首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2–3 ‰ heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures.  相似文献   

2.
黄钾铁矾是酸性矿山废水(AMD) 中常见的次生矿物,能有效吸附AMD中Cu、Pb、Zn、Gd、As等重金属元素。不 同条件下形成的黄钾铁矾微形貌不同,其吸附能力也不同。文章通过化学法和微生物法合成了黄钾铁矾,并在粤北大宝山 矿酸性矿山废水中采集了含黄钾铁矾的泥样。利用扫描电镜-能谱分析(SEM) 和X光衍射(XRD),对三种不同条件下形 成的黄钾铁矾进行鉴定和微形貌特征观察,并分析黄钾铁矾的形成条件。结果表明,常温条件下,pH值2.0~2.5时能够化 学合成黄钾铁矾,其晶体粒径约2~10 μm,且晶形呈板状;而在65℃时,可在pH2.0~3.0之间化学合成黄钾铁矾,但晶形 差。微生物法合成黄钾铁矾pH范围是2.0~5.0,其晶形完好,呈菱面体且晶体大小比较均匀,而约为2~4 μm。酸性矿山废 水中的黄钾铁矾形成的pH值为2.5~3.5,晶形为菱面体形,单个晶体大小多为1~2 μm。根据其形成条件和微形貌特征,文 章推测酸性矿山废水中形成的黄钾铁矾可能是微生物成因。  相似文献   

3.
黄钾铁矾是酸性矿山废水(AMD) 中常见的次生矿物,能有效吸附AMD中Cu、Pb、Zn、Gd、As等重金属元素。不 同条件下形成的黄钾铁矾微形貌不同,其吸附能力也不同。文章通过化学法和微生物法合成了黄钾铁矾,并在粤北大宝山 矿酸性矿山废水中采集了含黄钾铁矾的泥样。利用扫描电镜-能谱分析(SEM) 和X光衍射(XRD),对三种不同条件下形 成的黄钾铁矾进行鉴定和微形貌特征观察,并分析黄钾铁矾的形成条件。结果表明,常温条件下,pH值2.0~2.5时能够化 学合成黄钾铁矾,其晶体粒径约2~10 μm,且晶形呈板状;而在65℃时,可在pH2.0~3.0之间化学合成黄钾铁矾,但晶形 差。微生物法合成黄钾铁矾pH范围是2.0~5.0,其晶形完好,呈菱面体且晶体大小比较均匀,而约为2~4 μm。酸性矿山废 水中的黄钾铁矾形成的pH值为2.5~3.5,晶形为菱面体形,单个晶体大小多为1~2 μm。根据其形成条件和微形貌特征,文 章推测酸性矿山废水中形成的黄钾铁矾可能是微生物成因。  相似文献   

4.
酸性矿山废水(acid mine drainage,AMD)是一类pH低并含有大量有毒金属元素的废水。AMD及受其影响的环境中次生高铁矿物类型主要包括羟基硫酸高铁矿物(如黄铁矾和施威特曼石等)和一些含水氧化铁矿物(如针铁矿和水铁矿等),而且这些矿物在不同条件下会发生相转变,如施氏矿物向针铁矿或黄铁矾矿物相转化。基于酸性环境中生物成因次生矿物的形成会"自然钝化"或"清除"废水中铁和有毒金属这一现象所获得的启示,提出利用这些矿物作为环境吸附材料去除地下水中砷,不但吸附量大(如施氏矿物对As的吸附可高达120mg/g),而且可直接吸附As(III),还几乎不受地下水中其他元素影响。利用AMD环境中羟基硫酸高铁矿物形成的原理,可将其应用于AMD石灰中和主动处理系统中,构成"强化微生物氧化诱导成矿-石灰中和"的联合主动处理系统,以提高AMD处理效果和降低石灰用量。利用微生物强化氧化与次生矿物晶体不断生长的原理构筑生物渗透性反应墙(PRB)并和石灰石渗透沟渠耦联,形成新型的AMD联合被动处理系统,这将有助于大幅度增加处理系统的寿命和处理效率。此外,文中还探讨了上述生物成因矿物形成在AMD和地下水处理方面应用的优点以及今后需要继续研究的问题。  相似文献   

