首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
滑坡灾害易发性分析评价对地质灾害的防治与管理具有重要意义。针对滑坡灾害样本选择策略,单核支持向量机多特征映射不合理的问题,本文提出顾及样本优化选择的多核支持向量机(multiple kernel support vector machine,MKSVM)滑坡灾害易发性分析评价方法。为了保证样本平衡性并提高负样本的合理性,采用相对频率比(relative frequency,RF)综合评价各状态对于滑坡灾害易发性影响的重要程度,实现各评价因子状态的合理划分;利用确定性系数法(certainty factor,CF)计算各评价因子各状态分级影响滑坡灾害的敏感性,并在此基础上进行加权求和得到各栅格单元的滑坡灾害易发性指数,在滑坡灾害易发性指数极低和低易发区内随机选择与滑坡灾害点数目一致的非滑坡灾害点作为负样本数据。利用MKSVM对各特征空间最优核函数进行线性组合,解决了单一核函数映射不合理的问题,提高了模型的分类准确率和预测精度。以湖南省湘西土家族苗族自治州为研究区,从滑坡灾害易发性分区图、分区统计及评价模型精度3个方面对CF样本策略的MKSVM模型、CF样本策略的单核SVM模型、随机样本策略的MKSVM模型、随机样本策略的单核SVM模型进行了对比分析。结果表明,4种模型的受试者工作特征曲线(receiver operating characteristic,ROC)下的面积(area under curve,AUC)分别为0.859、0.809、0.798、0.766,验证了CF样本策略的合理性、有效性及MKSVM模型的可靠性。  相似文献   

2.
GIS支持下应用PSO-SVM模型预测滑坡易发性   总被引:1,自引:0,他引:1  
滑坡灾害易发性预测是滑坡监测、预警与评估的关键技术。如何有效地选取评价因子和构建预测模型是滑坡灾害定量预测研究中的难题。本文以三峡库区长江干流岸坡作为研究区,通过地形、地质和遥感等多源数据融合,提取滑坡孕灾环境和诱发因素的信息作为评价因子。在此基础上,针对滑坡灾害的非线性和不确定性特征,采用粒子群算法对支持向量机模型参数进行全局寻优,构建粒子群算法(particle swarm optimization,PSO)-支持向量机(support vector machine,SVM)模型,定量预测滑坡易发性。最后通过分类精度比较分析基于格网单元和对象单元的滑坡易发性预测精度,结果表明,基于对象单元的PSO-SVM预测精度较高,其曲线下面积为0.841 5,Kappa系数为0.849 0,预测结果与野外实际调查情况较为一致,可为三峡库区滑坡防灾减灾工作提供参考。  相似文献   

3.
滑坡灾害易发性评价可为滑坡灾害风险管理、国土空间规划及滑坡监测提供科学依据。针对现有滑坡灾害易发性评价模型无法消除易发性评价指标因子在量纲、性质等方面的差异,尚未考虑易发性评价指标因子与滑坡灾害相关性,以及精度较高的经典机器学习模型训练效率较低、参数选取困难等问题,引入熵指数(index of entropy,IOE)和粒子群优化(particle swarm optimization,PSO)算法,提出IOE融入支持向量机(support vector machine, SVM)的滑坡灾害易发性评价方法。首先,基于滑坡灾害易发性评价指标因子,利用IOE模型计算SVM的调节因子;然后,采用PSO算法迭代求解SVM最优解,根据SVM二分类得到的隶属度来区分滑坡灾害易发性;最后,以陕西省作为实验区,从滑坡灾害易发性分区图、分区统计及评价模型精度3个方面将所提方法与SVM方法进行了对比,实验结果表明所提方法的准确性、可靠性优于SVM方法。  相似文献   

4.
基于地理信息系统的滑坡灾害空间预测研究发展迅速,出现了多种滑坡空间预测模型。在总结滑坡灾害空间预测研究现状的基础上,简要介绍了决策树和支持向量机2种模型的基本原理。以秭归县一个研究区为例,选取11个滑坡影响因子,采用2种不同的研究单元,分别建立了决策树和支持向量机模型并对滑坡易发性作出了评价。结果表明针对同一模型,面向对象单元的滑坡易发性评价精度优于栅格单元;针对同一数据单元,支持向量机模型的滑坡易发性评价精度优于决策树模型。  相似文献   

