首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This study presents an approximate model for the atypical Schumann resonance in Titan’s atmosphere that accounts for the observations of electromagnetic waves and the measurements of atmospheric conductivity performed with the Huygens Atmospheric Structure and Permittivity, Wave and Altimetry (HASI–PWA) instrumentation during the descent of the Huygens Probe through Titan’s atmosphere in January 2005. After many years of thorough analyses of the collected data, several arguments enable us to claim that the Extremely Low Frequency (ELF) wave observed at around 36 Hz displays all the characteristics of the second harmonic of a Schumann resonance. On Earth, this phenomenon is well known to be triggered by lightning activity. Given the lack of evidence of any thunderstorm activity on Titan, we proposed in early works a model based on an alternative powering mechanism involving the electric current sheets induced in Titan’s ionosphere by the Saturn’s magnetospheric plasma flow. The present study is a further step in improving the initial model and corroborating our preliminary assessments. We first develop an analytic theory of the guided modes that appear to be the most suitable for sustaining Schumann resonances in Titan’s atmosphere. We then introduce the characteristics of the Huygens electric field measurements in the equations, in order to constrain the physical parameters of the resonating cavity. The latter is assumed to be made of different structures distributed between an upper boundary, presumably made of a succession of thin ionized layers of stratospheric aerosols spread up to 150 km and a lower quasi-perfect conductive surface hidden beneath the non-conductive ground. The inner reflecting boundary is proposed to be a buried water–ammonia ocean lying at a likely depth of 55–80 km below a dielectric icy crust. Such estimate is found to comply with models suggesting that the internal heat could be transferred upwards by thermal conduction of the crust, while convective processes cannot be ruled out.  相似文献   

2.
We investigate the Venus cloud top structure by joint analysis of the data from Visual and Thermal Infrared Imaging Spectrometer (VIRTIS) and the atmospheric temperature sounding by the Radio Science experiment (VeRa) onboard Venus Express. The cloud top altitude and aerosol scale height are derived by fitting VIRTIS spectra at 4–5 μm with temperature profiles taken from the VeRa radio occultation. Our study shows gradual descent of the cloud top from 67.2 ± 1.9 km in low latitudes to 62.8 ± 4.1 km at the pole and decrease of the aerosol scale height from 3.8 ± 1.6 km to 1.7 ± 2.4 km. These changes correlate with the mesospheric temperature field. In the cold collar and high latitudes the cloud top position remarkably coincides with the sharp minima in temperature inversions suggesting importance of radiative cooling in their maintenance. This behaviour is consistent with the earlier observations. Spectral trend of the cloud top altitude derived from a comparison with the earlier observations in 1.6–27 μm wavelength range is qualitatively consistent with sulphuric acid composition of the upper cloud and suggests that particle size increases from equator to pole.  相似文献   

3.
《Planetary and Space Science》2007,55(14):2063-2070
Ribbons are regularly spaced, between 2 and 6 km, troughs that exist on venusian tesserae, which are mainly located in, and characterize to, venusian crustal plateaus. Independent of the geological or temporal relations with other features, regularly and similarly spaced ribbons on several tesserae strongly suggest a thermal control on the thickness of the deformed layer. This can be used to constraint the heat flow at the time of ribbon formation, which holds important implications for the viability of the hypotheses that address the origin and evolution of crustal plateaus. For a brittle–ductile transition ∼1–3 km deep (as proposed from ribbon spacing), realistic strain rates, and a present-day surface temperature of 740 K, the implied heat flow is very high, 130–780 mW m−2. If Venus has experienced higher surface temperatures due to climate forcing by massive volcanism, then the heat flow could be greatly reduced. For surface temperatures of 850–900 K the heat flow is 190–560, 60–230 and 20–130 mW m−2 for brittle–ductile transition depths of 1, 2 and 3 km, respectively. Heat flow values around 80–100 mW m−2 are reasonable for venusian hotspots, based on terrestrial analogs, but hardly consistent with coldspot settings. High surface temperatures are also required to maintain the crustal solidus deeper than a few kilometers during the formation of ribbon terrains. For the obtained heat flows, a solidus deeper than ∼30 km (the likely mean value for the crustal thickness) is difficult to achieve. This suggests that a substantial proportion of the crust beneath crustal plateaus was emplaced subsequently to the time when ribbon terrains were formed. Alternatively, at that time a magma reservoir inside the crust could have existed.  相似文献   

