首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
黄河下游游荡性河道小水致灾研究   总被引:4,自引:0,他引:4  
20世纪80年代中期以来,黄河下游游荡性河道的洪水灾害是在下游水量明显减少、洪峰流量也不断减小的情况下发生的。即使是水量比较小的普通洪水,也能造成下游滩区大面积受淹、控导工程决口、桥梁被冲毁、房屋倒塌等严重灾害。小水致灾的形成机理主要是:河道游荡,引发“横河、斜河”;小水淤积,河床抬高,行洪能力下降;人与河床争地,造成滩区阻塞。  相似文献   

2.
从项目经济的角度出发,以可持续发展和减灾为目的,在反思以往黄河治理工作的基础上,通过对黄河下游河道现状及在“南水北调”工程实施后的不同季节河道径流量分析,提出了主动实施黄河下游河道改道,将“悬河”降到地表的新方案,并据此探讨和分析了改道工程的必要性,紧迫性,研究了改道的技术与经济可行性,提出将国土资源整治置换,以新增土地资源资本化来回收项目投资的新思路。  相似文献   

3.
陈志清 《地理研究》1995,14(3):74-81
根据黄河下游7个控制断面的深泓高程、平均河底高程、滩槽高差及过水断面面积的历年变化,可以看出黄河下游河道的萎缩过程,大型水利工程的运用及引黄灌溉加速了下游河道的淤积和萎缩。  相似文献   

4.
黄河下游河槽横断面调整规律及治理方式探讨   总被引:7,自引:0,他引:7  
通过对影响河槽挟沙能力诸因素的分析,作者认为目前黄河下游只有河槽形态是一个人为可调节的控制河道淤积的要素。分析黄河下游河道横剖面形态的特征及其调整规律,考虑来沙组成变化、河槽综合阻力变化,计算得到黄河下游典型断面的实际挟沙能力及平均水沙条件下河槽平衡输沙横剖面,经与实际断面形态对比,得出必须以多级河槽方式缩窄7000m3/s流量以下即中、小水期的河槽,方能显着减少黄河下游河槽中的淤积的结论。这样才能真正实现潘季驯的“束水攻沙”的治黄方略。  相似文献   

5.
黄河下游的河性   总被引:8,自引:0,他引:8  
尹学良  陈金荣 《地理学报》1992,47(3):193-207
本文探讨了黄河一般特性的综合关系,讨论了河道演变中均衡与非均衡的问题、滩槽冲淤的利与害和主与从的问题,同时讨论了河道冲淤演变特性、与水沙条件的关系、河槽淤积率和淤积比等。  相似文献   

6.
黄河下游水沙关系模型参数随河段距离变化规律   总被引:1,自引:0,他引:1  
申红彬  曹兵  吴华莉  乔伟 《地理学报》2022,77(3):635-649
对于多沙河流或河段,水沙关系模型多表示为考虑来水含沙量的幂律函数形式:Qs=KSuaQb,本质反映了河道的不平衡输沙规律,模型参数变化主要受到河道边界条件的影响。河段距离作为反映沿程空间尺度的一个重要指标,对模型系数K与指数ab具有重要的影响。以黄河下游河道为研究对象,分析研究了模型系数K与指数ab随河段距离的变化规律与计算方法,并用于黄河下游河道输沙沿程变化模拟。模型参数变化规律分析表明:指数a随河段距离的增大而减小,两者呈指数负相关关系;系数K随河段距离的增大而减小,且与指数a呈指数正相关关系;指数b随河段距离的增大而增大,且与指数a呈线性负相关关系,两者之和约为2.0。通过建立模型系数K与指数ab随河段距离变化的计算表达式,构成了考虑来水含沙量的水沙关系模型的参数条件补充方程。对黄河下游河道输沙沿程变化模拟结果表明,黄河下游河道沿程含沙量的计算值与实测值变化趋势基本符合,确定性系数R2值可以达到0.96,Nash-Sutcliffe效率系数NSE值在0.93以上,模拟效果良好。研究结果有助于深入认识考虑来水含沙量的水沙关系模型参数的物理意义与探索模型参数的确定方法。  相似文献   

