首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Three thousand kilometres of multichannel (MCS) and wide-angle seismic profiles, gravity and magnetic, multibeam bathymetry and backscatter data were recorded in the offshore area of the west coast of Mexico and the Gulf of California during the spring 1996 (CORTES survey). The seismic images obtained off Puerto Vallarta, Mexico, in the Jalisco subduction zone extend from the oceanic domain up to the continental shelf, and significantly improve the knowledge of the internal crustal structure of the subduction zone between the Rivera and North American (NA) Plates. Analyzing the crustal images, we differentiate: (1) An oceanic domain with an important variation in sediment thickness ranging from 2.5 to 1 km southwards; (2) an accretionary prism comprised of highly deformed sediments, extending for a maximum width of 15 km; (3) a deformed forearc basin domain which is 25 km wide in the northern section, and is not seen towards the south where the continental slope connects directly with the accretionary prism and trench, thus suggesting a different deformational process; and (4) a continental domain consisting of a continental slope and a mid slope terrace, with a bottom simulating reflector (BSR) identified in the first second of the MCS profiles. The existence of a developed accretionary prism suggests a subduction–accretion type tectonic regime. Detailed analysis of the seismic reflection data in the oceanic domain reveals high amplitude reflections at around 6 s [two way travel time (twtt)] that clearly define the subduction plane. At 2 s (twtt) depth we identify a strong reflection which we interpret as the Moho discontinuity. We have measured a mean dip angle of 7° ± 1° at the subduction zone where the Rivera Plate begins to subduct, with the dip angle gently increasing towards the south. The oceanic crust has a mean crustal thickness of 6.0–6.5 km. We also find evidence indicating that the Rivera Plate possibly subducts at very low angles beneath the Tres Marias Islands.  相似文献   

2.
3.
A critical factor controlling changes in the acidity of coastal waters is the alkalinity of the water. Concentrations of alkalinity are determined by supply from rivers and by in situ processes such as biological production and denitrification. A 2-year study based on 15 cruises in Liverpool Bay followed the seasonal cycles of changing concentrations of total alkalinity (TA) and total dissolved inorganic carbon (DIC) in relation to changes caused by the annual cycle of biological production during the mixing of river water into the Bay. Consistent annual cycles in concentrations of nutrients, TA and DIC were observed in both years. At a salinity of 31.5, the locus of primary production during the spring bloom, concentrations of NO x decreased by 25 ± 4 μmol kg−1 and DIC by 106 ± 16 μmol kg−1. Observed changes in TA were consistent with the uptake of protons during primary biological production. Concentrations of TA increased by 33 ± 8 μmol kg−1 (2009) and 33 ± 15 μmol kg−1 (2010). The impact of changes in organic matter on the measured TA appears likely to be small in this area. Thomas et al. (2009) suggested that denitrification may enhance the CO2 uptake of the North Sea by 25%, in contrast we find that although denitrification is a significant process in itself, it does not increase concentrations of TA relative to those of DIC and so does not increase buffer capacity and potential uptake of CO2 into shelf seawaters. For Liverpool Bay historical data suggest that higher concentrations of TA during periods of low flow are likely to contribute in part to the observed change in TA between winter and summer but the appropriate pattern cannot be identified in recent low-frequency river data. On a wider scale, data for the rivers Mersey, Rhine, Elbe and Weser show that patterns of seasonal change in concentrations of TA in river inputs differ between river systems.  相似文献   

4.
We determined crustal structure along the latitude 30°N through the eastern Tibetan Plateau using a teleseismic receiver function analysis. The data came mostly from seismic stations deployed in eastern Tibet and western Sichuan region from 2004 to 2006. Crustal thickness and Vp/Vs ratio at each station were estimated by the Hk stacking method. On the profile, the mean crustal thickness and Vp/Vs ratio were found to be 62.3 km and 1.74 in the Lhasa block, 71.2 km and 1.79 near the Bangong–Nujiang suture, 66.3 km and 1.80 in the Qiangtang block, 59.8 km and 1.81 in the Songpan–Garze block, and 42.9 km and 1.76 in the Yangtze block, respectively. The estimated crustal thicknesses are consistent with predictions based on the topography and the Airy isostasy, except near the Bangong–Nujiang suture and in the Qiangtang block where the crust is 5–10 km thicker than predicted, indicating that the crust may be denser, possibly due to mafic underplating. We also inverted receiver functions for crustal velocity structure along the profile, which reveals a low S-wave velocity zone in the lower crust beneath the eastern Tibetan Plateau, although the extent of the low-velocity zone varies considerably. The low-velocity zone, together with previous results, suggests limited partial melting and localized crustal flow in the lower crust of the eastern Tibetan Plateau.  相似文献   