4.
Observations of Venus using the ultraviolet filter of the Venus Monitoring Camera (VMC) on ESA’s Venus Express Spacecraft (VEX) provide the best opportunity for study of the spatial and temporal distribution of the venusian unknown ultraviolet absorber since the Pioneer Venus (PV) mission. We compare the results of two sets of 125 radiative transfer models of the upper atmosphere of Venus to each pixel in a subset of VMC UV channel images. We use a quantitative best fit criterion based upon the notion that the distribution of the unknown absorber should be independent of the illumination and observing geometry. We use the product of the cosines of the incidence and emission angles and search for absorber distributions that are uncorrelated with this geometric parameter, finding that two models can describe the vertical distribution of the unknown absorber. One model is a well-mixed vertical profile above a pressure level of roughly 120 mb (~63 km). This is consistent with the altitude of photochemical formation of sulfuric acid. The second model describes it as a thin layer of pure UV absorber at a pressure level roughly around 24 mb (~71 km) and this altitude is consistent with the top of upper cloud deck. We find that the average abundance of unknown absorber in the equatorial region is 0.21 ± 0.04 optical depth and it decreases in the polar region to 0.08 ± 0.05 optical depth at 365 nm.  相似文献   

5.
《Planetary and Space Science》2007,55(12):1701-1711
The Venus Express mission will focus on a global investigation of the Venus atmosphere and plasma environment, while additionally measuring some surface properties from orbit. The instruments PFS and SPICAV inherited from the Mars Express mission and VIRTIS from Rosetta form a powerful spectrometric and spectro-imaging payload suite. Venus Monitoring Camera (VMC)—a miniature wide-angle camera with 17.5° field of view—was specifically designed and built to complement these experiments and provide imaging context for the whole mission. VMC will take images of Venus in four narrow band filters (365, 513, 965, and 1000 nm) all sharing one CCD. Spatial resolution on the cloud tops will range from 0.2 km/px at pericentre to 45 km/px at apocentre when the full Venus disc will be in the field of view. VMC will fulfill the following science goals: (1) study of the distribution and nature of the unknown UV absorber; (2) determination of the wind field at the cloud tops (70 km) by tracking the UV features; (3) thermal mapping of the surface in the 1 μm transparency “window” on the night side; (4) determination of the global wind field in the main cloud deck (50 km) by tracking near-IR features; (5) study of the lapse rate and H2O content in the lower 6–10 km; (6) mapping O2 night-glow and its variability.  相似文献   

6.
We report temperatures in Venus’ upper mesosphere/lower thermosphere, deduced from reanalyzing very high resolution infrared spectroscopy of CO2 emission lines acquired in 1990 and 1991. Kinetic temperatures at ~110 km altitude (0.15 Pa) are derived from the Doppler width of fully-resolved single line profiles measured near 10.4 μm wavelength using the NASA GSFC Infrared Heterodyne Spectrometer (IRHS) at the NASA IRTF on Mauna Kea, HI, close to Venus inferior conjunction and two Venus solstices. Measured temperatures range from ~200 to 240 K with uncertainty typically less than 10 K. Temperatures retrieved from similar measurement in 2009 using the Cologne Tuneable Heterodyne Infrared Spectrometer (THIS) at the NOAO McMath Telescope at Kitt Peak, AZ are 10–20 K lower. Temperatures retrieved more recently from the SOIR instrument on Venus EXpress are consistent with these results when the geometry of observation is accounted for. It is difficult to compare ground-based sub-mm retrievals extrapolated to 110 km due to their much larger field of view, which includes the night side regions not accessible to infrared heterodyne observations. Temperature variability appears to be high on day-to-day as well as longer timescales. Observed short term and long term variability may be attributed to atmospheric dynamics, diurnal variability and changes over solar activity and seasons. The Venus International Reference Atmosphere (VIRA) model predicts cooler temperatures at the sampled altitudes in the lower thermosphere/upper mesosphere and is not consistent with these measurements.  相似文献   