5.
一种结合SMOTE和卷积神经网络的滑坡易发性评价方法   总被引:1,自引:0,他引:1  
大规模的人类工程活动诱发和加剧了滑坡灾害的致灾情况,严重威胁工程安全和环境安全。滑坡易发性评价是滑坡监测预警的关键技术。针对传统滑坡监测手段数据源有限、缺乏挖掘滑坡灾害空间分布特征及其诱发因素的有效方法等问题,以位于三峡库区的中国重庆市万州区为研究区,基于地形、地质和遥感影像等多源数据,首先提取了22个滑坡易发性评价因子,并对这些因子进行多重共线性检验;然后采用合成少数类过采样技术(synthetic minority oversampling technique, SMOTE)解决滑坡和非滑坡样本比例不平衡问题,建立输入训练集;最后构建卷积神经网络(convolutional neural networks,CNN)模型,定量预测滑坡易发性,生成滑坡易发性分区图。采用受试者工作特征曲线分析评价结果,测试数据集模型精度达89.50%,说明该模型是一种高性能的滑坡易发性评价方法。  相似文献   

6.
利用混合光谱分解与SVM估算不透水面覆盖率   总被引:1,自引:1,他引:0  
对比了线性混合光谱分解模型(SMA)与支持向量机(SVM)在TM影像上估算不透水面覆盖率(ISP)的精度,通过SVM模型拟合TM像元光谱特征与样本ISP间的关联而获得对未知像元ISP的估算能力。对于天津市主城区的TM影像,选择学校区、工矿区和住宅区的高分辨率影像分类结果作为训练样本(7020个)和验证样本(1500个),SVM模型的ISP估算均方差(15.4%)优于SMA估算结果(19.4%);在增加缨帽变化“绿度分量”及混合光谱分解“高反射率分量”作为SVM特征变量后,ISP估算精度提高为12%。研究结果表明:SVM模型能够拟合各像元光谱组分间非线性关系且具有较好小样本泛化的性能,适用于地面样本较少的大区域ISP制图;增加与ISP相关性大的光谱特征向量作为SVM输入能提供更多的区域地物空间分布信息,能够调整无样本的地表类型的ISP估算值,提高区域ISP估算的整体精度。  相似文献   

7.
本文基于GIS技术和Logistic回归模型进行滑坡敏感性评价定量分析方法,并以江苏省连云港市郊区为研究区域,建立了地质、地形数据库等滑坡因子空间数据库和滑坡空间分布数据库,进行了滑坡影响因子敏感性分析。对连云港市郊区滑坡灾害在空间上的预测结果具有重要的现实意义,对推广应用、防灾减灾具有实际的指导意义。  相似文献   

8.
本文基于GIS技术和Logistic回归模型进行滑坡敏感性评价定量分析方法,并以江苏省连云港市郊区为研究区域,建立了地质、地形数据库等滑坡因子空间数据库和滑坡空间分布数据库,并进行了滑坡影响因子敏感性分析。对连云港市郊区滑坡灾害在空间上的预测结果具有重要的现实意义,对推广应用、防灾减灾具有实际的指导意义。  相似文献   

9.
王晨辉  赵贻玖  郭伟  孟庆佳  李滨 《测绘学报》2022,51(10):2196-2204
滑坡位移预测是滑坡灾害实时监测预警的重要组成部分,良好的滑坡位移预测模型有助于预测地质灾害发生。滑坡变形受多种外界因素影响呈现出随机性和非线性的特点,在现有的滑坡位移预测方法中,机器学习方法在滑坡位移预测中得到了广泛的应用。针对滑坡位移预测是趋势项位移和周期项叠加的特点,本文研究采用基于集成经验模态分解(EEMD)的滑坡趋势项和周期项位移提取方法,结合支持向量回归(SVR)模型实现对滑坡的位移预测。首先,详细介绍了该模型的构建过程和预测性能,并以均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和决定系数(R2)作为评估模型的预测性能指标。然后,分别利用EEMD-SVR、SVR、Elman模型对贵州省岩溶山区的一处滑坡进行位移预测,结果表明,EEMD-SVR模型连续1 d预测的RMSE值、MAPE值和R2值分别为0.648 mm、0.518%和0.996 8,可以提供更高可靠的滑坡位移预测精度,对同类滑坡的位移预测具有一定的参考价值。  相似文献   

