首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A meteorite impact capable of creating a 200 km diameter crater can demagnetize the entire crust beneath, and produce an appreciable magnetic anomaly at satellite altitudes of ~400 km in case the pre-existing crust is magnetized. In this study we examine the magnetic field over all of the craters and impact-related Quasi-Circular Depressions (QCDs) with diameters larger than 200 km that are located on the highlands of Mars, excluding the Tharsis bulge, in order to estimate the mean magnetization of the highland crust. Using the surface topography and the gravity of Mars we first identify those QCDs that are likely produced by impacts. The magnetic map of a given crater or impact-related QCD is derived using the Mars Global Surveyor high-altitude nighttime radial magnetic data. Two extended ancient areas are identified on the highlands, the South Province and the Tempe Terra, which have large number of craters and impact-related QCDs but none of them has an appreciable magnetic signature. The primordial crust of these areas is not magnetized, or is very weakly magnetized at most. We examine some plausible scenarios to explain the weak magnetization of these areas, and conclude that no strong dynamo existed in the first ~100 Myr of Mars’ history when the newly formed primordial crust was cooling below the magnetic blocking temperatures of its minerals.  相似文献   

2.
The lack of magnetic anomalies within the giant martian impact basins, Hellas, Argyre, and Isidis suggests that the impacts demagnetized the crust. Our analysis of the magnetic anomaly intensity shows that the interior parts of the basins are completely demagnetized, while the outer parts and surroundings are partially demagnetized. We investigate the shock pressure and impact heating resulting from the impacts. The crust has been completely demagnetized within ∼0.8 basin radius by a combination of thermal and shock effects, and the surroundings have been partially demagnetized by shock to a distance of at least 1.4 radii. We also investigate magnetic signatures of intermediate-size craters. From the pressures generated by both the large and intermediate-sized impacts, we conclude that the remanent magnetization is carried at least in part by high coercivity rocks. Since the crust beneath the basins does not appear to have been remagnetized as it cooled following the impacts, we conclude that the martian core dynamo was inactive or very weak for at least 100 Myr following the Hellas impact.  相似文献   

3.
Martian magnetic anomalies have been revealed by the Mars Global Surveyor (MGS) mission in the south hemisphere of Mars. The present study models anomalies located in the ancient Terra Sirenum area between latitudes 26°S and 40°S and longitudes 185°E and 210°E using forward and inverse approaches. While the high-altitude measurements reveal the presence of two main magnetic anomalies, three are detected by low-altitude data. They are modeled as uncorrelated dipolar sources. Forward models predict large magnetizations between 30 and 60 A/m. A generalized non-linear inversion is used to determine the characteristics of the dipoles, based on different subsets of data. Low-altitude measurements inversion leads to more reliable results than those obtained by the inversion of high-altitude measurements only. Inversion of both low- and high-altitude data together provides with three dipoles that explain more than 57% of the signal, within this 106 km2 area. All dipoles have large magnetizations. Serpentinization of the early martian crust can explain such remanent magnetizations. Two resulting dipoles are 56 km deep, which suggests a locally thick martian crust. The last one is shallower (31 km). This indicates different origins and/or magnetization processes. Paleomagnetic poles are calculated and located around the Tharsis bulge. It suggests that Tharsis formed at high latitudes and moved toward its present location by polar reorientation.  相似文献   

4.
The Tyrrhena Terra region of Mars is studied with the imaging spectrometers OMEGA (Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité) onboard Mars Express and CRISM (Compact Reconnaissance Infrared Spectrometer for Mars) onboard Mars Reconnaissance Orbiter, through the observation of tens of craters that impacted into this part of the martian highlands. The 175 detections of hydrated silicates are reported, mainly associated with ejecta blankets, crater walls and rims, and central up-lifts. Sizes of craters where hydrated silicates are detected are highly variable, diameters range from less than 1 km to 42 km. We report the presence of zeolites and phyllosilicates like prehnite, Mg-chlorite, Mg-rich smectites and mixed-layer chlorites–smectites and chlorite–vermiculite from comparison of hyperspectral infrared observations with laboratory spectra. These minerals are associated with fresh craters post-dating any aqueous activity. They likely represent ancient hydrated terrains excavated by the crater-forming impacts, and hence reveal the composition of the altered Noachian crust, although crater-related hydrothermal activity may have played a minor role for the largest craters (>20 km in diameter). Most detected minerals formed over relatively high temperatures (100–300 °C), likely due to aqueous alteration of the Noachian crust by regional low grade metamorphism from the Noachian thermal gradient and/or by extended hydrothermal systems associated with Noachian volcanism and ancient large impact craters. This is in contrast with some other phyllosilicate-bearing regions like Mawrth Vallis where smectites, kaolinites and hydrated silica were mainly identified, pointing to a predominance of surface/shallow sub-surface alteration; and where excavation by impacts played only a minor role. Smooth plains containing hydrated silicates are observed at the boundary between the Noachian altered crust, dissected by fluvial valleys, and the Hesperian unaltered volcanic plains. These plains may correspond to alluvial deposition of eroded material. The highlands of Tyrrhena Terra are therefore particularly well suited for investigating the diversity of hydrated minerals in ancient martian terrains.  相似文献   

