首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present near-infrared spectra of 23 B-type asteroids obtained with the NICS camera-spectrograph at the 3.56 m Telescopio Nazionale Galileo. We also compile additional visible and near-infrared spectra of another 22 B-type asteroids from the literature. A total of 45 B-types are analyzed. No significant trends in orbital properties of our sample were detected when compared with all known B-types and all known asteroids. The reflectance spectra of the asteroids in the 0.8–2.5 μm range show a continuous shape variation, from a monotonic negative (blue) slope to a positive (red) slope. This continuous spectral trend is filling the gap between the two main groups of B-types published by Clark et al. ([2010]. J. Geophys. Res., 115, 6005–6027). We found no clear correlations between the spectral slope and the asteroids’ sizes or heliocentric distances. We apply a clustering technique to reduce the volume of data to six optimized “average spectra” or “centroids”, representative of the whole sample. These centroids are then compared against meteorite spectra from the RELAB database. We found carbonaceous chondrites as the best meteorite analogs for the six centroids. There is a progressive change in analogs that correlates with the spectral slope: from CM2 chondrites (water-rich, aqueously altered) for the reddest centroid, to CK4 chondrites (dry, heated/thermally altered) for the bluest one.  相似文献   

2.
We find a clear diversity in the 3 μm and 10 μm features of three Cybele asteroids: (107) Camilla, (121) Hermione, and (65) Cybele. (121) Hermione exhibits a “check-like” 3 μm feature, which may be attributed to OH-dominated minerals and (107) Camilla shows a rounded “bowl” like feature closer to that of (65) Cybele, which may be attributed to H2O-dominated minerals. The 10 μm features of these three asteroids are also different from each other.  相似文献   

3.
We present a mineralogical assessment of 12 Maria family asteroids, using near-infrared spectral data obtained over the years 2000-2009 combined with visible spectral data (when available) to cover the spectral interval of 0.4-2.5 μm. Our analysis indicates the Maria asteroid family, which is located adjacent to the chaotic region of the 3:1 Kirkwood Gap, appears to be a true genetic family composed of assemblages analogous to mesosiderite-type meteorites. Dynamical models by Farinella et al. (Farinella, P., Gunczi, R., Froeschlé, Ch., Froeschlé, C., [1993]. Icarus 101, 174-187) predict this region should supply meteoroids into Earth-crossing orbits. Thus, the Maria family is a plausible source of some or all of the mesosiderites in our meteorite collections. These individual asteroids were most likely once part of a larger parent object that was broken apart and dispersed. One of the Maria dynamical family members investigated, ((695) Bella), was found to be unrelated to the genetic Maria family members. The parameters of (695) Bella indicate an H-chondrite assemblage, and that Bella may be a sister or daughter of Asteroid (6) Hebe.  相似文献   

4.
Phase reddening is an effect that produces an increase of the spectral slope and variations in the strength of the absorption bands as the phase angle increases. In order to understand its effect on spectroscopic observations of asteroids, we have analyzed the visible and near-infrared spectra (0.45–2.5 μm) of 12 near-Earth asteroids observed at different phase angles. All these asteroids are classified as either S-complex or Q-type asteroids. In addition, we have acquired laboratory spectra of three different types of ordinary chondrites at phase angles ranging from 13° to 120°. We have found that both, asteroid and meteorite spectra show an increase in band depths with increasing phase angle. In the case of the asteroids the Band I depth increases in the range of ~2° < g < 70° and the Band II depth increases in the range of ~2° < g < 55°. Using this information we have derived equations that can be used to correct the effect of phase reddening in the band depths. Of the three meteorite samples, the (olivine-rich) LL6 ordinary chondrite is the most affected by phase reddening. The studied ordinary chondrites have their maximum spectral contrast of Band I depths at a phase angle of ~60°, followed by a decrease between 60° and 120° phase angle. The Band II depths of these samples have their maximum spectral contrast at phase angles of 30–60° which then gradually decreases to 120° phase angle. The spectral slope of the ordinary chondrites spectra shows a significant increase with increasing phase angle for g > 30°. Variations in band centers and band area ratio (BAR) values were also found, however they seems to have no significant impact on the mineralogical analysis. Our study showed that the increase in spectral slope caused by phase reddening is comparable to certain degree of space weathering. In particular, an increase in phase angle in the range of 30–120° will produce a reddening of the reflectance spectra equivalent to exposure times of ~0.1 × 106–1.3 × 106 years at about 1 AU from the Sun. This increase in spectral slope due to phase reddening is also comparable to the effects caused by the addition of different fractions of SMFe. Furthermore, we found that under some circumstances phase reddening could lead to an ambiguous taxonomic classification of asteroids.  相似文献   