7.
黄河下游河道断面形态参数变化及其水沙过程响应   总被引:1,自引:0,他引:1  
刘慰  王随继  王彦君 《地理科学》2020,40(9):1563-1572
基于1965—2015年黄河下游花园口、高村、泺口站的逐年水文和汛前河道断面的实测资料,分析了河道断面形态参数(河道断面面积,河道宽深比等)的变化,以及对河道断面形态与来水来沙间的关系做出定量化分析。结果表明:主槽断面形态参数与水沙搭配以及前期断面形态密切相关,沿程3个断面形态参数调整方式存在显著差异。河宽调整幅度沿程减小,辫状河段变幅最大,尤其在1986—1999年,辫状河段萎缩程度最为严重,其次为弯曲河段,顺直河段横向调整幅度最小。受到前期断面形态的影响,辫状河段河道断面调整方式既有横向展宽(萎缩)又有垂直加深(淤积);弯曲河段河道宽深比与流量呈较弱的正相关关系,具有横向和垂向的调整方式;而顺直河段的宽深比与流量呈负相关关系,与来沙系数呈正相关关系,河道以垂直加深(淤积)为主。  相似文献   

8.
黄河下游游荡段河道平面形态与河势变化趋势预测   总被引:6,自引:2,他引:4  
黄河下游河道平面形态与河势演变,从20世纪60年代起,地貌界就用地图法和航片资料作过不同程度的研究.随着资料的不断积累,该项研究得到逐步的深化."八五"期间,水利界又对主流线作了深入分析,结果表明:各家所得结论不同,需要作进一步的分析讨论.我们认为:从长远的角度来看,小浪底水库清水下泄期间,黄河下游游荡性河段不对称的河谷形态不会改变;在继承性新构造运动造成的地壳向南掀沉、科氏力和人类活动的综合影响下,主流线总体上仍呈南摆趋势;清水冲刷不会导致河型彻底转化;河道整治工程虽然能够限制主流的摆动幅度和弱化河道的游荡强度,对河势的影响较大,但是根本不可能改变上述河道平面形态的长期演变趋势.  相似文献   

9.
构造运动影响河流纵剖面及河道冲淤的数学模型   总被引:1,自引:0,他引:1  
贾绍凤 《地理学报》1994,49(4):324-331
本文在一维河床动力学模型的基础上,增加了构造运动项,写出了考虑构造运动的河床动力学模型。并根据协同学原理,分析了不同活动强度的构造运动对河流纵剖面作用的情形和数量关系。最后以黄河下游河道为例,讨论了构造运动在河流纵剖面调整中的作用。  相似文献   

10.
黄河上中游产水产沙系统与下游河道沉积系统的耦合关系   总被引:33,自引:4,他引:33  
许炯心 《地理学报》1997,52(5):421-429
本文在黄河为例,动用数理统计方法,研究了河流流域系统中产水产沙子系统与河道沉积子系统之间的关系,得到了描述这种耦合关系的多元回归模型。运用这一模型,可以定量回答来自上中游不同来源区的泥沙,各有多大比例淤在下游河道中的问题。  相似文献   

11.
薛春汀  周良勇 《地理研究》2010,29(11):1961-1970
现在的洪泽湖和淮河中游河道不断淤高,致使淮河中游洪涝不断。入洪泽湖后淮河水主要流入长江。而苏北北部地区需要水,因入海泥沙数量太少而致海岸侵蚀问题不能根本解决,那里需要淮河的泥沙。为改变这种不合理的格局。在洪泽湖北岸和浅水区开挖与洪泽湖分离的河道,连接完成远期工程的淮河入海水道和拓宽、挖深的淮沭河—北六塘河—新沂河水道,使淮河水沙只经过这两条水道到达黄海,改变淮河水沙不合理的资源分配。新水道路程短,比降大,使洪泽湖和淮河中游河道不再淤高,并将进一步使淮河中游水道刷深,减轻淮河中游洪涝灾害,并为洪泽湖湖底高程降低创造条件。通过分析现在淮河的输沙量、输沙模数,与历史时期和其他流域对比,认为连云港至射阳河口这段海岸将改变为北部稳定,南部缓慢进积,形成新的淮河三角洲,彻底解决苏北海岸侵蚀问题。  相似文献   