5.
At least 20 impact basins with diameters ranging from 1000 to 3380 km have been identified on Mars, with five exceeding 2500 km. The coincidental timing of the end of the sequence of impacts and the disappearance of the global magnetic field has led to investigations of impact heating crippling an early core dynamo. The rate of core cooling (and thus dynamo activity) is limited by that of the overlying mantle. Thus, the pre-existing thermal state of the mantle controls the extent to which a sequence of impacts may affect dynamo activity. Here, we examine the effects of the initial thermal structure of the core and mantle, and the location of an impact with respect to the pre-existing convective structure on the mantle dynamics and surface heat flux.We find that the impacts that formed the five largest basins dominate the impact-driven effects on mantle dynamics. A single impact of this size can alter the entire flow field of the mantle. Such an impact promotes the formation of an upwelling beneath the impact site, resulting in long-lived single-plume convection. The interval between the largest impacts is shorter than the initial recovery time for a single impact. Hence, the change in convective pattern due to each impact sets up a long term change in the global heat flow. These long-term changes are cumulative, and multiple impacts have a synergistic effect.  相似文献   

6.
The current morphology of the martian lithospheric magnetic field results from magnetization and demagnetization processes, both of which shaped the planet. The largest martian impact craters, Hellas, Argyre, Isidis and Utopia, are not associated with intense magnetic fields at spacecraft altitude. This is usually interpreted as locally non- or de-magnetized areas, as large impactors may have reset the magnetization of the pre-impact material. We study the effects of impacts on the magnetic field. First, a careful analysis is performed to compute the impact demagnetization effects. We assume that the pre-impact lithosphere acquired its magnetization while cooling in the presence of a global, centered and mainly dipolar magnetic field, and that the subsequent demagnetization is restricted to the excavation area created by large craters, between 50- and 500-km diameter. Depth-to-diameter ratio of the transient craters is set to 0.1, consistent with observed telluric bodies. Associated magnetic field is computed between 100- and 500-km altitude. For a single-impact event, the maximum magnetic field anomaly associated with a crater located over the magnetic pole is maximum above the crater. A 200-km diameter crater presents a close-to-1-nT magnetic field anomaly at 400-km altitude, while a 100-km diameter crater has a similar signature at 200-km altitude. Second, we statistically study the 400-km altitude Mars Global Surveyor magnetic measurements modelled locally over the visible impact craters. This approach offers a local estimate of the confidence to which the magnetic field can be computed from real measurements. We conclude that currently craters down to a diameter of 200 km can be characterized. There is a slight anti-correlation of −0.23 between magnetic field intensity and impact crater diameters, although we show that this result may be fortuitous. A complete low-altitude magnetic field mapping is needed. New data will allow predicted weak anomalies above craters to be better characterized, and will bring new constraints on the timing of the martian dynamo and on Mars’ evolution.  相似文献   

7.
The study is a detailed look on one of the several fluvial systems located on the eastern rim region of the Hellas basin on Mars. We analyzed the morphologic and morphometric characteristics of an extensive channel system, which extends for over 650 km from 35.8°S, 106.4°E in Hesperia Planum to Reull Vallis at 39.5°S, 98.1°E, and has a drainage area of 35,000–40,000 km2. During its traverse the channel changes its characteristics many times, indicating variations in the surface properties. Based on cross-cutting relations, the fluvial system post-dates the emplacement of the early Hesperian lava plains in Hesperia Planum but predates the Amazonian deposits. We describe the geomorphology and evolution of the system and provide evidence of both surface flow and groundwater sapping processes. A chain of channeled paleolake basins in the central parts of the system (38°S, 102°E) provides a rough estimate for the water volume (250–300 km3) which was required to form the system. The minimum volume of surface materials eroded by the channel system is ~74 km3. Although this study presents the detailed analysis of only one fluvial system, the presence of many similar channel systems along the margin of Hellas suggests that late-stage surface runoff has played a significant role in the degradation of the rim of the basin and also in the transportation of materials towards Hellas floor.  相似文献   

