首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the first application of a multi-stage impactor to study volcanic particle emissions to the troposphere from Masaya volcano, Nicaragua. Concentrations of soluble SO4 2–,Cl, F, NO3 , K+, Na+,NH4 +, Ca2+ and Mg2+ were determined in 11 size bins from 0.07 m to >25.5 m. The near-source size distributions showed major modes at 0.5m (SO4 2–, H+,NH4 +); 0.2 m and 5.0 m (Cl) and 2.0–5.0 m(F). K+ and Na+ mirrored the SO4 2– size-resolvedconcentrations closely, suggesting that these were transported primarily asK2SO4 and Na2SO4 in acidic solution, while Mg2+ andCa2+ presented modes in both <1 m and >1 m particles. Changes in relative humidity were studied by comparing daytime (transparent plume) and night-time (condensed plume) results. Enhanced particle growth rates were observed in the night-time plume as well as preferential scavenging of soluble gases, such as HCl, by condensed water. Neutralisation of the acidic aerosol by background ammonia was observed at the crater rim and to a greater extent approximately 15 km downwind of the active crater. We report measurements of re-suspended near-source volcanic dust, which may form a component of the plume downwind. Elevated levels ofSO4 2–, Cl, F,H+, Na+, K+ and Mg2+ were observed around the 10 m particle diameter in this dust. The volcanic SO4 2– flux leaving the craterwas 0.07 kg s–1.  相似文献   

2.
The Petryanov air filters combined into half-year sets were analyzed for the presence of 40K, 137Cs and 22Na by means of low-background gamma rays spectrometry. Each sample contains aerosols from more than 1 Mm3 of air. Samples were collected in ground level air at Kraków (Southern Poland) from 1996 to 2002. Activity concentrations of 40K are almost constant with the mean of 14.7± 4.5 Bq m–3. Activity concentrations of 137Cs, which are on the level of single Bq m– 3 show exponential decrease with effective half-life time of 7.07± 0.77 years. The cosmogenic 22Na shows a strong seasonal variation with significant different mean values activity concentration between 0.333± 0.095 Bq m–3 and 0.137± 0.045 Bq m–3, for summer and winter, respectively. Moreover, the activity ratio for two cosmogenic radionuclides: 22Na and measured previously 7Be show also changes with statistically significant seasonal differences. The lower values were found during winters. The mechanisms which might govern this ratio are discussed. The conclusion is that transport of 22Na during summer seems to be so much effective, that results in kind of relative depletion of stratosphere of this nuclide.  相似文献   

3.
Daily measurements of atmospheric concentrations of dimethylsulfide (DMS) were carried out for two years in a marine site at remote area: the Amsterdam Island (37°50S–77°31E) located in the southern Indian Ocean. DMS concentrations were also measured in seawater. A seasonal variation is observed for both DMS in the atmosphere and in the sea-surface. The monthly averages of DMS concentrations in the surface coastal seawater and in the atmosphere ranged, respectively, from 0.3 to 2.0 nmol l-1 and from 1.4 to 11.3 nmol m-3 (34 to 274 pptv), with the highest values in summer. The monthly variation of sea-to-air flux of DMS from the southern Indian Ocean ranges from 0.7 to 4.4 mol m-2 d-1. A factor of 2.3 is observed between summer and winter with mean DMS fluxes of 3.0 and 1.3 mol m-2 d-1, respectively.  相似文献   

4.
Emission of nitrous oxide from temperate forest soils into the atmosphere   总被引:5,自引:0,他引:5  
N2O emission rates were measured during a 13-month period from July 1981 till August 1982 with a frequency of once every two weeks at six different forest sites in the vicinity of Mainz, Germany. The sites were selected on the basis of soil types typical for many of the Central European forest ecosystems. The individual N2O emission rates showed a high degree of temporal and spatial variabilities which, however, were not significantly correlated to variabilities in soil moisture content or soil temperatures. However, the N2O emission rates followed a general seasonal trend with relatively high values during spring and fall. These maxima coincided with relatively high soil moisture contents, but may also have been influenced by the leaf fall in autumn. In addition, there was a brief episode of relatively high N2O emission rates immediately after thawing of the winter snow. The individual N2O emission rates measured during the whole season ranged between 1 and 92 g N2O-N m–2 h–1. The average values were in the range of 3–11 g N2O-N m–2 h–1 and those with a 50% probability were in the range of 2–8 g N2O-N m–2 h–1. The total source strength of temperate forest soils for atmospheric N2O may be in the range of 0.7–1.5 Tg N yr–1.  相似文献   