10.
无人机低空遥感是近年来新兴的一种快速获取灾情信息的手段,如何利用无人机高分影像构建滑坡灾害解译模型是实现快速自动解译滑坡的关键。针对该问题,对比了多种影像特征提取方法,将迁移学习(TL)特征和支持向量机(SVM)引入到构建滑坡灾害自动解译模型中,提出了一种TL支持下的高分影像滑坡灾害解译模型。选取5·12汶川地震及4·20芦山地震系列无人机影像构建了滑坡灾害样本库并进行了实验,TL特征方法整体分类准确度ACC为95%,ROC达到0.98,识别准确率达到97%。结果表明,所提方法可用于高分影像滑坡自动解译,同时可用于大面积高分影像中快速山地滑坡灾害定位及检测。  相似文献   

11.
Geospatial database creation for landslide susceptibility mapping is often an almost inhibitive activity. This has been the reason that for quite some time landslide susceptibility analysis was modelled on the basis of spatially related factors. This paper presents the use of frequency ratio, fuzzy logic and multivariate regression models for landslide susceptibility mapping on Cameron catchment area, Malaysia, using a Geographic Information System (GIS) and remote sensing data. Landslide locations were identified in the study area from the interpretation of aerial photographs, high resolution satellite images, inventory reports and field surveys. Topographical, geological data and satellite images were collected, processed, and constructed into a spatial database using GIS and image processing tools. There were nine factors considered for landslide susceptibility mapping and the frequency ratio coefficient for each factor was computed. The factors chosen that influence landslide occurrence were: topographic slope, topographic aspect, topographic curvature and distance from drainage, all from the topographic database; lithology and distance from lineament, taken from the geologic database; land cover from TM satellite image; the vegetation index value from Landsat satellite images; and precipitation distribution from meteorological data. Using these factors the fuzzy membership values were calculated. Then fuzzy operators were applied to the fuzzy membership values for landslide susceptibility mapping. Further, multivariate logistic regression model was applied for the landslide susceptibility. Finally, the results of the analyses were verified using the landslide location data and compared with the frequency ratio, fuzzy logic and multivariate logistic regression models. The validation results showed that the frequency ratio model (accuracy is 89%) is better in prediction than fuzzy logic (accuracy is 84%) and logistic regression (accuracy is 85%) models. Results show that, among the fuzzy operators, in the case with “gamma” operator (λ = 0.9) showed the best accuracy (84%) while the case with “or” operator showed the worst accuracy (69%).  相似文献   

12.
Abstract

In this study, we introduced novel hybrid of evidence believe function (EBF) with logistic regression (EBF-LR) and logistic model tree (EBF-LMT) for landslide susceptibility modelling. Fourteen conditioning factors were selected, including slope aspect, elevation, slope angle, profile curvature, plan curvature, topographic wetness index (TWI), stream sediment transport index (STI), stream power index (SPI), distance to rivers, distance to faults, distance to roads, lithology, normalized difference vegetation index (NDVI), and land use. The importance of factors was assessed using correlation attribute evaluation method. Finally, the performance of three models was evaluated using the area under the curve (AUC). The validation process indicated that the EBF-LMT model acquired the highest AUC for the training (84.7%) and validation (76.5%) datasets, followed by EBF-LR and EBF models. Our result also confirmed that combination of a decision tree-logistic regression-based algorithm with a bivariate statistical model lead to enhance the prediction power of individual landslide models.  相似文献   