8.
Matija Ćuk 《Icarus》2012,218(1):69-79
The Moon has suffered intense impact bombardment ending at 3.9 Gyr ago, and this bombardment probably affected all of the inner Solar System. Basin magnetization signatures and lunar crater size-distributions indicate that the last episode of bombardment at about 3.85 Gyr ago was less extensive than previously thought. We explore the contribution of the primordial Mars-crosser population to early lunar bombardment. We find that Mars-crosser population initially decays with a 80-Myr half-life, with the long tail of survivors clustering on temporarily non-Mars-crossing orbits between 1.8 and 2 AU. These survivors decay with half-life of about 600 Myr and are progenitors of the extant Hungaria asteroid group in the same region. We estimate the primordial Mars-crosser population contained about 0.01–0.02 Earth masses. Such initial population is consistent with no lunar basins forming after 3.8 Gya and the amount of mass in the Hungaria group. As they survive longer and in greater numbers than other primordial populations, Mars-crossers are the best candidate for forming the majority of lunar craters and basins, including most of the Nectarian system. However, this remnant population cannot produce Imbrium and Orientale basins, which formed too late and are too large to be part of a smooth bombardment. We propose that the Imbrian basins and craters formed in a discrete event, consistent with the basin magnetization signatures and crater size-distributions. This late “impactor shower” would be triggered by a collisional disruption of a Vesta-sized body from this primordial Mars-crossing population (Wetherill, G.W. [1975]. Proc. Lunar Sci. Conf. 6, 1539–1561) that was still comparable to the present-day asteroid belt a 3.9 Gya. This tidal disruption lead to a short-lived spike in bombardment by non-chondritic impactors with a non-asteroidal size–frequency distribution, in agreement with available evidence. This body (“Wetherill’s object”) also uniquely matches the constraints for the parent body of mesosiderite meteorites. We propose that the present-day sources of mesosiderites are multi-km-sized asteroids residing in the Hungaria group, that have been implanted there soon after the original disruption of their parent 3.9 Gyr ago.  相似文献   

9.
Building on previous studies of volcanoes around the Hellas basin with new studies of imaging (High-Resolution Stereo Camera (HRSC), Thermal Emission Imaging System (THEMIS), Mars Orbiter Camera (MOC), High-Resolution Imaging Science Experiment (HiRISE), Context Imager (CTX)), multispectral (HRSC, Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité (OMEGA)), topographic (Mars Orbiter Laser Altimeter (MOLA)) and gravity data, we define a new Martian volcanic province as the Circum-Hellas Volcanic Province (CHVP). With an area of >2.1 million km2, it contains the six oldest central vent volcanoes on Mars, which formed after the Hellas impact basin, between 4.0 and 3.6 Ga. These volcanoes mark a transition from the flood volcanism that formed Malea Planum ~3.8 Ga, to localized edifice-building eruptions. The CHVP volcanoes have two general morphologies: (1) shield-like edifices (Tyrrhena, Hadriaca, and Amphitrites Paterae), and (2) caldera-like depressions surrounded by ridged plains (Peneus, Malea, and Pityusa Paterae). Positive gravity anomalies are found at Tyrrhena, Hadriaca, and Amphitrites, perhaps indicative of dense magma bodies below the surface. The lack of positive-relief edifices and weak gravity anomalies at Peneus, Malea, and Pityusa suggest a fundamental difference in their formation, styles of eruption, and/or compositions. The northernmost volcanoes, the ~3.7–3.9 Ga Tyrrhena and Hadriaca Paterae, have low slopes, well-channeled flanks, and smooth caldera floors (at tens of meters/pixel scale), indicative of volcanoes formed from poorly consolidated pyroclastic deposits that have been modified by fluvial and aeolian erosion and deposition. The ~3.6 Ga Amphitrites Patera also has a well-channeled flank, but it and the ~3.8 Ga Peneus Patera are dominated by scalloped and pitted terrain, pedestal and ejecta flow craters, and a general ‘softened’ appearance. This morphology is indicative not only of surface materials subjected to periglacial processes involving water ice, but also of a surface composed of easily eroded materials such as ash and dust. The southernmost volcanoes, the ~3.8 Ga Malea and Pityusa Paterae, have no channeled flanks, no scalloped and pitted terrain, and lack the ‘softened’ appearance of their surfaces, but they do contain pedestal and ejecta flow craters and large, smooth, bright plateaus in their central depressions. This morphology is indicative of a surface with not only a high water ice content, but also a more consolidated material that is less susceptible to degradation (relative to the other four volcanoes). We suggest that Malea and Pityusa (and possibly Peneus) Paterae are Martian equivalents to Earth's giant calderas (e.g., Yellowstone, Long Valley) that erupted large volumes of volcanic materials, and that Malea and Pityusa are probably composed of either lava flows or ignimbrites. HRSC and OMEGA spectral data indicate that dark gray to slightly red materials (often represented as blue or black pixels in HRSC color images), found in the patera floors and topographic lows throughout the CHVP, have a basaltic composition. A key issue is whether this dark material represents concentrations of underlying basaltic material eroded by various processes and exposed by aeolian winnowing, or if the material was transported from elsewhere on Mars by regional winds. Understanding the provenance of these dark materials may be the key to understanding the volcanic diversity of the Circum-Hellas Volcanic Province.  相似文献   