5.
Rain and air of Florence have been collected in a continuous way andanalysed by flow analysis spectrofluorimetric methods for formaldehydeand hydrogen peroxide. Diurnal and seasonal variations were observed;the mean/maximum concentrations of all data (as gm–3) are 3.3/23.4 for HCHO and 0.4/4.93 forH2O2. The effect of external sources and ofphotochemical reactions produces periods of positive and negativecorrelations for these compounds. The mean/maximum rain concentration ofall data are 98/443 g l–1 for HCHO and 84/685 g l–1 for H2O2. Concentrationratios rain/air and discrepancies to Henry's Law equilibrium arediscussed.  相似文献   

6.
Weekly bulk aerosol samples collected at Funafuti, Tuvalu (8°30S, 179°12E), American Samoa (14°15S, 170°35W), and Rarotonga (21°15S, 159°45W), from 1983 through most of 1987 have been analyzed for nitrate and other constituents. The mean nitrate concentration is about 0.11 g m–3 at each of these stations: 0.107±0.011 g m–3 at Funafuti; 0.116±0.008 at American Samoa; and 0.117±0.010 at Rarotonga. Previous measurements of mineral aerosol and trace metal concentrations at American Samoa are among the lowest ever recorded for the near-surface troposphere and indicate that this region is minimally affected by transport of soil material and pollutants from the continents. Consequently, the nitrate concentration of 0.11 g m–3 can be regarded as the natural level for the remote marine boundary layer of the tropical South Pacific Ocean. In contrast, over the tropical North Pacific which is significantly impacted by the transport of material from Asia and North America, the mean nitrate concentrations are about three times higher, 0.29 and 0.36 g m–3 at Midway and Oahu, respectively. The major sources of the nitrate over the tropical South Pacific are still very uncertain. A very significant correlation between the nitrate concentrations at American Samoa and the concentrations of 210Pb suggests that transport from continental sources might be important. This continental source could be lightning, which occurs most frequently over the tropical continents. A near-zero correlation with 7Be indicates that the stratosphere and upper troposphere are probably not the major sources. A significant biogenic source would be consistent with the higher mean nitrate concentrations, 0.16 to 0.17 g m–3, found over the equatorial Pacific at Fanning Island (3°55N, 159°20W) and Nauru (0°32S, 166°57E). The lack of correlation between nitrate and nss sulfate at American Samoa does not necessarily preclude an important role for marine biogenic sources.  相似文献   

7.
Radiative Heat Transfer and Hydrostatic Stability in Nocturnal Fog   总被引:1,自引:0,他引:1  
We have performed a one-dimensional and transient radiative heat transfer analysis in order to investigate interaction between atmospheric radiation and convective instability within a nocturnal fog. The radiation element method using the Ray Emission Model (REM2), which is a generalized numerical method, in conjunction with a line-by-line (LBL) method, is employed to attain high spectral resolution calculations for anisotropically scattering fog. The results show that the convective instability has a strong dependence on radiative properties of the fog. For the condition of a 20-m droplet diameter and liquid water content of 0.1 × 10–3 kg m–3;, the temperature profile within the fog becomes S shaped, and a convective instability layer forms in the middle or lower level of the fog. However, for the same water content and a 40-m diameter droplet, no strong convective instability layer forms, whereas for a 10-m diameter droplet a strong convective instability is observed.  相似文献   