7.
The abundance of HDO above the clouds in the dayside atmosphere of Venus was measured by ground-based 2.3 μm spectroscopy over 4 days. This is the first HDO observation above the clouds in this wavelength region corresponding to a new height region. The latitudinal distributions found show no clearly defined structure. The disk-averaged mixing ratio is 0.22 ± 0.03 ppm for a representative height region of 62–67 km. This is consistent with measurements found in previous studies. Based on previous H2O measurements, the HDO/H2O ratio is found to be 140 ± 20 times larger than the telluric ratio. This lies between the ratios of 120 ± 40 and 240 ± 25, respectively, reported for the 30–40 km region by ground-based nightside spectroscopy and for the 80–100 km region by solar occultation measurement on board the Venus Express.  相似文献   

8.
New measurements of sulfur dioxide (SO2) and monoxide (SO) in the atmosphere of Venus by SPICAV/SOIR instrument onboard Venus Express orbiter provide ample statistics to study the behavior of these gases above Venus’ clouds. The instrument (a set of three spectrometers) is capable to sound atmospheric structure above the clouds in several observation modes (nadir, solar and stellar occultations) either in the UV or in the near IR spectral ranges. We present the results from solar occultations in the absorption ranges of SO2 (190–230 nm, and at 4 μm) and SO (190–230 nm). The dioxide was detected by the SOIR spectrometer at the altitudes of 65–80 km in the IR and by the SPICAV spectrometer at 85–105 km in the UV. The monoxide’s absorption was measured only by SPICAV at 85–105 km. We analyzed 39 sessions of solar occultation, where boresights of both spectrometers are oriented identically, to provide complete vertical profiling of SO2 of the Venus’ mesosphere (65–105 km). Here we report the first firm detection and measurements of two SO2 layers. In the lower layer SO2 mixing ratio is within 0.02–0.5 ppmv. The upper layer, also conceivable from microwave measurements by Sandor et al. (Sandor, B.J., Todd Clancy, R., Moriarty-Schieven, G., Mills, F.P. [2010]. Icarus 208, 49–60) is characterized by SO2 increasing with the altitude from 0.05 to 2 ppmv, and the [SO2]/[SO] ratio varying from 1 to 5. The presence of the high-altitude SOx species could be explained by H2SO4 photodissociation under somewhat warmer temperature conditions in Venus mesosphere. At 90–100 km the content of the sulfur dioxide correlates with temperature increasing from 0.1 ppmv at 165–170 K to 0.5–1 ppmv at 190–192 K. It supports the hypothesis of SO2 production by the evaporation of H2SO4 from droplets and its subsequent photolysis at around 100 km.  相似文献   

9.
Numerical models of mantle convection that include the ‘basalt barrier’ mechanism are explored for Venus. The ‘basalt barrier’ mechanism is due to the positive buoyancy of subducted basaltic crust between the mantle depths of 660 and 750 km. The inclusion of this mechanism in models of Earth’s evolution has been shown to cause episodic mantle layering early in Earth history and we explore whether it can also operate on Venus. The models presented here include a moderately mobile lithosphere, which is not representative of the current state of Venus, but this allows us to exclude the effects of episodic lithosphere mobility and thus to isolate the effect of the basalt barrier. This is a step in a systematic approach to models with a mostly-static lithosphere. We find the basalt barrier does yield episodically layered mantle convection in some Venus models. The likelihood of episodic layering is increased by Venus high surface temperature and by its less mobile or immobile lithosphere. Surprisingly, secondary differences from Earth, including the lower gravity, density and mantle depth also promote episodic layering. The models suggest that mantle layering and overturns may still be likely to occur in Venus. The breakdown of mantle layering and consequent mantle overturns would lead to dramatic episodes of volcanism, formation of large amounts of crust, and tectonic activity on the planet’s surface, as has been inferred to have happened on Venus around 500 Ma ago from surface morphology and cratering. These results thus suggest that a transient layering of the mantle by the ‘basalt barrier’ mechanism and mantle overturns may be part of the explanation for Venus’s recent resurfacing.  相似文献   