12.
黄河下游泥沙输移数值模拟   总被引:2,自引:0,他引:2  
励强  徐小惠 《地理研究》1989,8(2):55-63
本文从数学模型入手,探讨黄河下游在多年平均来水来沙条件下,泥沙输移与泥沙淤积的特性,得出黄河下游泥沙沿程淤积分布不均匀主要是由于粗沙、中沙沿程淤积不均匀造成的,如果使来沙减少42.6%,黄河下游可望达到冲淤平衡.  相似文献   

13.
黄河是世界闻名的多沙性河流,历史时期就不断淤积、决口改道,且淤积速度不断加快,决口改道的频率也在不断增加。黄河下游地上河的发展和演变是自然因素和人类活动综合作用的结果。历史时期流域内人口的增加、耕作方式的改变及其对植被造成的破坏都对中游地区侵蚀的加剧、来沙的增加,以及下游地区河道的淤积及决口改道的发生带来不同程度的影响。  相似文献   

14.
The Seine and the Somme are the two main rivers flowing from northwestern France into the Channel. During the Pleistocene cold stages both rivers were tributaries of the River Manche which was exporting sediments into the central deeps of the Channel. The River Seine has a very well developed terrace system recording incision that began at around 1 Ma. The same age is proposed for the beginning of the main incision in the Somme Valley on the basis of morphostratigraphy, pedostratigraphy, palaeontology, palaeomagnetism and ESR datings. The uplift rate deduced from analysis of the Seine and Somme terrace systems is of 55 to 60 m/Ma since the end of the Lower Pleistocene. The response of the two rivers to climatic variations, uplift and sea-level changes is complex and variable in the different parts of the river courses. For example, the evolution of the lower Seine system is influenced by uplift and climate changes but dominated by sea-level changes. In the middle Seine the system is beyond the impact of sea-level variations and shows a very detailed response to climatic variations during the Middle and Upper Pleistocene in a context of uplift. The Somme Valley response appears to be more homogeneous, especially in the middle valley, where the terrace system shows a regular pattern in which incision occurs at the beginning of each glacial period against a general background of uplift. Nevertheless, the lower Somme Valley and the Palaeo-Somme in the Channel area indicate some strong differences compared with the middle valley: influence of sea-level variations and probably differences in rates of tectonic uplift between the Channel and the present continent. The differences in the responses of the two river valleys during the Pleistocene are related to differences in the size of the fluvial basins, to the local tectonic characteristics, to the geometry of the platform connected to the lower parts of the valleys and to the hydrodynamic characteristics of each river. Finally, it is shown from these examples that the multidisciplinary study of Pleistocene rivers is a very efficient tool for the investigation of neotectonic activity.  相似文献   

15.
Five diagnostic experiments with a 3D baroclinic hydrodynamic and sediment transport model ECOMSED in couple with the third generation wave model SWAN and the Grant–Madsen bottom boundary layer model driven by the monthly sediment load of the Yellow River, were conducted to separately diagnose effects of different hydrodynamic factors on transport of suspended sediment discharged from the Yellow River in the Bohai Sea. Both transport and spatio-temporal distribution of suspended sediment concentration in the Bohai Sea were numerially simulated. It could be concluded that suspended sediment discharged from the Yellow River cannot be delivered in long distance under the condition of tidal current. Almost all of sediments from the Yellow River are deposited outside the delta under the condition of wind-driven current, and only very small of them are transported faraway. On the basis of wind forcing, sediments from the Yellow River are mainly transported north-northwestward, and others which are first delivered to the Laizhou Bay are continuously moved northward. An obvious 3D structure characteristic of sediment transport is produced in the wind-driven and tide-induced residual circulation condition. Transport patterns at all layers are generally consistent with circulation structure, but there is apparent deviation between the depth-averaged sediment flux and the circulation structure. The phase of temporal variation of sediment concentration is consistent with that of the bottom shear stress, both of which are proved to have a ten-day cycle in wave and current condition.  相似文献   