8.
Summary The influence of agricultural management on the CO2 budget of a typical subalpine grassland was investigated at the Swiss CARBOMONT site at Rigi-Seebodenalp (1025m a.s.l.) in Central Switzerland. Eddy covariance flux measurements obtained during the first growing season from the mid of spring until the first snow fall (17 Mai to 25 September 2002) are reported. With respect to the 10-year average 1992–2001, we found that this growing season had started 10 days earlier than normal, but was close to average temperature with above-normal precipitation (100–255% depending on month). Using a footprint model we found that a simple approach using wind direction sectors was adequate to classify our CO2 fluxes as being controlled by either meadow or pasture. Two significantly different light response curves could be determined: one for periods with external interventions (grass cutting, cattle grazing) and the other for periods without external interventions. Other than this, meadow and pasture were similar, with a net carbon gain of –128±17g Cm–2 on the undisturbed meadow, and a net carbon loss of 79±17g Cm–2 on the managed meadow, and 270±24g Cm–2 on the pasture during 131 days of the growing season, respectively. The grass cut in June reduced the gross CO2 uptake of the meadow by 50±2% until regrowth of the vegetation. Cattle grazing reduced gross uptake over the whole vegetation period (37±2%), but left respiration at a similar level as observed in the meadow.  相似文献   

9.
During April 1986, as part of an international arctic air chemistry study (AGASP-2), ground level observations of aerosol trace elements, oxides of sulphur and nitrogen and particle number size distribution were made at Alert Canada (82.5N, 62.3W). Pollution haze was evident as indicated by daily aerosol number (size > 0.15 m diameter) and SO4 = concentrations in the range 125 – 260 cm–3 and 1.6 – 4.5 g m–3, respectively. Haze and associated acidic gases tended to increase throughout the period. SO2 and peroxyacetylnitrate (PAN) mixing ratios were in the range 140 – 480 and 370 – 590 ppt(v), respectively. About 88% of the total end-product nitrogen was in the form of PAN. In air dried to 2% relative humidity by warming to room temperature, the aerosol mass size distribution had a major mode at 0.3 m diameter and a minor one at 2.5 m. Aerosol mass below 1.5 m was well correlated with SO4 =, K+ and PAN. There was a steady increase in the oxidized fraction of total airborne sulphur and nitrogen oxide throughout April as the sun rose above the horizon and remained above. The mean oxidation rate of SO2 between Eurasia and Alert was estimated as 0.25 – 0.5% h–1. The molar ratio of total nitrogen oxide to total sulphur oxide in the arctic atmosphere (0.67±0.17) was comparable to that in European emissions. A remarkably strong inverse correlation of filterable Br and O3 led to the conclusion that O3 destruction and filterable Br production below the Arctic surface radiation inversion is associated with tropospheric photochemical reactions involving naturally occurring gaseous bromine compounds.  相似文献   

10.
Dimethylsulfide (DMS) in surface seawater and the air, methanesulfonic acid (MSA) and non-sea-salt sulfate (nss-SO4 2–) in aerosol, and radon-222 (Rn-222) were measured in the northern North Pacific, including the Bering Sea, during summer (13 July – 6 September 1997). The mean atmospheric DMS concentrations in the eastern region (21.0 ± 5.8 nmole/m3 (mean ± S.D.), n=30) and Bering Sea (19.9 ± 9.8 nmole/m3, n=10) were higher than that in the western region (11.1 ± 6.4 nmole/m3, n=31) (p<0.05), although these regions did not significantly differ in the mean DMS concentration in surface seawater. Mean sea-to-air DMS flux in the eastern region (21.0 ± 10.4 mole/m2/day, n=19) was larger than those in the western region (11.3 ± 16.9 mole /m2/day, n=22) and Bering Sea (11.2 ± 7.8 mole/m2/day, n=7) (p<0.05). This suggests that the longitudinal difference in atmospheric DMS was produced by that in DMS flux owing to wind speed, while the possible causes of the higher DMS concentrations in the Bering Sea include (1) later DMS oxidation rates, (2) lower heights of the marine boundary layer, and (3) more inactive convection. The mean MSA concentrations in the eastern region (1.18 ± 0.84 nmole/m3, n=35) and Bering Sea (1.17 ± 0.87 nmole/m3, n=13) were higher than that in the western region (0.49 ± 0.25 nmole/m3, n=28) (p < 0.05). Thus the distribution of MSA was similar to that of DMS, while the nss-SO4 2– concentrations were higher near the continent. This suggests that nss-SO4 2– concentrations were regionally influenced by anthropogenic sulfur input, because the distribution of nss-SO4 2– was similar to that of Rn-222 used as a tracer of continental air masses.  相似文献   