13.
A comprehensive Landslide Susceptibility Zonation (LSZ) map is sought for adopting any landslide preventive and mitigation measures. In the present study, LSZ map of landslide prone Ganeshganga watershed (known for Patalganga Landslide) has been generated using a binary logistic regression (BLR) model. Relevant thematic layers pertaining to the causative factors for landslide occurrences, such as slope, aspect, relative relief, lithology, tectonic structures, lineaments, land use and land cover, distance to drainage, drainage density and anthropogenic factors like distance to road, have been generated using remote sensing images, field survey, ancillary data and GIS techniques. The coefficients of the causative factors retained by the BLR model along with the constant have been used to construct the landslide susceptibility map of the study area, which has further been categorized into four landslide susceptibility zones from high to very low. The resultant landslide susceptibility map was validated using receiver operator characteristic (ROC) curve analysis showing an accuracy of 95.2 % for an independent set of test samples. The result also showed a strong agreement between distribution of existing landslides and predicted landslide susceptibility zones.  相似文献   

14.
The main aim of present study is to compare three GIS-based models, namely Dempster–Shafer (DS), logistic regression (LR) and artificial neural network (ANN) models for landslide susceptibility mapping in the Shangzhou District of Shangluo City, Shaanxi Province, China. At First, landslide locations were identified by aerial photographs and supported by field surveys, and a total of 145 landslide locations were mapped in the study area. Subsequently, the landslide inventory was randomly divided into two parts (70/30) using Hawths Tools in ArcGIS 10.0 for training and validation purposes, respectively. In the present study, 14 landslide conditioning factors such as altitude, slope angle, slope aspect, topographic wetness index, sediment transport index, stream power index, plan curvature, profile curvature, lithology, rainfall, distance to rivers, distance to roads, distance to faults and normalized different vegetation index were used to detect the most susceptible areas. In the next step, landslide susceptible areas were mapped using the DS, LR and ANN models based on landslide conditioning factors. Finally, the accuracies of the landslide susceptibility maps produced from the three models were verified using the area under the curve (AUC). The validation results showed that the landslide susceptibility map generated by the ANN model has the highest training accuracy (73.19%), followed by the LR model (71.37%), and the DS model (66.42%). Similarly, the AUC plot for prediction accuracy presents that ANN model has the highest accuracy (69.62%), followed by the LR model (68.94%), and the DS model (61.39%). According to the validation results of the AUC curves, the map produced by these models exhibits the satisfactory properties.  相似文献   

15.
The main objective of the study was to evaluate and compare the overall performance of three methods, frequency ratio (FR), certainty factor (CF) and index of entropy (IOE), for rainfall-induced landslide susceptibility mapping at the Chongren area (China) using geographic information system and remote sensing. First, a landslide inventory map for the study area was constructed from field surveys and interpretations of aerial photographs. Second, 15 landslide-related factors such as elevation, slope, aspect, plan curvature, profile curvature, stream power index, sediment transport index, topographic wetness index, distance to faults, distance to rivers, distance to roads, landuse, NDVI, lithology and rainfall were prepared for the landslide susceptibility modelling. Using these data, three landslide susceptibility models were constructed using FR, CF and IOE. Finally, these models were validated and compared using known landslide locations and the receiver operating characteristics curve. The result shows that all the models perform well on both the training and validation data. The area under the curve showed that the goodness-of-fit with the training data is 79.12, 80.34 and 80.42% for FR, CF and IOE whereas the prediction power is 80.14, 81.58 and 81.73%, for FR, CF and IOE, respectively. The result of this study may be useful for local government management and land use planning.  相似文献   

16.
In this study, landslide susceptibility assessments were achieved using logistic regression, in a 523 km2 area around the Eastern Mediterranean region of Southern Turkey. In reliable landslide susceptibility modeling, among others, an appropriate landslide sampling technique is always essential. In susceptibility assessments, two different random selection methods, ranging 78–83% for the train and 17–22% validation set in landslide affected areas, were applied. For the first, the landslides were selected based on their identity numbers considering the whole polygon while in the second, random grid cells of equal size of the former one was selected in any part of the landslides. Three random selections for the landslide free grid cells of equal proportion were also applied for each of the landslide affected data set. Among the landslide preparatory factors; geology, landform classification, land use, elevation, slope, plan curvature, profile curvature, slope length factor, solar radiation, stream power index, slope second derivate, topographic wetness index, heat load index, mean slope, slope position, roughness, dissection, surface relief ratio, linear aspect, slope/aspect ratio have been considered. The results showed that the susceptibility maps produced using the random selections considering the entire landslide polygons have higher performances by means of success and prediction rates.  相似文献   