10.
Vladimir Krasnopolsky 《Icarus》2012,219(1):244-249
To search for DCl in the Venus atmosphere, a spectrum near the D35Cl (1–0) R4 line at 2141.54 cm?1 was observed using the CSHELL spectrograph at NASA IRTF. Least square fitting to the spectrum by a synthetic spectrum results in a DCl mixing ratio of 17.8 ± 6.8 ppb. Comparing to the HCl abundance of 400 ± 30 ppb (Krasnopolsky [2010a] Icarus, 208, 314–322), the DCl/HCl ratio is equal to 280 ± 110 times the terrestrial D/H = 1.56 × 10?4. This ratio is similar to that of HDO/H2O = 240 ± 25 times the terrestrial HDO/H2O from the VEX/SOIR occultations at 70–110 km. Photochemistry in the Venus mesosphere converts H from HCl to that in H2O with a rate of 1.9 × 109 cm?2 s?1 (Krasnopolsky [2012] Icarus, 218, 230–246). The conversion involves photolysis of HCl; therefore, the photochemistry tends to enrich D/H in HCl and deplete in H2O. Formation of the sulfuric acid clouds may affect HDO/H2O as well. The enriched HCl moves down by mixing to the lower atmosphere where thermodynamic equilibriums for H2 and HCl near the surface correspond to D/H = 0.71 and 0.74 times that in H2O, respectively. Time to establish these equilibriums is estimated at ~3 years and comparable to the mixing time in the lower atmosphere. Therefore, the enriched HCl from the mesosphere gives D back to H2O near the surface. Comparison of chemical and mixing times favors a constant HDO/H2O up to ~100 km and DCl/HCl equal to D/H in H2O times 0.74.Ammonia is an abundant form of nitrogen in the reducing environments. Thermodynamic equilibriums with N2 and NO near the surface of Venus give its mixing ratio of 10?14 and 6 × 10?7, respectively. A spectrum of Venus near the NH3 line at 4481.11 cm?1 was observed at NASA IRTF and resulted in a two-sigma upper limit of 6 ppb for NH3 above the Venus clouds. This is an improvement of the previous upper limit by a factor of 5. If ammonia exists at the ppb level or less in the lower atmosphere, it quickly dissociates in the mesosphere and weakly affects its photochemistry.  相似文献   

11.
Venus Express measurements of the vertical profiles of SO and SO2 in the middle atmosphere of Venus provide an opportunity to revisit the sulfur chemistry above the middle cloud tops (~58 km). A one dimensional photochemistry-diffusion model is used to simulate the behavior of the whole chemical system including oxygen-, hydrogen-, chlorine-, sulfur-, and nitrogen-bearing species. A sulfur source is required to explain the SO2 inversion layer above 80 km. The evaporation of the aerosols composed of sulfuric acid (model A) or polysulfur (model B) above 90 km could provide the sulfur source. Measurements of SO3 and SO (a1Δ  X3Σ-) emission at 1.7 μm may be the key to distinguish between the two models.  相似文献   

12.
The Visible and Infra-Red Thermal Imaging Spectrometer (VIRTIS) instrument on board the Venus Express spacecraft has measured the O2(a1Δ) nightglow distribution at 1.27 μm in the Venus mesosphere for more than two years. Nadir observations have been used to create a statistical map of the emission on Venus nightside. It appears that the statistical 1.6 MR maximum of the emission is located around the antisolar point. Limb observations provide information on the altitude and on the shape of the emission layer. We combine nadir observations essentially covering the southern hemisphere, corrected for the thermal emission of the lower atmosphere, with limb profiles of the northern hemisphere to generate a global map of the Venus nightside emission at 1.27 μm. Given all the O2(a1Δ) intensity profiles, O2(a1Δ) and O density profiles have been calculated and three-dimensional maps of metastable molecular and atomic oxygen densities have been generated. This global O density nightside distribution improves that available from the VTS3 model, which was based on measurements made above 145 km. The O2(a1Δ) hemispheric average density is 2.1 × 109 cm?3, with a maximum value of 6.5 × 109 cm?3 at 99.2 km. The O density profiles have been derived from the nightglow data using CO2 profiles from the empirical VTS3 model or from SPICAV stellar occultations. The O hemispheric average density is 1.9 × 1011 cm?3 in both cases, with a mean altitude of the peak located at 106.1 km and 103.4 km, respectively. These results tend to confirm the modeled values of 2.8 × 1011 cm?3 at 104 km and 2.0 × 1011 cm?3 at 110 km obtained by Brecht et al. [Brecht, A., Bougher, S.W., Gérard, J.-C., Parkinson, C.D., Rafkin, S., Foster, B., 2011a. J. Geophys. Res., in press] and Krasnopolsky [Krasnopolsky, V.A., 2010. Icarus 207, 17–27], respectively. Comparing the oxygen density map derived from the O2(a1Δ) nightglow observations, it appears that the morphology is very different and that the densities obtained in this study are about three times higher than those predicted by the VTS3 model.  相似文献   