10.
The mid- and high-latitudes of Mars are covered by a smooth young mantle that is interpreted as an atmospherically derived air-fall deposit of ice and dust related to recent climate changes. In order to determine relative and absolute ages of this surface unit within the southern hemisphere, a systematic survey of all available HiRISE and CTX images in the Malea Planum region from 55–60°S latitude and 50–70°E longitude was performed and the distribution and the morphology of small impact craters on the mantle deposit were investigated. Using crater size-frequency measurements, we derived absolute model ages of ~3–5 Ma for the surface of the mantle, immediately south of the Hellas basin rim. Morphologic observations of the mantle, its fresh appearance, very low number of craters, and superposition on older units support this very young Amazonian age. Nearly all observed craters on the smooth mantle in Malea Planum are small and show signs of erosion, evidence for the ongoing modification of the ice–dust mantle. However, this modification has not been strong enough to reset the surface age. Compared to the ice–dust mantle at higher latitudes in the northern and southern hemisphere, the surface of the mantle in Malea Planum is older and thus has been relatively stable during obliquity changes in the last ~3–5 Ma. This is consistent with the hypothesis that the ice–dust mantle is a complex surface deposit of different layers, that shows a strong latitude dependence in morphology and has been deposited and degraded at different times in martian history.  相似文献   

11.
We report a revised crater population for Titan using Cassini RADAR data through January 2010 (flyby T65), and make a size-dependent correction for the incomplete coverage (~33%) using a Monte-Carlo model. Qualitatively, Titan’s landscape is more heavily cratered than Earth, but much less than Mars or Ganymede: the area fraction covered by craters is in fact comparable with that of Venus. Quantitative efforts to interpret crater densities for Titan as surface age have been confounded by widely divergent crater production rates proposed in the literature. We elucidate the specific model assumptions that lead to these differences (assumed projectile density, scaling function for simple crater diameter, and complex crater size exponent) and suggest these are reasonable bounding models, with the Korycansky and Zahnle (2005) model representing a crater retention age of ~1 Ga, and the Artemieva and Lunine (2005) model representing a crater retention age of ~200 Ma. These estimates are consistent with models of Titan’s evolution that predict a thickening of its crust 0.3–1.2 Gyr ago.  相似文献   

12.
Visible images from the Mars Reconnaissance Orbiter have revealed more than 200 new impact sites on Mars (almost all in dust-mantled regions) containing 1–50 m diameter craters, often in clusters. We count approximately 65,000 small-scale slope streaks within 2 to 3 km of one such cluster and categorize them into four morphologically distinct types. Here we show that these slope streaks (interpreted as dust avalanches) are triggered by the impact event but, surprisingly, are not due to seismic shaking; instead, the dust avalanches are due to airblasts created by the supersonic meteor(s) before impact. Sixteen of the new impact sites are associated with high areal densities of dust avalanches. The observed dust avalanche frequency suggests that impact-generated airblasts constitute a locally important and previously unrecognized process for inducing slope degradation on Mars.  相似文献   

13.
An analysis of the planetwide tectonic system of Mars provided by Harp (1976) reveals that the Hellas and Isidis impact basins have general tectonic systems similar to that of the Argyre impact basin. This implies that Mars does indeed have a lithospheric thickness which would have to be considered thinner than that of the Moon or Mercury but thicker than that of the Galilean satellite Callisto.  相似文献   