11.
On the determination of the height of the Ekman boundary layer   总被引:1,自引:1,他引:1  
The heighth of the Ekman turbulent boundary layer determined by the momentum flux profile is estimated with the aid of considerations of similarity and an analysis of the dynamic equations. Asymptotic formulae have been obtained showing that, with increasing instability,h increases as ¦¦1/2 (where is the non-dimensional stratification parameter); with increasing stability, on the other hand,h decreases as –1/2. For comparison, a simple estimate of the boundary-layer heighth u determined by the velocity profile is given. As is shown, in unstable stratification,h u behaves asymptotically as ¦¦–1, i.e., in a manner entirely different from that ofh .  相似文献   

12.
Stable Isotope Ratios: Hurricane Olivia   总被引:1,自引:0,他引:1  
The oxygen and hydrogen isotopic compositions of rains from HurricaneOlivia (1994) in the eastern Pacific were measured. The rains werecollected on 24 and 25 September during airplane flights conducted at anelevation of 3 km. Hurricane Olivia peaked in intensity to a category-4storm between the two dates. Isotope ratios of rains from HurricaneOlivia were markedly lower ( 18O = –13.9to –28.8) than that of rain collected from a thunderstormat an elevation of 2.3 km outside the influence of Olivia (18O = –3.8). A distinct decrease in isotoperatios from the first day to the next ( 18O =–18.4 to –21.9) in Hurricane Olivia wasattributed to decreased updraft velocities and outflow aloft. Thisshifted the isotopic water mass balance so that fewer hydrometeors werelifted and more ice descended to flight level. A decrease in the averagedeuterium excess from the first day to the next (d = 15.5 to 7.1)was attributed to an increase in the relative humidity of the watervapor `source' area. We hypothesize that the `source' region for therain was in the boundary layer near the storm center and that becausethe hurricane was at peak intensity prior to the second day the relative humidity was higher.  相似文献   

13.
Within the framework of IDAF (IGAC DEBITS AFRICA: International GlobalAtmospheric Chemistry/DEposition of Biogeochemically Important TraceSpecies/Africa) network, data analysis is realised on precipitation chemical composition collected in Zoétélé, in Southern Cameroon. This station, located atabout 200 km from the Atlantic Ocean, is representative of a so-called `Evergreen Equatorial Forest' ecosystem. An automatic wet-only precipitation collector was operated at the station from 1996 to 2000. The rainfall regime, associated with eastward advection of moist and cool monsoon air masses, amounts to an average of 1700 mm/year. Inorganic and organic content of the precipitation were determined by IC in 234 rainfall events, representing a total 4,583 mm of rainfall from an overall of 7,100 mm.The mean annual precipitation chemistry and wet deposition fluxes characteristic of an African equatorial forest are quantified. Typical atmospheric gases and particles sources influence the precipitation chemical content and the associated deposition of chemical species. Indeed, hydrogen concentration is the highest (12.0 eq.L–1) of the IDAF measurements, leading to acid rains with a low mean pH 4.92. The mineral species are dominated by nitrogenous compounds (NH4 +:10.5 and NO3 : 6.9 eq.L–1), Ca2+ (8.9 eq.L–1) and SO4 2 – 5.1 eq.L–1. Relationship between Ca2 + and SO4 2 – indicated aterrigeneous particulate source and an additional SO4 2 – contributionprobably due to swamps and volcano emissions. Na+ and Clconcentrations, around 4.0 eq.L–1, seem very low for this site,accounting for the marine source. Besides, strong correlations between NH4 +/K+/Cl indicate the biomass burning originof these species. Accordingly, precipitation chemistry in Zoétéléis influenced by three major sources: biogenic emissions from soil and forest ecosystems, biomass burning from savannah, and terrigenous signature from particles emissions of arid zones; and three minor sources: marine, volcano and anthropogenic. In spite of the relatively low concentration of all these elements, the wet deposition is quite significant due to the high precipitation levels, with for example a nitrogenous compounds deposition of 34 mmol.m–2.yr–1.  相似文献   