13.
Since the discovery of ultraviolet markings on Venus, their observations have been a powerful tool to study the morphology, motions and dynamical state at the cloud top level. Here we present the results of investigation of the cloud top morphology performed by the Venus Monitoring Camera (VMC) during more than 3 years of the Venus Express mission. The camera acquires images in four narrow-band filters centered at 365, 513, 965 and 1010 nm with spatial resolution from 50 km at apocentre to a few hundred of meters at pericentre. The VMC experiment provides a significant improvement in the Venus imaging as compared to the capabilities of the earlier missions. The camera discovered new cloud features like bright “lace clouds” and cloud columns at the low latitudes, dark polar oval and narrow circular and spiral “grooves” in the polar regions, different types of waves at the high latitudes. The VMC observations revealed detailed structure of the sub-solar region and the afternoon convective wake, the bow-shape features and convective cells, the mid-latitude transition region and the “polar cap”. The polar orbit of the satellite enables for the first time nadir viewing of the Southern polar regions and an opportunity to zoom in on the planet. The experiment returned numerous images of the Venus limb and documented global and local brightening events. VMC provided almost continuous monitoring of the planet with high temporal resolution that allowed one to follow changes in the cloud morphology at various scales.We present the in-flight performance of the instrument and focus in particular on the data from the ultraviolet channel, centered at the characteristic wavelength of the unknown UV absorber that yields the highest contrasts on the cloud top. Low latitudes are dominated by relatively dark clouds that have mottled and fragmented appearance clearly indicating convective activity in the sub-solar region. At ~50° latitude this pattern gives way to streaky clouds suggesting that horizontal, almost laminar, flow prevails here. Poleward from about 60°S the planet is covered by almost featureless bright polar hood sometimes crossed by dark narrow (~300 km) spiral or circular structures. This global cloud pattern can change on time scales of a few days resulting in global and local “brightening events” when the bright haze can extend far into low latitudes and/or increase its brightness by 30%. Close-up snapshots reveal plenty of morphological details like convective cells, cloud streaks, cumulus-like columns, wave trains. Different kinds of small scale waves are frequently observed at the cloud top. The wave activity is mainly observed in the 65–80° latitude band and is in particular concentrated in the region of Ishtar Terra that suggests their possible orographic origin. The VMC observations have important implications for the problems of the unknown UV absorber, microphysical processes, dynamics and radiative energy balance at the cloud tops. They are only briefly discussed in the paper, but each of them will be the subject of a dedicated study.  相似文献   

14.
《Planetary and Space Science》2006,54(13-14):1298-1314
The planetary fourier spectrometer (PFS) for the Venus Express mission is an infrared spectrometer optimized for atmospheric studies. This instrument has a short wavelength (SW) channel that covers the spectral range from 1700 to 11400 cm−1 (0.9–5.5 μm) and a long wavelength (LW) channel that covers 250–1700 cm−1 (5.5–45 μm). Both channels have a uniform spectral resolution of 1.3 cm−1. The instrument field of view FOV is about 1.6 ° (FWHM) for the short wavelength channel and 2.8 ° for the LW channel which corresponds to a spatial resolution of 7 and 12 km when Venus is observed from an altitude of 250 km. PFS can provide unique data necessary to improve our knowledge not only of the atmospheric properties but also surface properties (temperature) and the surface-atmosphere interaction (volcanic activity).PFS works primarily around the pericentre of the orbit, only occasionally observing Venus from larger distances. Each measurements takes 4.5 s, with a repetition time of 11.5 s. By working roughly 1.5 h around pericentre, a total of 460 measurements per orbit will be acquired plus 60 for calibrations. PFS is able to take measurements at all local times, enabling the retrieval of atmospheric vertical temperature profiles on both the day and the night side.The PFS measures a host of atmospheric and surface phenomena on Venus. These include the:(1) thermal surface flux at several wavelengths near 1 μm, with concurrent constraints on surface temperature and emissivity (indicative of composition); (2) the abundances of several highly-diagnostic trace molecular species; (3) atmospheric temperatures from 55 to 100 km altitude; (4) cloud opacities and cloud-tracked winds in the lower-level cloud layers near 50-km altitudes; (5) cloud top pressures of the uppermost haze/cloud region near 70–80 km altitude; and (6) oxygen airglow near the 100 km level. All of these will be observed repeatedly during the 500-day nominal mission of Venus Express to yield an increased understanding of meteorological, dynamical, photochemical, and thermo-chemical processes in the Venus atmosphere. Additionally, PFS will search for and characterize current volcanic activity through spatial and temporal anomalies in both the surface thermal flux and the abundances of volcanic trace species in the lower atmosphere.Measurement of the 15 μm CO2 band is very important. Its profile gives, by means of a complex temperature profile retrieval technique, the vertical pressure-temperature relation, basis of the global atmospheric study.PFS is made of four modules called O, E, P and S being, respectively, the interferometer and proximity electronics, the digital control unit, the power supply and the pointing device.  相似文献   