5.
Fe2+ oxidation by Acidithiobacillus ferrooxidans in pure and mixed cultures was investigated in batch cultures in the presence of arsenate. The pH value was periodically monitored and Fe2+ content was analyzed by the 1,10-phenanthroline method. ICP-AES was employed for the analysis of As(V) concentration in the solution phase. Precipitates were collected and analyzed by X-ray diffraction. Slight enhancement of iron bio-oxidation was observed in mixed cultures with the two greatest As(V) concentrations (1.0 and 5.0 mg/L As), which were enriched from sediment samples in an abandoned copper mine site. As(V) concentrations decreased with time, indicating either the co-precipitation with or the adsorption by jarosite, the major sink of solid phase. Our data suggest that biogenically synthesized jarosite may play an important role in the attenuation of soluble arsenate in natural aquatic environments.  相似文献   

6.
The subsurface acid mine drainage (AMD) environment of an abandoned underground uranium mine in Königstein/Saxony/Germany, currently in the process of remediation, is characterized by low pH, high sulfate concentrations and elevated concentrations of heavy metals, in particular uranium. Acid streamers thrive in the mine drainage channels and are heavily coated with iron precipitates. These precipitates are biologically mediated iron precipitates and related to the presence of Fe-oxidizing microorganisms forming copious biofilms in and on the Fe-precipitates. Similar biomineralisations were also observed in stalactite-like dripstones, called snottites, growing on the gallery ceilings.The uranium speciation in these solutions of underground AMD waters flowing in mine galleries as well as dripping from the ceiling and forming stalactite-like dripstones were studied by time resolved laser-induced fluorescence spectroscopy (TRLFS). The fluorescence lifetime of uranium species in both AMD water environments were best described with a mono-exponential decay, indicating the presence of one major species. The detected positions of the emission bands and by comparing it in a fingerprinting procedure with spectra obtained for acid sulfate reference solutions, in particular Fe(III) - SO42− - UO22+ reference solutions, indicated that the uranium speciation in the AMD environment of Königstein is dominated in the pH range of 2.5-3.0 by the highly mobile aquatic uranium sulfate species UO2SO4(aq) and formation of uranium precipitates is rather unlikely as is retardation by sorption processes. The presence of iron in the AMD reduces the fluorescence lifetime of the UO2SO4(aq) species from 4.3 μs, found in iron-free uranium sulfate reference solutions, to 0.7 μs observed in both AMD waters of Königstein and also in the iron containing uranium sulfate reference solutions.Colloids were not observed in both drainage water and dripping snottite water as photon correlation spectroscopy analyses and centrifugation experiments at different centrifugal accelerations between 500g and 46000g revealed. Thus transport and uranium speciation at the investigated AMD sites is neither influenced by U(IV) or U(VI) eigencolloids nor by uranium adsorbed on colloidal particles.This study shows that TRLFS is a suitable spectroscopic technique to identify the uranium speciation in bulk solutions of AMD environments.  相似文献   

7.
This paper documents the solid phases associated to acid mine drainage (AMD) at the Tharsis mines (SW Spain). It provides an inventory of the AMD-precipitates, describing their main modes of occurrence and mineral assemblages. Results indicate that iron, aluminum and magnesium sulfates predominate in the assemblages. They occur as efflorescences composed of complex mixtures of metallic salts, and as ochres (jarosite combined with goethite). Also, their distributions illustrate two hydrochemical environments: the open pits, which reflect a proximal secondary paragenesis; and the downstream river banks (Meca River), which represent a more evolved paragenesis, resulting from the evolution of AMD produced throughout the system. These environments can be differentiated by composition and variety of minerals, which is considerably lower along the Meca River.The newly-formed minerals have monitoring significance and proved capable of participating in cycles of retention–liberation of hydrogen ions, sulfate, and metals. In a semi-arid climate, the importance of the AMD-precipitates as environmental indicators is stressed. They may help to understand the response of the system to the episodic rainfall events that occur after prolonged dry periods.  相似文献   