14.
One of the many significant findings of the Mars Global Surveyor mission is the presence of hundreds of quasi-circular depressions (QCDs) observed from high-resolution MOLA topography data. Their presence has recently been interpreted to reflect a northern lowlands that archive some of the earliest recorded rocks on Mars, mostly below a veneer of Hesperian and Amazonian materials. Here we analyze these data, coupled with a recent synthesis of geologic, geophysical, geomorphic, topographic, and magnetic information. Such analysis allows us to suggest a potential plate tectonic phase during the recorded Early into Middle Noachian martian history that transitioned into a monoplate world with episodic magmatic-driven activity persisting to present. This working hypothesis is based on: (1) the observation that the basement of the northern plains is younger than the basement of the southern highlands, but older than the material exposures of the cratered highlands, suggesting different formational ages for each one of the three geologic-time units; (2) the observation that parts of the very ancient highland's crust are highly magnetized, thus suggesting that most if not all of the formation of the lowlands basement postdates the shut off of the martian dynamo, some 4 Gyr ago, and so allowing hundreds of millions of years for the shaping of the buried lowlands. Consequently, the role of endogenic processes in the earliest geological evolution of Mars (Early perhaps into Middle Noachian) requires reconsideration, since MOLA topographic and MGS magnetic data afford a temporal window sufficient for very early, non-primordial shaping of the northern lowlands' basement.  相似文献   

15.
Impact melt flows exterior to Copernican-age craters are observed in high spatial resolution (0.5 m/pixel) images acquired by the Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC). Impact melt is mapped in detail around 15 craters ranging in diameter from 2.4 to 32.5 km. This survey supports previous observations suggesting melt flows often occur at craters whose shape is influenced by topographic variation at the pre-impact site. Impact melt flows are observed around craters as small as 2.4 km in diameter, and preliminary estimates of melt volume suggest melt production at small craters can significantly exceed model predictions. Digital terrain models produced from targeted NAC stereo images are used to examine the three-dimensional properties of flow features and emplacement setting, enabling physical modeling of flow parameters. Qualitative and quantitative observations are consistent with low-viscosity melts heated above their liquidii (superheated) with limited amounts of entrained solids.  相似文献   

16.
We present direct observations of Mars zonal wind velocities around northern spring equinox (LS = 336°, LS = 355°, LS = 42°) during martian year 27 and 29. Data was acquired by means of infrared heterodyne spectroscopy of CO2 features at 959.3917 cm?1 (10.4232 μm) and 957.8005 cm?1 (10.4405 μm) using the Cologne Tuneable Heterodyne Infrared Spectrometer (THIS) at the McMath–Pierce telescope of the National Solar Observatory on Kitt Peak in Arizona and the NASA Infrared Telescope Facility on Mauna Kea, Hawaii between 2005 and 2008. Winds were measured on the dayside of Mars with an unprecedented spatial resolution allowing sampling of up to nine independent latitudes over the martian disk. Retrieved wind velocities depend strongly on latitude and season with values ranging from 180 m/s prograde to ?94 m/s retrograde. A comparison of the observational results to predicted values from the Mars Climate Database yield a reasonable agreement between modeling and observation.  相似文献   

17.
We present numerical simulations of the axisymmetric accretion of a massive magnetized plasma torus on a rotating black hole. We use a realistic equation of state, which takes into account neutrino cooling and energy loss due to nucleus dissociations. The calculation are performed in the ideal relativistic MHD approximation using an upwind conservative scheme that is based on a linear Riemann solver and the constrained transport method to evolve the magnetic field. The gravitational attraction of the black hole is introduced via the Kerr metric in the Kerr–Schild coordinates. We simulate various magnetic field configurations and torus models, both optically thick and thin for neutrinos.We have found an effect of alternation of the magnetic field orientation in the ultrarelativistic jet formed as a result of the collapse. The calculations show evidence for heating of the wind surrounding the collapsar by the shock waves generated at the jet–wind border. It is shown that the neutrino cooling does not significantly change either the structure of the accretion flow or the total energy release of the system. The angular momentum of the accreting matter defines the time scale of the accretion. Due to the absence of the magnetic dynamo in our calculations, the initial strength and topology of the magnetic field determines the magnetization of the black hole, jet formation properties and the total energy yield. We estimate the total energy of accretion which transformed to jets as 1.3 × 1052 ergs which was sufficient to explain hypernova explosions like GRB 980425 or GRB 030329.  相似文献   