15.
Between November 23 and 28, 2007, the Cologne Tuneable Heterodyne Infrared Spectrometer THIS was installed at the McMath-Pierce Solar Telescope (Kitt Peak, Arizona, USA) to determine zonal wind velocities and to estimate the subsolar-to-antisolar flow. We investigate dynamics in the upper atmosphere of Venus by measuring the Doppler shift of fully-resolved non-LTE CO2 emission lines at 959.3917 cm?1 (10.423 μm), which probe a narrow altitude region in Venus’ atmosphere around 110 ± 10 km (~1 μbar). The results show no significant zonal wind velocity at the equator. An increase with latitude up to 43 ± 13 m/s at a latitude of 33°N was observed. This confirms the deduction of a minor influence of Venus superrotation at an altitude of 110 km from previous measurements in May 2007 (Sornig et al., 2008). The specific observing geometry enables estimating the maximum cross terminator velocity of the subsolar-to-antisolar flow at 72 ± 47 m/s.  相似文献   

16.
The Venus Express Radio Science Experiment VeRa retrieves atmospheric profiles in the mesosphere and troposphere of Venus in the approximate altitude range of 40–90 km. A data set of more than 500 profiles was retrieved between the orbit insertion of Venus Express in 2006 and the end of occultation season No. 11 in July 2011. The atmospheric profiles cover a wide range of latitudes and local times, enabling us to study the dependence of vertical small-scale temperature perturbations on local time and latitude.Temperature fluctuations with vertical wavelengths of 4 km or less are extracted from the measured temperature profiles in order to study small-scale gravity waves. Significant wave amplitudes are found in the stable atmosphere above the tropopause at roughly 60 km as compared with the only shallow temperature perturbations in the nearly adiabatic region of the adjacent middle cloud layer, below.Gravity wave activity shows a strong latitudinal dependence with the smallest wave amplitudes located in the low-latitude range, and an increase of wave activity with increasing latitude in both hemispheres; the greatest wave activity is found in the high-northern latitude range in the vicinity of Ishtar Terra, the highest topographical feature on Venus.We find evidence for a local time dependence of gravity wave activity in the low latitude range within ±30° of the equator. Gravity wave amplitudes are at their maximum beginning at noon and continuing into the early afternoon, indicating that convection in the lower atmosphere is a possible wave source.The comparison of the measured vertical wave structures with standard linear-wave theory allows us to derive rough estimates of the wave intrinsic frequency and horizontal wavelengths, assuming that the observed wave structures are the result of pure internal gravity waves. Horizontal wavelengths of the waves at 65 km altitude are on the order of ≈300–450 km with horizontal phase speeds of roughly 5–10 m/s.  相似文献   