5.
6.
We investigate the nature of temporal variations in the statistical properties of seismicity associated with the North Anatolian Fault Zone between longitudes 31°–41°E during the instrumental period 1900–1992. Temporal variations in the seismicb value and the fractal (correlation) dimensionD c of earthquake epicenters are examined for earthquakes of magnitudeM S 4.5, using sliding windows of 100 consecutive events.b varies temporally between 0.6 and 1.0, andD c between 0.6 and 1.4, both representing significant fluctuations above the errors in measurement technique. A strong negative correlation (r=–0.85) is observed betweenb andD c , consistent with previous observation of seismicity in Japan and southern California. Major events early in this century (M S 7) are associated with lowb and highD c , respectively consistent with greater stress intensity and greater spatial clustering of epicenters—both implying a greater degree of stress concentration at this time.  相似文献   

7.
8.
9.
The mineralogical,elemental,and isotopic characteristics of a hydrothermal sulfide sample from one dredge station (12°42.30'N,103°54.48'W,water depth 2655 m) on the East Pacific Rise near 13°N were analyzed.The hydrothermal sulfide was composed mainly of sphalerite,chalcopyrite,and pyrite and was a Zn-rich sulfide;in layer ep-s-1,goethite formed by secondary oxidation was found.The concentrations of rare elements,such as Li (0.15×10-6-0.30×10-6),Be (0.01×10-6-0.05×10-6),Zr (73.8×10-9-1344×10-9),Nb (8.14×10-9-64.7×10-9),Hf (2.54×10-9-28.0×10-9),and Ta (0.203×10-9-1.21×10-9),were far lower in the hydrothermal sulfide than in the ocean crust,whereas the content of Au was higher and the contents of Co,Ni,Sr,Cs,Ba,Bi,and U were low.The correlations between Zn and Cr,Cd and Ga,Cu and P,P and In (R2 0.8) were positive,whereas those between Zn and Fe,Cu,and Ba (R2 0.8) were distinctly negative.From low-temperature mineral assemblages to high-temperature mineral assemblages,the spatial distributions of dispersive and rare elements (e.g.In,Li,Cs) in the hydrothermal sulfide displayed corresponding variations.The variations observed in some elements (e.g.,Cd,Cs,P) are controlled by Zn,Fe,and Cu sulfides,respectively.Seafloor weathering accounts for the enrichment of V,Mn,and rare earth elements (REE) in the henna sulfide-oxidation layer that bears the secondary oxide mineral,leading to identical REE patterns for this layer (ep-s-1) and seawater.Seafloor weathering also distinctly affects the correlations between the element ratios of the hydrothermal sulfide.From high-temperature mineral assemblages to low-temperature mineral assemblages,Fe content and δ 34S value of the hydrothermal sulfide increase gradually,and Zn content and lead isotopic ratios decrease gradually on the contrary,which indicate the influences of seawater on elements and the sulfur and lead isotopic compositions enhance gradually during the formation of hydrothermal sulfides.  相似文献   

10.
We performed a statistical and spectral analysis of variations in two main parameters of the ionospheric F2 layer: critical frequency (f 0F2) and peak height (h m F2), recorded at an ionospheric station in Irkutsk (52.5°N, 104.0°E) in the period from December 1, 2006, to January 31, 2008, under low solar activity conditions. It was found that the f 0F2 and h m F2 variations contained quasi-harmonic oscillations with periods T n = 24/n h (n = 1−7). We studied the seasonal changes in the mean and median values of monthly f 0F2 and h m F2 time series, their spectra, as well as the amplitudes and phases of the diurnal (n = 1) and semidiurnal (n = 2) variations. It is shown that the amplitude of the diurnal f 0F2 variations was maximal in October–March 2007 and minimal in May–August 2007. The diurnal f 0F2 variations were maximal at noon in the winter months and at 1600 LT in the summer months. The semidiurnal f 0F2 variations had two maxima: a primary maximum in December and January and a secondary maximum in May–July. The maxima of semidiurnal f 0F2 variations were shifted from 0000 and 1200 LT in winter to 0900 and 2100 LT in summer.  相似文献   