8.
A sulfur and trace element enriched U–Th-laced tailings pile at the abandoned Phillips Mine in Garrison, New York, releases acid mine drainage (AMD, generally pH < 3, minimum pH 1.78) into the first-order Copper Mine Brook (CMB) that drains into the Hudson River. The pyrrhotite-rich Phillips Mine is located in the Highlands region, a critical water source for the New York metro area. A conceptual model for derivation/dissolution, sequestration, transport and dilution of contaminants is proposed. The acidic water interacts with the tailings, leaching and dissolving the trace metals. AMD evaporation during dry periods concentrates solid phase trace metals and sulfate, forming melanterite (FeSO4·7H2O) on sulfide-rich tailings surfaces. Wet periods dissolve these concentrates/precipitates, releasing stored acidity and trace metals into the CMB. Sediments along CMB are enriched in iron hydroxides which act as sinks for metals, indicating progressive sequestration that correlates with dilution and sharp rise in pH when mine water mixes with tributaries. Seasonal variations in metal concentrations were partly attributable to dissolution of the efflorescent salts with their sorbed metals and additional metals from surging acidic seepage induced by precipitation.  相似文献   

9.
对安徽铜陵狮子山杨山冲尾矿库采集的酸矿水(AMD)及表层尾砂样品,采用FeTo选择性培养基,利用Overlay分离技术,获得了一株具有铁还原功能的细菌nju-Tl.形态观察、生理生化鉴定以及16S rRNA基因序列同源性分析结果表明,该菌株属于Acidithobacillus属.平板培养和液体培养实验证明,nju-Tl...  相似文献   

10.
《Applied Geochemistry》1995,10(6):705-713
The project began in an attempt to develop technology to ameliorate acid mine drainage (AMD) problems occurring at the Sherman Iron Ore Mine of Temagami, Ontario, Canada. A series of laboratory experiments were conducted to evaluate the effectiveness of an electrochemical approach to ameliorate AMD. An electrochemical cell was constructed using a block of massive sulphide-graphite rock from the mine site as the cathode, scrap iron as the sacrificial anode, and acidic leachate collected from the mine site as the electrolyte. The cell was effective at raising the pH of ≈ 41.0 L of leachate from 3.0 to a maintenance value of ≈ 5.6. This result was accompanied by a significant decrease in redox potential from > 650 to < 300 mV. Furthermore, iron sulphate precipitate formed, with a concomitant lowering of Al, Cd, Co, Cu and Ni solution concentrations. The study clearly demonstrated the proposed electrochemical approach to be a technically feasible and practical method of ameliorating AMD.  相似文献   

11.
《Applied Geochemistry》1988,3(3):333-344
The sediments of Lake Anna, Virginia, act as a major sink for incoming acid mine drainage (AMD) pollutants (Fe, SO42−, H+) due to bacterial sulfate reduction (SR). Acid-volatile sulfide (AVS), elemental S, and pyrite concentrations in the sediments of the polluted arm of the lake are significantly greater than those in unpolluted sections of the lake. Measurements of SR using 35SSO42− showed that AVS and S0 are the major short-term (48 h) products of SR in these sediments. Inorganic forms of S(AVS, S0, and FeS2) made up from 60 to 100% of the total sediment S concentration. Pyrite concentrations in the sediment were high but decreased exponentially with distance from the AMD source, suggesting that the pyrite was deposited as stream detritus from the abandoned mines. Iron monosulfide and elemental S concentrations were highest at a station 1 km away from the AMD inflow, indicating formation in situ. There was no evidence for the formation of organic S species. The results suggest that in Fe- and S-rich locations such as those contaminated with acid mine drainage, the distribution of end products of SR may vary substantially from those reported for more moderate environments.  相似文献   