17.
On its highly elliptical 24 h orbit around Venus, the Venus Express (VEX) spacecraft briefly reaches a periapsis altitude of nominally 250 km. Recently, however, dedicated and intense radio tracking campaigns have taken place in August 2008, October 2009, February and April 2010, for which the periapsis altitude was lowered to the 186–176 km altitude range in order to be able to probe the upper atmosphere of Venus above the North Pole for the first time ever in situ. As the spacecraft experiences atmospheric drag, its trajectory is measurably perturbed during the periapsis pass, allowing us to infer total atmospheric mass density at the periapsis altitude. A Precise Orbit Determination (POD) of the VEX motion is performed through an iterative least-squares fitting process to the Doppler tracking data, acquired by the VEX radioscience experiment (VeRa). The drag acceleration is modelled using an initial atmospheric density model (VTS3 model, Hedin, A.E., Niemann, H.B., Kasprzak, W.T., Seiff, A. [1983]. J. Geophys. Res. 88, 73–83). A scale factor of the drag acceleration is estimated for each periapsis pass, which scales Hedin’s density model in order to best fit the radio tracking data. Reliable density scale factors have been obtained for 10 passes mainly from the second (October 2009) and third (April 2010) VExADE campaigns, which indicate a lower density by a factor of about 1.8 than Hedin’s model predicts. These first ever in situ polar density measurements at solar minimum have allowed us to construct a diffusive equilibrium density model for Venus’ thermosphere, constrained in the lower thermosphere primarily by SPICAV-SOIR measurements and above 175 km by the VExADE drag measurements (Müller-Wodarg et al., in preparation). The preliminary results of the VExADE campaigns show that it is possible to obtain with the POD technique reliable estimates of Venus’ upper atmosphere densities at an altitude of around 175 km. Future VExADE campaigns will benefit from the planned further lowering of VEX pericenter altitude to below 170 km.  相似文献   

18.
Observations of the dayside of Venus performed by the high spectral resolution channel (–H) of the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) on board the ESA Venus Express mission have been used to measure the altitude of the cloud tops and the water vapor abundance around this level with a spatial resolution ranging from 100 to 10 km. CO2 and H2O bands between 2.48 and 2.60 μm are analyzed to determine the cloud top altitude and water vapor abundance near this level. At low latitudes (±40°) mean water vapor abundance is equal to 3 ± 1 ppm and the corresponding cloud top altitude at 2.5 μm is equal to 69.5 ± 2 km. Poleward from middle latitudes the cloud top altitude gradually decreases down to 64 km, while the average H2O abundance reaches its maximum of 5 ppm at 80° of latitude with a large scatter from 1 to 15 ppm. The calculated mass percentage of the sulfuric acid solution in cloud droplets of mode 2 (~1 μm) particles is in the range 75–83%, being in even more narrow interval of 80–83% in low latitudes. No systematic correlation of the dark UV markings with the cloud top altitude or water vapor has been observed.  相似文献   

19.
Mercurian lobate scarps are interpreted to be the surface expressions of thrust faults formed by planetary cooling and contraction, which deformed the crust down to the brittle–ductile transition (BDT) depth at the time of faulting. In this work we have used a forward modeling procedure in order to analyze the relation between scarp topography and fault geometries and depths associated with a group of prominent lobate scarps (Santa Maria Rupes and two unnamed scarps) located in the Kuiper region of Mercury for which Earth-based radar altimetry is available. Also a backthrust associated with one of the lobate scarps has been included in this study. We have obtained best fits for depths of faulting between 30 and 39 km; the results are consistent with the previous results for other lobate scarps on Mercury.The so-derived fault depths have been used to calculate surface heat flows for the time of faulting, taking into account crustal heat sources and a heterogeneous surface temperature due to the variable insolation pattern. Deduced surface heat flows are between 19 and 39 mW m?2 for the Kuiper region, and between 22 and 43 mW m?2 for Discovery Rupes. Both BDT depths and heat flows are consistent with the predictions of thermal history models for the range of time relevant for scarp formation.  相似文献   

20.
A meteorite impact capable of creating a 200 km diameter crater can demagnetize the entire crust beneath, and produce an appreciable magnetic anomaly at satellite altitudes of ~400 km in case the pre-existing crust is magnetized. In this study we examine the magnetic field over all of the craters and impact-related Quasi-Circular Depressions (QCDs) with diameters larger than 200 km that are located on the highlands of Mars, excluding the Tharsis bulge, in order to estimate the mean magnetization of the highland crust. Using the surface topography and the gravity of Mars we first identify those QCDs that are likely produced by impacts. The magnetic map of a given crater or impact-related QCD is derived using the Mars Global Surveyor high-altitude nighttime radial magnetic data. Two extended ancient areas are identified on the highlands, the South Province and the Tempe Terra, which have large number of craters and impact-related QCDs but none of them has an appreciable magnetic signature. The primordial crust of these areas is not magnetized, or is very weakly magnetized at most. We examine some plausible scenarios to explain the weak magnetization of these areas, and conclude that no strong dynamo existed in the first ~100 Myr of Mars’ history when the newly formed primordial crust was cooling below the magnetic blocking temperatures of its minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号