相对应。  相似文献   

16.
2002年6月21~24日梅雨锋暴雨过程中的水汽羽特征   总被引:4,自引:2,他引:4  
利用GMS 5水汽图像和NCAR/NCEP再分析资料 ,分析了 2 0 0 2年 6月 2 1~ 2 4日长江中下游梅雨锋暴雨过程中水汽图像上水汽羽的特征。结果表明 :日平均水汽图像上显示了这次暴雨过程中对流层中上部的主要水汽型 ,是一条热带水汽羽从孟加拉湾经过青藏高原东部向偏东方向伸展至江淮地区 ,并与中纬度水汽羽相互作用 ,暴雨云团在热带水汽羽中连续生成。这条热带水汽羽是一条深厚暖湿输送带 ,反映了中高层水汽从孟加拉湾向长江下游的输送 ,以及通过大尺度上升运动造成的水汽自下而上的垂直输送 ,并且水汽羽与对流层上层的负涡度和正散度区域有很好的对应关系。水汽羽的北部边界附近的暗带与一条强涡度梯度和高空急流轴相关 ,具有明显的斜压性  相似文献   

17.
高原低涡东移过程的水汽图像   总被引:9,自引:12,他引:9  
郁淑华 《高原气象》2002,21(2):199-204
通过对1998年8月3-5日水汽图像分析发现;(1)对流层中,上部水汽涡旋的出现,东移、消失对高原低涡的形成,东移、消失有指示意义。(2)与高原低涡相伴的水汽涡旋的东移,变化与贝加尔湖东南部低压所伴有的气旋水汽带的东移,变化是密切相关的,(3)高原低涡的形成与印度洋,阿拉伯海,印度有大范围强水汽向东北输送到高原有关,在向北输送的水汽减弱时,青藏高原地形对水汽输送的屏障作用是明显的。  相似文献   

18.
基于观测约束的地基犌犘犁三维水汽层析技术研究   总被引:1,自引:0,他引:1  
全球定位系统(GPS)卫星信号穿过大气层时发生的偏折和延迟,可以用来反演信号传播路径上的大气水汽总量。为获取区域高精度的大气水汽三维分布,借助分布密集的地基GPS观测网及其斜路径水汽观测,建立新的观测约束层析模型,提出以高斯函数为水平约束,区域逐月多年探空观测为垂直约束,即以平均量为先验值,以标准偏差为权重矩阵的新方法;并在层析算法中引入地面观测,以提高整体尤其是低层反演精度。三维水汽层析网格模型基于长江中游鄂东区域的22站地基GPS加密网搭建,实时解算系统可逐时输出三维水汽产品。三维湿折射度和水汽密度可以分别由斜路径的湿延迟总量和水汽总量观测反演获得。以2010年开展的汛期联合加密探空观测为参照,对三维层析的总体反演精度、低层反演精度、层析区域中心与边缘反演精度进行了对比和分析。结果显示:整体样本检验三维水汽密度平均偏差为-0.63 g/m~3,标准偏差为1.22 g/m~3,与探空相关系数为0.98;水汽密度与探空资料的相关比湿折射度与探空资料的相关好;对于不同层析区域,中心区域观测元数量较为丰富,使得位于中心的层析精度好于整体和边缘;加入低层观测的层析结果与探空的相关比未加低层观测时的好,低层观测的加入提高了层析与探空的相关,减小了低层层析标准差、区域中心和2 km以上层析的均差,有效提高了反演精度;低层观测的加入对整体标准差的影响,可能与加剧观测方程中长度矩阵元素间的量级差异有关。  相似文献   

19.
2010年7~8月东北地区暴雨过程的水汽输送特征分析   总被引:2,自引:0,他引:2  
孙力  马梁臣  沈柏竹  董伟  隋波 《大气科学》2016,40(3):630-646
本文根据影响天气系统和雨带位置的不同将2010年7~8月东北地区出现的22个暴雨日划分成了三类暴雨,在以欧拉方法分析了各类暴雨的水汽输送和收支的基础上,利用基于拉格朗日方法的轨迹模式(HYSPLIT v4.9),模拟计算了各类暴雨的水汽输送轨迹、主要通道以及不同源地的水汽贡献。结果表明,影响暴雨的水汽输送通道有三支,一支是沿西太平洋副高边缘东南气流的水汽输送,另一支是起源于南海北部向北偏东气流的水汽输送,第三支是西风带西北气流的水汽输送。第一类暴雨中,来自于西太平洋通道和南海通道的水汽输送大体相当,均很重要,两者可以占总水汽输送的87.4%。第二类暴雨中,水汽输送路径偏东,西太平洋通道的水汽输送贡献可达近70%。第三类暴雨中,虽然西太平洋通道水汽输送仍占主导地位,但北方通道的水汽输送也变得不可忽视。西太平洋通道的水汽沿途损失较小,并主要被输送到东北地区850 hPa及以下的大气之中,而南海通道的水汽沿途损失较多,与北方通道的水汽一样,主要被输送到东北地区850 hPa以上的大气之中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号