16.
Five diagnostic experiments with a 3D baroclinic hydrodynamic and sediment transport model ECOMSED in couple with the third generation wave model SWAN and the Grant-Madsen bottom boundary layer model driven by the monthly sediment load of the Yellow River, were conducted to separately diagnose effects of different hydrodynamic factors on transport of suspended sediment discharged from the Yellow River in the Bohai Sea. Both transport and spatio-temporal distribution of suspended sediment concentration in the Bohai Sea were numerially simulated. It could be concluded that suspended sediment discharged from the Yellow River cannot be delivered in long distance under the condition of tidal current. Almost all of sediments from the Yellow River are deposited outside the delta under the condition of wind-driven current, and only very small of them are transported faraway. On the basis of wind forcing, sediments from the Yellow River are mainly transported north-northwestward, and others which are first delivered to the Laizhou Bay are continuously moved northward. An obvious 3D structure characteristic of sediment transport is produced in the wind-driven and tide-induced residual circulation condition. Transport patterns at all layers are generally consistent with circulation structure, but there is apparent deviation between the depth-averaged sediment flux and the circulation structure. The phase of temporal variation of sediment concentration is consistent with that of the bottom shear stress, both of which are proved to have a ten-day cycle in wave and current condition.  相似文献   

17.
Evolution of the river channel downstream of reservoirs is a complex process that is closely related to the operational mode of the reservoirs and the channel boundary conditions. Numerous studies have been carried out on the fluvial processes of downstream reservoirs. However, only a few of them have focused on the relationship between runoff-sediment conditions and channel pattern indicators. Also, the impacts of river training works on fluvial processes are seldom dealt with. In this paper, the evolutionary processes of three sections in the Lower Yellow River, including Tiexie-Yiluo River mouth reach, Huayuankou-Heigangkou reach and Jiahetan-Gaocun reach, were analyzed for variations in the channel boundary line and the mainstream between 1960 and 2015. Channel pattern indicators such as sinuosity, mainstream wandering range and width/depth ratio were analyzed based on field measurements obtained by the Hydrological Department of the Yellow River Conservancy Commission. The effects of river training works on the channel evolution are then described. Since 1960, numerous medium- and large-sized reservoirs have been built on the Yellow River, including Longyangxia Reservoir, Liujiaxia Reservoir and Xiaolangdi Reservoir. These reservoirs impound the runoff from upstream and retain the sediment, which changes the runoff and sediment conditions in the downstream reach. As a consequence, annual runoff and the frequency and peak of flooding have all decreased. As a result, the flow dynamics and their action on the river channel are also reduced, which changes the dynamic state of the river course. The discrimination results obtained using the single parameter discrimination rule and the discrimination equation show that the degree of wandering is weakened in the reaches studied. The variations in the channel pattern indicators show that the sinuosity increases and the wandering range decreases with a reduction in the total annual volume of water. However, the degree of wandering has little relationship to the sediment concentration. In addition, river training works play an important role in controlling the river course. Due to improvements in the river training works, the river course has become more stable under the same runoff and sediment conditions. A new discrimination rule that takes into account the impacts of the river training works is proposed. The discrimination results were found to fit well with the actual river pattern, which shows that the discrimination rule is applicable to the Lower Yellow River. The results show that the runoff and sediment conditions are the most important factors in the evolution of the river course. The river training works have at the same time limited the wandering range of the mainstream and played an important role in the fluvial processes. Both factors combined lead to the stabilization of the river.  相似文献   