11.
One of the main morphological changes along the Southern Central Andes occurs from 36° to 39°S. The northern portion is characterized by prominent basement structures and a thick-skinned orogenic front with relief of over 2000 m with a deep level of exhumation where more than 4 km of section has been eroded. Contrastingly, the southern part is formed by mildly inverted basement structures restricted mainly to the hinterland zone, which reaches only 1500–1700 m relief. We quantify the variable contributions of two main contractional stages through the construction of three regionally balanced sections across the Andes, constrained by field and geophysical data. Extensional re-activation described for this segment in late Oligocene-early Miocene and Pliocene to Quaternary times, after the two main contractional episodes, suggests only 3 km of stretching that represents 30–10% of the original longitude. We, therefore, conclude that while initial Late Cretaceous to Eocene compression was similar along strike (∼10–7 km), it is the contrasting degrees of Neogene shortening (∼16–6 km) that have played the largest role in the along strike differences in structure and morphology along this portion of the southern Andes. Variable Neogene arc expansion could be responsible for the contrasting contractional deformation: In the north, late Miocene arc-related rocks cover most of the retroarc zone (>200 km with respect to the late Miocene arc front in the south), presumably driven by a shallow subduction episode in the area, whereas to the south they remain restricted to the continental drainage divide. Other factors involving architecture of previous rift structures, are proposed as additional mechanisms that accommodated variable shortening magnitudes through inversion.  相似文献   

12.
Semidiurnal tidal features have been examined in the Mesosphere and Lower Thermosphere (MLT) from the long-term (2002–2007) meteor wind data over Maui (20.75°N, 156.43°W). Amplitude and phase obtained from the harmonic analysis exhibit large day to day variability. Mean amplitude obtained from the monthly mean data over the observation period is found to vary within ~8–28 m/s and 10–32 m/s for the zonal and meridional winds, respectively. The amplitude has revealed clear semiannual oscillation (SAO) pattern with maxima during solstices and altitudinal growth in both wind components. Significant resemblance in its variability with other observations carried out from the low latitude sites all over the globe is obtained. Vertical wavelength estimated from the phase gradients exposes large values (>90 km) in all seasons. Contribution of the semidiurnal tide to the total tidal variability in the MLT is found to vary over wide range throughout the year with generally higher influence during winter season over diurnal and terdiurnal components.  相似文献   

13.
Averaged seasonal variations of wind perturbation intensities and vertical flux of horizontal momentum produced by internal gravity waves (IGWs) with periods 0.2/1 h and 1/6 h are studied at the altitudes 65/80 km using the MU radar measurement data from the middle and upper atmosphere during 1986/1997 at Shigaraki, Japan (35°N, 136°E). IGW intensity has maxima in winter and summer, winter values having substantial interannual variations. Mean wave momentum flux is directed to the west in winter and to the east in summer, opposite to the mean wind in the middle atmosphere. Major IGW momentum fluxes come to the mesosphere over Shigaraki from the Pacific direction in winter and continental Asia in summer.  相似文献   

14.
Tomczak  Matthias 《Ocean Dynamics》2019,69(3):301-311
Ocean Dynamics - The concept of water type richness wtr and inversion count inv is introduced and applied to high-resolution Argo float data in a meridional strip in the southern Indian Ocean as a...  相似文献   

15.
The interactions of seafloor hydrothermal fluid with igneous rocks can result in leaching elements from the rocks,creating potential ore-forming fluids and influencing the chemical compositions of near-bottom seawater.The hydrothermal alteration of plagioclase microphenocrysts and basaltic glass in the pillow basalts from one dredge station(103°57.62′′W,12°50.55′N,water depth 2480 m)on the East Pacific Rise(EPR)near 13°N were analyzed using a scanning electron microscope(SEM)and energy dispersive X-ray spectrometry(EDS).The results show that the edges of the plagioclase microphenocrysts and the basaltic glass fragments are altered but the pyroxene and olivine microphenocrysts in the interior of the pillow basalts appear to be unaffected by the hydrothermal fluids.In addition,our results show that the chemical alteration at the rims of the plagioclase microphenocrysts and the edges of basaltic glass fragments can be divided into separate types of alteration.The chemical difference in hydrothermal alteration of the plagioclase microphenocrysts and the basaltic glass indicate that different degrees of hydrothermal fluid-solid phase interaction have taken place at the surface of the pillow basalts.If the degree of hydrothermal fluid-solid phase interaction is relatively minor,Si,Al,Ca and Na diffuse from the inside of the solid phase out and as a result these elements have a tendency to accumulate in the edge of the plagioclase microphenocrysts or basaltic glass.If the degree of hydrothermal fluid-solid phase interaction is relatively strong,Si,Al,Ca and Na also diffuse from the inside of solid phase out but these elements will have a relatively low concentration in the edge of the plagioclase microphenocrysts or basaltic glass.Based on the chemical variation observed in the edges of plagioclase microphenocrysts and basaltic glass,we estimate that the content of Si,Al and Fe in the edges of plagioclase microphenocrysts can have a variation of 10.69%,17.59%and 109%,respectively.Similarly,the Si,Al and Fe concentrations in the edges of basaltic glass can have a variation of 9.79%,16.30%and 37.83%,respectively,during the interaction of hydrothermal fluids and seafloor pillow basalt.  相似文献   