14.
Although extensive areas of forests and grasslands are burned in the tropics, relatively little scientific attention has been focused on this phenomenon. In order to determine the land area burned and estimate the charcoal (elemental or graphitic carbon) produced, I monitored agricultural burning in a 1145 km2 area in central Panama during the 1981 dry season. Over 10% of the land surface was burned in that year. Charcoal concentrations in the aerosol were also measured and reached values of 3.1 gC/m3 during the peak in burning. Off-peak values of aerosol charcoal are less than 1 gC/m3. The high charcoal concentration reflects the massive amounts of vegetational burning occurring in the area.The charcoal advected by the air mass flowing over the area has been estimated using a box model. Assuming an average aerosol concentration of charcoal of 1 gC/m3 for a three-month burning period, a 2 km atmospheric mixed layer, a 14 km/h wind velocity to the south, and a 150 km wide zone across the western Gulf of Panama watershed, I estimate that, during the dry season, 9×109 g charcoal are mobilized by the troposphere. If 4.1×1012 g phytomass are annually burned in this region, then the charcoal emission factor to the troposphere is 2.2×10–3.  相似文献   

15.
Eighteen soil samples from central Sudan were fractionated by dry sieving ina size fraction from <45 m to >300 m while aerosols generatedfrom these soils were fractionated in the particle size range from 0.25 mto >16 m. The elemental concentrations of soil samples were determinedby energy-dispersive X-ray fluorescence, while the elemental concentrationsof generated aerosols were analysed by particle-induced X-ray emission. Theelements Al, K and Rb show a slight positive fractionation with decreasingparticle size throughout the particle size range studied. The concentrationsof Ca, Mn, Fe, Sr and Y are maximum in the small soil size fraction (<45m) and decrease for the coarse soil size fractions, while in the mineralaerosol particle sizes (0.25– > 16 m) the concentrations remainmore or less constant. The size distributions for Cr, Ti and Zr show a maximumin the particle size range 45–100 m and the concentrations of theseelements decrease sharply in the aerosol fraction down to 16 m to remainconstant in the smaller aerosol fractions.Enrichment factors for the elements were calculated relative to five referencematerials: average crustal rock, average soil, the investigated Sahara bulksoil, the finest fraction of this soil and the aerosol generated from thissoil, and using four reference elements: Al, Si, Ti and Fe. The enrichmentfactors were found to vary significantly depending on the choice of thereference material or the reference element. The enrichment factors for theSudan mineral aerosol were almost identical to those for Khartoum atmosphericaerosol but different from those for Namib mineral aerosol and Israelatmospheric aerosol following dust storms. Multivariate display methods(cluster analysis, principal component analysis and linear discriminantanalysis) were applied to the element ratios in the mineral aerosol from theSahara and Namib and this showed that these mineral aerosol can bedifferentiated into different groups. An attempt was also made to relate themineral aerosol to its parent soil through the use of these multivariatetechniques and the elemental ratios in both the mineral aerosols and the bulksoils (Namib and Sahara). It was also possible using the elemental ratios andthe multivariate display methods to associate the crustal component to themineral aerosol generated from the Sahara.  相似文献   

16.
Levels of formate and acetate in dew were measured at Dayalbagh, India, usingsurrogate surfaces. The dew formed per night ranged between 0.06 lm–2 and 1.38 l m–2, with an average of 0.59l m–2. pH ranged between 6.7 and 7.4. Mean concentrations offormate and acetate in dew were 10.2 ± 10.2 eql–1 and 7.5 ± 4.5 eq l–1,respectively. The correlation coefficient between the two ions was 0.80 (p =0.001), which suggested that concentrations of these species in dew are linkedtogether. They have either common or different sources with fairly constantstrengths or products of same reaction. Good correlation of formate andacetate with Ca (r = 0.82 and r = 0.70, respectively) and Mg (r = 0.74 and r= 0.71, respectively) suggested that these ions may be associated with Ca andMg after the neutralization process. Deposition rates for formate and acetatein dew per night were 10.2 ± 7.22 mol m–2 pernight and 4.6 ± 2.2 mol m–2 per night,respectively. The theoretical Henry's law constant (K* H)and the field-observed Henry's law coefficient (K* H) ascalculated from concurrent measurements of gas phase and dew for both acidsshowed large discrepancies of three orders of magnitude.  相似文献   