12.
This study was performed to investigate the operating status, evaluate the problems, and discuss possible improvement methods of passive treatment systems for acid mine drainage (AMD) in South Korea. Thirty-five passive treatment systems in 29 mines have been constructed from 1996 to 2002 using successive alkalinity producing systems (SAPS) as the main treatment process. We investigated 29 systems (two for metal mines), 19 of which revealed various problems. Overflows of drainage from SAPS, wetland, or oxidation ponds were caused by the flow rate exceeding the capacities of the facilities or by the reduced permeability of the organic substance layer. Leakages occurred at various parts of the systems. In some cases, clogged and broken pipes at the mouths of the mine adits made the whole system unusable. Some systems showed very low efficiencies without apparent leakage or overflow. Even though the systems showed fairly good efficiencies in metal removal ratios (mainly iron) and pH control; sulfate removal rates were very poor except in three systems, which may indicate very poor sulfate reductions with sulfate reducing bacteria (SRB) as a means.  相似文献   

13.
Iron-rich clay minerals are abundant in the natural environment and are an important source of iron for microbial metabolism. The objective of this study was to understand the mechanism(s) of enhanced reduction of Fe(III) in iron-rich 2:1 clay minerals under sulfate-reducing conditions. In particular, biogenic reduction of structural Fe(III) in nontronite NAu-2, an Fe-rich smectite-group mineral, was studied using a Desulfovibrio spp. strain G-11 with or without amended sulfate. The microbial production of Fe(II) from NAu-2 is about 10% of total structural Fe(III) (30 mM) when Fe(III) is available as the sole electron acceptor. The measured production of Fe(II), however, can reach 29% of the total structural Fe(III) during sulfate reduction by G-11 when sulfate (50 mM) is concurrently added with NAu-2. In contrast, abiotic production of Fe(II) from the reaction of NAu-2 with Na2S (50 mM) is only ca. 7.5% of the total structural Fe(III). The enhanced reduction of structural Fe(III) by G-11, particularly in the presence of sulfate, is closely related to the growth rate and metabolic activities of the bacteria. Analyses by X-ray diffraction, transmission electron microscopy, and energy dispersive spectroscopy reveal significant changes in the structure and composition of NAu-2 during its alteration by bacterial sulfate reduction. G-11 can also derive nutrients from NAu-2 to support its growth in the absence of amended minerals and vitamins. Results of this study suggest that sulfate-reducing bacteria may play a more significant role than previously recognized in the cycling of Fe, S, and other elements during alteration of Fe-rich 2:1 clay minerals and other silicate minerals.  相似文献   

14.
Tailings generated during processing of sulfide ores represent a substantial risk to water resources. The oxidation of sulfide minerals within tailings deposits can generate low-quality water containing elevated concentrations of SO4, Fe, and associated metal(loid)s. Acid generated during the oxidation of pyrite [FeS2], pyrrhotite [Fe(1−x)S] and other sulfide minerals is neutralized to varying degrees by the dissolution of carbonate, (oxy)hydroxide, and silicate minerals. The extent of acid neutralization and, therefore, pore-water pH is a principal control on the mobility of sulfide-oxidation products within tailings deposits. Metals including Fe(III), Cu, Zn, and Ni often occur at high concentrations and exhibit greater mobility at low pH characteristic of acid mine drainage (AMD). In contrast, (hydr)oxyanion-forming elements including As, Sb, Se, and Mo commonly exhibit greater mobility at circumneutral pH associated with neutral mine drainage (NMD). These differences in mobility largely result from the pH-dependence of mineral precipitation–dissolution and sorption–desorption reactions. Cemented layers of secondary (oxy)hydroxide and (hydroxy)sulfate minerals, referred to as hardpans, may promote attenuation of sulfide-mineral oxidation products within and below the oxidation zone. Hardpans may also limit oxygen ingress and pore-water migration within sulfide tailings deposits. Reduction–oxidation (redox) processes are another important control on metal(loid) mobility within sulfide tailings deposits. Reductive dissolution or transformation of secondary (oxy)hydroxide phases can enhance Fe, Mn, and As mobility within sulfide tailings. Production of H2S via microbial sulfate reduction may promote attenuation of sulfide-oxidation products, including Fe, Zn, Ni, and Tl, via metal-sulfide precipitation. Understanding the dynamics of these interrelated geochemical and mineralogical processes is critical for anticipating and managing water quality associated with sulfide mine tailings.  相似文献   