17.
Based on remote sensing and GIS, this study models the spatial variations of urban growth patterns with a logistic geographically weighted regression (GWR) technique. Through a case study of Springfield, Missouri, the research employs both global and local logistic regression to model the probability of urban land expansion against a set of spatial and socioeconomic variables. The logistic GWR model significantly improves the global logistic regression model in three ways: (1) the local model has higher PCP (percentage correctly predicted) than the global model; (2) the local model has a smaller residual than the global model; and (3) residuals of the local model have less spatial dependence. More importantly, the local estimates of parameters enable us to investigate spatial variations in the influences of driving factors on urban growth. Based on parameter estimates of logistic GWR and using the inverse distance weighted (IDW) interpolation method, we generate a set of parameter surfaces to reveal the spatial variations of urban land expansion. The geographically weighted local analysis correctly reveals that urban growth in Springfield, Missouri is more a result of infrastructure construction, and an urban sprawl trend is observed from 1992 to 2005.  相似文献   

18.
In this study, the spatial prediction of rainfall-induced landslides at the Pauri Gahwal area, Uttarakhand, India has been done using Aggregating One-Dependence Estimators (AODE) classifier which has not been applied earlier for landslide problems. Historical landslide locations have been collated with a set of influencing factors for landslide spatial analysis. The performance of the AODE model has been assessed using statistical analyzing methods and receiver operating characteristic curve technique. The predictive capability of the AODE model has also been compared with other popular landslide models namely Support Vector Machines (SVM), Radial Basis Function Neural Network (ANN-RBF), Logistic Regression (LR), and Naïve Bayes (NB). The result of analysis illustrates that the AODE model has highest predictability, followed by the SVM model, the ANN-RBF model, the LR model, and the NB model, respectively. Thus AODE is a promising method for the development of better landslide susceptibility map for proper landslide hazard management.  相似文献   

19.
Landslide hazard assessment at the Mu Cang Chai district; Yen Bai province (Viet Nam) has been done using Random SubSpace fuzzy rules based Classifier Ensemble (RSSCE) method and probability analysis of rainfall data. RSSCE which is a novel classifier ensemble method has been applied to predict spatially landslide occurrences in the area. Prediction of temporally landslide occurrences in the present study has been done using rainfall data for the period 2008–2013. A total of fifteen landslide influencing factors namely slope, aspect, curvature, plan curvature, profile curvature, elevation, land use, lithology, rainfall, distance to faults, fault density, distance to roads, road density, distance to rivers, and river density have been utilized. The result of the analysis shows that RSSCE and probability analysis of rainfall data are promising methods for landslide hazard assessment. Finally, landslide hazard map has been generated by integrating spatial prediction and temporal probability analysis of landslides for the land use planning and landslide hazard management.  相似文献   

20.
李强  张景发  罗毅  焦其松 《遥感学报》2019,23(4):785-795
2017年8月8日发生的7.0级九寨沟地震诱发九寨沟熊猫海附近产生大量的滑坡体,造成道路阻塞,严重影响地震应急救援进度。为快速准确地识别滑坡分布范围,本文在深入分析滑坡遥感影像特征的基础上,引入面向对象分析方法,实现了基于无人机影像的震后滑坡体的自动识别。通过多尺度分割算法获取滑坡多层次影像对象,利用SEaTH算法自动构建每一层次特征规则集,实现基于不同层次分析的滑坡体自动识别。分析滑坡体在地形、活动断层等因子中的空间分布特征,为地震滑坡预测与危险性评价奠定基础。与人工目视解译结果相比较,基于面向对象的滑坡自动识别方法提取精度可达94.8%,Kappa系数为0.827,在电脑配置相同的情况下,自动识别方法的效率是人工目视解译效率的一倍。空间分布特征分析表明,地震滑坡的空间分布与斜坡坡度、地形起伏度呈正相关关系,与地表粗糙度存在负相关关系,研究区滑坡体分布存在明显的断层效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号