18.
Evolution of the river channel downstream of reservoirs is a complex process that is closely related to the operational mode of the reservoirs and the channel boundary conditions. Numerous studies have been carried out on the fluvial processes of downstream reservoirs. However, only a few of them have focused on the relationship between runoff-sediment conditions and channel pattern indicators. Also, the impacts of river training works on fluvial processes are seldom dealt with. In this paper, the evolutionary processes of three sections in the Lower Yellow River, including Tiexie-Yiluo River mouth reach, Huayuankou-Heigangkou reach and Jiahetan-Gaocun reach, were analyzed for variations in the channel boundary line and the mainstream between 1960 and 2015. Channel pattern indicators such as sinuosity, mainstream wandering range and width/depth ratio were analyzed based on field measurements obtained by the Hydrological Department of the Yellow River Conservancy Commission. The effects of river training works on the channel evolution are then described. Since 1960, numerous medium- and large-sized reservoirs have been built on the Yellow River, including Longyangxia Reservoir, Liujiaxia Reservoir and Xiaolangdi Reservoir. These reservoirs impound the runoff from upstream and retain the sediment, which changes the runoff and sediment conditions in the downstream reach. As a consequence, annual runoff and the frequency and peak of flooding have all decreased. As a result, the flow dynamics and their action on the river channel are also reduced, which changes the dynamic state of the river course. The discrimination results obtained using the single parameter discrimination rule and the discrimination equation show that the degree of wandering is weakened in the reaches studied. The variations in the channel pattern indicators show that the sinuosity increases and the wandering range decreases with a reduction in the total annual volume of water. However, the degree of wandering has little relationship to the sediment concentration. In addition, river training works play an important role in controlling the river course. Due to improvements in the river training works, the river course has become more stable under the same runoff and sediment conditions. A new discrimination rule that takes into account the impacts of the river training works is proposed. The discrimination results were found to fit well with the actual river pattern, which shows that the discrimination rule is applicable to the Lower Yellow River. The results show that the runoff and sediment conditions are the most important factors in the evolution of the river course. The river training works have at the same time limited the wandering range of the mainstream and played an important role in the fluvial processes. Both factors combined lead to the stabilization of the river.  相似文献   

19.
黄河源区生态环境退化研究   总被引:17,自引:2,他引:15  
生态环境退化是黄河源区所面临的重要的生态问题和社会经济问题。源区生态环境退化不但影响本区经济的可持续发展,而且对中下游地区的生态环境和水文条件构成很大威胁。在收集区内现有研究成果的基础上,通过对2000年TM影像的解译,对黄河源区生态环境退化现状和特征作了全面系统的研究。源区生态环境退化主要表现在冰川退缩、冻土面积的减小和冻融侵蚀面积的扩大,植被退化和土地退化的加剧等过程。最后,在分析未来气候变化和人类活动的基础上,对生态环境变化趋势作了预测。  相似文献   

20.
Channel change is an important aspect of geomorphological evolution and habitat dynamics in large alluvial rivers. Planimetric maps of channel locations were used to investigate spatio-temporal alluvial channel changes in a geomorphic context along the Lower Mississippi River (LMR). Analyses were conducted with the aid of a time-weighted locational probability map. The locational probability map was constructed in ArcGIS and covered a period of 205 years. An examination of the pixel data from the probability maps indicates a high occurrence of low probability pixels along the Lower Mississippi River, which is in accordance with the dynamism of alluvial rivers. The northern section of the Lower Mississippi River (Columbus, KY to Memphis, TN) has been much more stable than the southern river segments (Helena, AR to Natchez, MS). Areas of high channel probability (channel stability) were often associated with alluvial channel confinement from a combination of flood-plain deposits, geologic structures and large stable islands. Low channel probability locations were found along sections exhibiting the following geomorphic characteristics: changes in meander amplitude, meander neck and chute cutoffs, meander extensional processes and islands lost in channel migrational processes. The results provide a strong foundation for understanding channel change on the Lower Mississippi River and serves as a valuable instrument for future management and restoration schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号