15.
通过对山西省马兰煤矿2号煤层采掘面在开采和封闭时期的矿井水和沉积物的研究,揭示采掘面封闭前后对矿井水水质和沉积物的影响机理。研究结果表明:马兰煤矿矿井水均为SO4-Ca型水质,矿井水均富含SO42-和Fe离子;随着上部煤层的不断开采,3处矿井水呈现相同的变化规律,矿井水的pH值升高,Eh值降低,SO42-、Fe、Mn和Zn离子浓度随之下降,其中北一暗斜井处的矿井水水质变化最显著;矿井水水质指标和流速变化能够控制其沉积物的矿物组成和结晶程度,北一暗斜井处的沉积物在两次采样中由斯沃特曼铁矿变为针铁矿,而其他两处的矿井水沉积物矿物组分没有发生变化,主要由针铁矿组成。研究结果能够提高对老空区积水水质的预测精度,并对煤矿突水水源判识具有重要意义。   相似文献   

16.
Jarosite [KFe3(SO4)2(OH)6] is a mineral that is common in acidic, sulphate-rich environments, such as acid sulphate soils derived from pyrite-bearing sediments, weathering zones of sulphide ore deposits and acid mine or acid rock drainage (ARD/AMD) sites. The structure of jarosite is based on linear tetrahedral-octahedral-tetrahedral (T-O-T) sheets, made up from slightly distorted FeO6 octahedra and SO4 tetrahedra. Batch dissolution experiments carried out on synthetic jarosite at pH 2, to mimic environments affected by ARD/AMD, and at pH 8, to simulate ARD/AMD environments recently remediated with slaked lime (Ca(OH)2), suggest first order dissolution kinetics. Both dissolution reactions are incongruent, as revealed by non-ideal dissolution of the parent solids and, in the case of the pH 8 dissolution, because a secondary goethite precipitate forms on the surface of the dissolving jarosite grains. The pH 2 dissolution yields only aqueous K, Fe, and SO4. Aqueous, residual solid, and computational modelling of the jarosite structure and surfaces using the GULP and MARVIN codes, respectively, show for the first time that there is selective dissolution of the A- and T-sites, which contain K and SO4, respectively, relative to Fe, which is located deep within the T-O-T jarosite structure. These results have implications for the chemistry of ARD/AMD waters, and for understanding reaction pathways of ARD/AMD mineral dissolution.  相似文献   

17.
Treatment of acid mine drainage (AMD) highly rich in sulfate and multiple metal elements has been investigated in a continuous flow column experiment using organic and inorganic reactive media. Treatment substrates that composed of spent mushroom compost (SMC), limestone, activated sludge and woodchips were incorporated into bacterial sulfate reduction (BSR) treatment for AMD. SMC greatly assisted the removals of sulfate and metals and acted as essential carbon source for sulfate-reducing bacteria (SRB). Alkalinity produced by dissolution of limestone and metabolism of SRB has provided acidity neutralization capacity for AMD where pH was maintained at neutral state, thus aiding the removal of sulfate. Fe, Pb, Cu, Zn and Al were effectively removed (87–100%); however, Mn was not successfully removed despite initial Mn reduction during early phase due to interference with Fe. The first half of the treatment was an essential phase for removal of most metals where contaminants were primarily removed by the BSR in addition to carbonate dissolution function. The importance of BSR in the presence of organic materials was also supported by metal fraction analysis that primary metal accumulation occurs mainly through metal adsorption onto the organic matter, e.g., as sulfides and onto Fe/Mn oxides surfaces.  相似文献   