17.
Fourteen samples of fresh falling snow were collected at Antarctic coastal base Dumont d'Urville in 1984. The samples have been analysed for major ions (including MSA) by ion chromatography and acid titration. The results are relevant to the chemical composition of background precipitation in polar marine conditions. The seasalt aerosol contribution is dominant. All samples are found to be acidic in the range 3–16 eq/l. The calculated non-seasalt sulfate (nssSO4 2-) concentration is significantly negative for 3 of the 14 samples. NssSO4 2- is found to be relatively high in summer and fall. MSA also exhibits the same pattern probably linked to local marine biogenic activity and/or atmospheric photochemical processes. The MSA to nssSO4 2- ratio is in good agreement with values reported for coastal Antarctic ice cores and subantarctic acrosol. The background mean value for nitrate concentration is 1.1 eq/l but two very strong spikes (up to 16 eq/l) are observed. The first seems to be linked with long range transport of continental air masses while the second (in winter) is clearly due to a sudden input of nitric acid, possibly from the stratosphere.This paper represents a preliminary approach to a larger air and snow monitoring to be developped at this site.  相似文献   

18.
A technique was developed that allows the determination of the stable carbon isotope ratio of isoprene in air. The method was used for a limited number of ambient measurements as well as laboratory studies of isoprene emitted from Velvet Bean (Mucana pruriens L. var. utilis), including the light and temperature dependence. The mean stable carbon isotope ratio ( 13C) of isoprene emitted from Velvet Bean (Mucana pruriens L. var. utilis) for all our measurements is –27.7 ± 2.0 (standard deviation for 23 data points). Our results indicate a small dependence of the stable carbon isotope ratios on leaf temperature and photosynthetic photon flux density (PPFD). The light dependence is 0.0026 ± 0.0012/( mol of photons m–2 s–1) for the studied range from 400 to 1700 mol of photons m–2 s–1. The temperature dependence is 0.16 ± 0.09/K. On average, the emitted isoprene is 2.6 ± 0.9 lighter than the leaf carbon. An uncertainty analysis of the possibility to use stable carbon isotope ratio measurements of isoprene for estimates of its mean photochemical age suggests that meaningful results can be obtained. This is supported by the results of a small number of measurements of the stable carbon isotope composition of ambient isoprene at different locations. The results range from approximately –29 to –16. They are consistent with vegetation emissions of isoprene that is slightly depleted in 13C relative to the plant material and enrichment of 13C in the atmosphere due to isotope fractionation associated with the reaction with OH-radicals. The stable carbon isotope ratio of ambient isoprene at locations directly influenced by isoprene emissions is very close to the values we found in our emission studies, whereas at sites located remote from isoprene emitting vegetation we find substantial enrichment of 13C. This suggests that stable carbon isotope ratio measurements will be a valuable, quantitative method to determine the extent of photochemical processing of isoprene in ambient air.  相似文献   

19.
Two types of neutral planetary boundary layer (PBL) are distinguished:truly neutral – developed against a neutrally stratified free flow, and conventionally neutral – developed against a background stable stratification. Atmospheric PBLs treated asneutral are almost always conventionally neutral. Theoretical reasoning and results from large-eddy simulation (LES) show that A and B coefficients of the Rossby-number similarity theory are not constants. The same is true for thecoefficient Ch in the Rossby–Montgomery formula for the neutral boundary-layer depth h = Chu*/|f|, where u* is the friction velocity. Contrary to classical ideas, A, B and Ch depend on the ratio N N/|f| of the free-flow Brunt–V*auml;isäl ä frequency N to the absolute value of the Coriolis parameter |f|. This new development can explain why atmospheric and LES estimates of A, B and Ch appear inconsistent. It results from neglecting the fact that atmospheric data for N 102 were compared with LES data for N = 0, violating an obvious requirement of similarity with respect to N.  相似文献   

20.
From measurements in the atmospheric surface layer over a paddy field, the Kolmogorov constants for CO2 and longitudinal wind velocity were obtained. In this study, the nondimensional dissipation rate nc = (1–16 v )-1/2 for CO2 variance and = (1–16 v )-1/4 v for turbulent energy were used, assuming the equality of the local production term and the local dissipation term, and neglecting the divergence flux term in the budget equation. The value of the constant for CO2 was consistent with recent determinations for temperature and humidity. The constant for longitudinal wind velocity showed good agreement with other recent observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号