16.
Continuous MF radar measurements of mesospheric mean winds are in progress at the observatories in Yamagawa (31.2°N, 130.6°E) and Wakkanai (45.4°N, 141.7°E). The observations at Yamagawa and Wakkanai were started in August 1994 and September 1996, respectively. The real-time wind data are used for the study of major large scale dynamic features of the middle atmosphere such as mean winds, tides, planetary waves, and gravity waves, etc. In the present study of mean winds, we have utilized the data collected until June 1999, which include the simultaneous observation period of little more than two and a half years, for the two sites. The database permits us to draw conclusions on the characteristics of mean winds and to compare the mean wind structure over these sites. The mean prevailing zonal winds at both sites are dominated by westward/eastward motions in summer/winter seasons below 90 km. Meridional circulation at meteor heights is generally southward during most times of the year and it extends to lower mesospheric heights during summer also. The summer westward jet at Wakkanai is consistently stronger than those at Yamagawa. However, the winter eastward winds have identical strength at both locations. Meridional winds also show larger values at Wakkanai. The mean wind climatology has been examined and compared with the MU radar observations over Shigaraki (34.9°N, 136.1°E). The paper also presents the results of the comparison between the MF radar winds and the latest empirical model values (HWM93 model) proposed by Hedin et al. (1996. Journal of Atmospheric and Terrestrial Physics 58, 1421–1447). Hodograph analyses of mean winds conducted for the summer and winter seasons show interesting similarities and discrepancies.  相似文献   

17.
Continuous measurements of 3-dimensional winds, spectral parameters, and tropopause height for ~114 h during the passage of a tropical depression using mesosphere–stratosphere–troposphere (MST) radar at Gadanki (13.5°N, 79.2°E) are discussed. The spectral analysis of zonal and meridional winds shows the presence of inertia-gravity wave (IGW) with the dominant periodicity of 56 h and intrinsic period of 27 h in the upper troposphere and lower stratosphere (UTLS). The strengthening of easterly jet and associated wind shears during the passage of the depression is one of the causative mechanisms for exciting the IGW. A well-established radar method is used to identify the tropopause and to study its response to the propagating atmospheric disturbances. The significance of the present study lies in showing the response of tropopause height to the IGW during tropical depression for the first time, which will have implications in stratosphere–troposphere exchange processes.  相似文献   

18.
19.
The na lidar-observed temperature diurnal tidal perturbations, based on full-diurnal-cycle observations from 2002 to 2008, are compared with tidal wave measurements by the TIMED/SABER instrument to elucidate the nature of diurnal tidal-period perturbations observed locally. The diurnal amplitude and phase profiles deduced by the two instruments are in very good agreement most of the year. However, the lidar-observed diurnal amplitudes during winter months and early spring are considerably larger than SABER observations, leading to the existence of a significant amplitude maximum of 12 K near 90 km in February and a different seasonal structure of temperature diurnal amplitude from the two instruments. The lidar-observed diurnal phase shows propagating wave characteristics during equinoctial months, but exhibit “evanescent wave” behavior in winter months, whereas SABER diurnal tidal phase exhibits propagating diurnal tidal character all year long with small seasonal variation. This anomalous tidal characteristic from the lidar observations repeats almost every winter. The exact mechanism behind this tidal feature is not fully understood, therefore further investigation and more experimental observations are necessary.  相似文献   

20.
In-situ measurements of number density, size distribution, and mass loading of near-surface aerosols were carried out at Kharagpur, a site on the eastern part of Indo-Gangetic Plains during the winter month of December 2004. The data have been used to investigate wintertime characteristics of aerosols and their effects on the occurrence of haze. The aerosol number density is found to be of the order of 109 m?3 and mass loading is ~265±70 μg m?3 (5–8 times that reported from south Indian sites). The diurnal patterns and day-to-day variations in aerosol number density and mass loading are closely associated with atmospheric boundary layer height. During haze events, the number density of submicron particles is found to be 2–5 times higher than that during non-hazy period. This could be attributed to the enhanced concentration of anthropogenic aerosols, low atmospheric boundary layer height/ventilation coefficient and airflow convergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号