18.
The chemical characteristics, formation and natural attenuation of pollutants in the coal acid mine drainage (AMD) at Xingren coalfield, Southwest China, are discussed in this paper based on the results of a geochemical investigation as well as geological and hydrogeological background information. The chemical composition of the AMD is controlled by the dissolution of sulfide minerals in the coal seam, the initial composition of the groundwater and the water–rock interaction. The AMD is characterized by high sulfate concentrations, high levels of dissolved metals (Fe, Al, Mn, etc.) and low pH values. Ca2+ and SO4 2− are the dominant cation and anion in the AMD, respectively, while Ca2+ and HCO3 are present at significant levels in background water and surface water after the drainage leaves the mine site. The pH and alkalinity increase asymptotically with the distance along the flow path, while concentrations of sulfate, ferrous iron, aluminum and manganese are typically controlled by the deposition of secondary minerals. Low concentrations of As and other pollutants in the surface waters of the Xingren coalfield could be due to relatively low quantities being released from coal seams, to adsorption and coprecipitation on secondary minerals in stream sediments, and to dilution by unpolluted surface recharge. Although As is not the most serious water quality problem in the Xingren region at present, it is still a potential environmental problem. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Spent mushroom compost (SMC) is widely used as reactor matrix in passive bioreactor involving sulfate reducing bacteria (SRB) for acid mine drainage (AMD) treatment. Follow-up our previous report, recent work has been established the extent of activity, sustained organic carbon availability, and the biochemical events of successive alkalinity producing system-based chemo-bioreactor for continuous performance using SMC. Removal of iron and sulfate from influent was over 77 and 90%, respectively, for first 13 weeks, while sulfate removal efficiency suddenly dropped down to 31% thereafter. Ahead of 13th week, process failure was beginning to be noticed when available dissolved organic carbon (DOC) value dropped down to 50 mg/L. SRB population was mostly affected with DOC drought at this stage. Sulfur was one of the major elements found with other tested metals in blackish green effluent precipitate. Sulfide compounds of the tested metals were formed on both exhausted chemo-bioreactor bed and precipitate. FTIR analysis indicated that SMC was responsible for metal binding and available nutrients supply. The present study revealed the feasibility of SMC as a host for treating AMD by this chemo-bioreactor that will assist in designing the continuous treatment practice.  相似文献   

20.
The behavior of heavy metals in acid mine drainage (AMD) is mainly controlled by pH values. Therefore, a quantitative estimation of factors affecting pH values in AMD is very important in predicting the behavior of those metals. Many different factors cause pH changes in streams affected by AMD and we quantitatively estimated those factors by making simple equations from geochemical data collected from the Dalsung mine. In a stream from that mine, the pH values decrease as the stream flows downstream from the AMD source, which is different from normal streams affected by AMD. The stream shows low pH ranges (4.04–5.96), high electrical conductivity (1,407–1,664 μS/cm), and sulfate concentration (680–854 ppm). Most ion concentrations decrease or do not show noticeable changes mainly due to dilution. The change of the iron content is most significant, even though the concentration of iron is relatively low compared with other ions. The iron concentration (13.4 ppm) becomes almost 0 ppm due to precipitation. Schwertmannite is the dominant precipitated phase downstream and whitish basaluminite is observed in the upstream. From our pH estimation, precipitation is the most important process lowering pH values from 5.96 to 4.04. The dilution factor was calculated by the concentration changes in sulfate ions. Dilution increases pH values, but compared with the precipitation factor, the contribution of the dilution factor to pH is relatively small. Alkalinity is the main factor that buffers hydrogen, which is released by precipitation. The redox changes, which were calculated from the pH and Eh values, also affect pH at each sampling site. The trend of estimated pH changes is almost identical to the observed ones, but the values are slightly different. Some errors are expected mainly due to the uncertainty in the observed Eh values and the chemistry of the added water for dilution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号