18.
The geological record of early Mars displays a variety of features that indicate fundamental differences from more recent conditions. These include evidence for: (1) widespread aqueous alteration and phyllosilicate formation, (2) the existence of an active magnetic dynamo, (3) the erosion of extensive valley networks, some thousands of kilometers long, (4) a much more significant role of impact cratering, forming structures up to the scale of large basins, and (5) the construction of much of the Tharsis volcanic province. Mars also is likely to have had a much thicker atmosphere during this early period. We discuss and review the temporal relationships among these processes and conditions. Key observations from this analysis suggest the following: (1) the last large impact basins, Argyre, Isidis, and Hellas, all pre-date the end of valley network formation, potentially by several hundred million years, (2) the magnetic dynamo is likely to be ancient (pre-Hellas), since the center of Hellas and other young basins lack magnetic remanence, and (3) the period of phyllosilicate formation is not readily connected to the period of valley network formation. Concepts for the possible formation and evolution of life on Mars should address this time sequence of conditions.  相似文献   

19.
The observation of gullies on Mars raised questions about the presence of liquid water in the recent past. In some regions like Hale and Bond crater, gullies occur in one crater (Hale) but do not in another crater nearby (Bond). These regional differences have been interpreted as an argument for a formation of the gullies related to groundwater. The formation of gullies on Earth depends on rainfall and/or melting of snow as well as on several parameters such as the presence of steep slopes and sufficient amounts of fines and debris. We investigated the Hale/Bond region for differences in crater wall morphology and texture, slopes, and thermal properties to determine whether the gully formation is dependent on factors such as steep slope angles and availability of fine-grained material. Morphologically there exist two kinds of gullies in the Hale crater: Gullies on the south- and east-facing crater slopes have a pristine appearance with deep channels eroded into the talus material and well-preserved aprons. Gully-like features on the north- and west-facing slopes are degraded and superposed by craters, indicating that they are old in comparison to the pristine ones. However, their formation process is unclear and might be due to debris flows, surface runoff or dry mass wasting processes or a combination of these processes. The crater walls of Bond do not show gullies. Their morphology is most likely consistent with a degraded mantle deposit. Slope measurements reveal that the gullies in Hale crater occur on slopes between ~20° and ~30° in contrast to the slopes without gullies in Bond that are between ~10° and ~20° steep. Mean thermal inertia values on slopes with younger gullies are ~175 J m?2 K?1 s?1/2 corresponding to higher amounts of fine-grained material. At slopes with older gully-like features mean thermal inertia values are ~315 J m?2 K?1 s?1/2 corresponding to higher amounts of bedrock or possibly indurated grain sizes. Mean thermal inertia values of the Bond crater walls are ~230 J m?2 K?1 s?1/2 indicating more consolidated terrain possibly due to the cementation of the dissected mantle material. From our investigation we conclude that the occurrence of gullies in the Hale/Bond region most likely depends on the distribution of unconsolidated material and steep slopes. The regional and local gully distribution on Mars likely varies due to differences in topography and surface material properties. Their proposed clustered distribution on Mars is not an argument for a groundwater formation mechanism of the gullies.  相似文献   

20.
We evaluate the relationship between the intensity of remanent magnetization and fO2 in natural and synthetic Mars meteorites. The olivine‐phyric shergottite meteorite Yamato 980459 (Y‐980459) and a sulfur‐free synthetic analog (Y‐98*) of identical major element composition were analyzed to explore the rock magnetic and remanence properties of a basalt crystallized from a primitive melt, and to explore the role of magmatic and alteration environment fO2 on Mars crustal anomalies. The reducing conditions under which Y‐980459 is estimated to have formed (QFM‐2.5; Shearer et al. 2006) were replicated during the synthesis of Y‐98*. Y‐980459 contains pyrrhotite and chromite. Chromite is the only magnetic phase in Y‐98*. The remanence‐carrying capacity of Y‐980459 is comparable to other shergottites that formed in the fO2 range of QFM‐3 to QFM‐1. The remanence‐carrying capacity of these low fO2 basalts is 1–2 orders of magnitude too weak to account for the intense crustal anomalies observed in Mars's southern cratered highlands. Moderately oxidizing conditions of >QFM‐1, which are more commonly observed in nakhlites and Noachian breccias, are key to generating either a primary igneous assemblage or secondary alteration assemblage capable of acquiring an intense remanent magnetization, regardless of the basalt character or thermal history. This suggests that if igneous rocks are responsible for the intensely magnetized crust, these oxidizing conditions must have existed in the magmatic plumbing systems of early Mars or must have existed in the crust during secondary processes that led to acquisition of a chemical remanent magnetization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号