5.
Driss Takir  Joshua P. Emery 《Icarus》2012,219(2):641-654
This paper examines the distribution and the abundance of hydrated minerals (any mineral that contains H2O or OH) on outer Main Belt asteroids spanning the 2.5 < a < 4.0 AU region. The hypothesis we are testing is whether planetesimals that accreted closer to the Sun experienced a higher degree of aqueous alteration. We would expect then to see a gradual decline of the abundance of hydrated minerals among the outer Main Belt asteroids with increasing heliocentric distance (2.5 < a < 4.0 AU). We measured spectra (0.8–2.5 μm and 1.9–4.1 μm) of 28 outer Main Belt asteroids using the SpeX spectrograph/imager at the NASA Infrared Telescope Facility (IRTF). We identified four groups on the basis of the shape and the band center of the 3-μm feature. The first group, which we call “sharp”, exhibits a sharp 3-μm feature, attributed to hydrated minerals (phyllosilicates). Most asteroids in this group are located in the 2.5 < a < 3.3 AU region. The second group, which we call “Ceres-like”, consists of 10 Hygiea and 324 Bamberga. Like Asteroid Ceres, these asteroids exhibit a 3-μm feature with a band center of 3.05 ± 0.01 μm that is superimposed on a broader absorption feature from ~2.8 to 3.7 μm. The third group, which we call “Europa-like”, includes 52 Europa, 31 Euphrosyne, and 451 Patientia. Objects in this group exhibit a 3-μm feature with a band center of 3.15 ± 0.01 μm. Both the Ceres-like and Europa-like groups are concentrated in the 2.5 < a < 3.3 AU region. The fourth group, which we call “rounded”, is concentrated in the 3.4 < a < 4.0 AU region. Asteroids in this group are characterized by a rounded 3-μm feature, attributed to H2O ice. A similar rounded 3-μm feature was also identified in 24 Themis and 65 Cybele. Unlike the sharp group, the rounded group did not experience aqueous alteration. Of the asteroids observed in this study, 140 Siwa, a P-type, is the only one that does not exhibit a 3-μm feature. These results are important to constrain the nature and the degree of aqueous alteration in outer Main Belt asteroids.  相似文献   

6.
Matija Ćuk 《Icarus》2012,218(1):69-79
The Moon has suffered intense impact bombardment ending at 3.9 Gyr ago, and this bombardment probably affected all of the inner Solar System. Basin magnetization signatures and lunar crater size-distributions indicate that the last episode of bombardment at about 3.85 Gyr ago was less extensive than previously thought. We explore the contribution of the primordial Mars-crosser population to early lunar bombardment. We find that Mars-crosser population initially decays with a 80-Myr half-life, with the long tail of survivors clustering on temporarily non-Mars-crossing orbits between 1.8 and 2 AU. These survivors decay with half-life of about 600 Myr and are progenitors of the extant Hungaria asteroid group in the same region. We estimate the primordial Mars-crosser population contained about 0.01–0.02 Earth masses. Such initial population is consistent with no lunar basins forming after 3.8 Gya and the amount of mass in the Hungaria group. As they survive longer and in greater numbers than other primordial populations, Mars-crossers are the best candidate for forming the majority of lunar craters and basins, including most of the Nectarian system. However, this remnant population cannot produce Imbrium and Orientale basins, which formed too late and are too large to be part of a smooth bombardment. We propose that the Imbrian basins and craters formed in a discrete event, consistent with the basin magnetization signatures and crater size-distributions. This late “impactor shower” would be triggered by a collisional disruption of a Vesta-sized body from this primordial Mars-crossing population (Wetherill, G.W. [1975]. Proc. Lunar Sci. Conf. 6, 1539–1561) that was still comparable to the present-day asteroid belt a 3.9 Gya. This tidal disruption lead to a short-lived spike in bombardment by non-chondritic impactors with a non-asteroidal size–frequency distribution, in agreement with available evidence. This body (“Wetherill’s object”) also uniquely matches the constraints for the parent body of mesosiderite meteorites. We propose that the present-day sources of mesosiderites are multi-km-sized asteroids residing in the Hungaria group, that have been implanted there soon after the original disruption of their parent 3.9 Gyr ago.  相似文献   

7.
An essential role in the asteroidal dynamics is played by the mean motion resonances. Two-body planet–asteroid resonances are widely known, due to the Kirkwood gaps. Besides, so-called three-body mean motion resonances exist, in which an asteroid and two planets participate. Identification of asteroids in three-body (namely, Jupiter–Saturn–asteroid) resonances was initially accomplished by Nesvorný and Morbidelli (Nesvorný D., Morbidelli, A. [1998]. Astron. J. 116, 3029–3037), who, by means of visual analysis of the time behaviour of resonant arguments, found 255 asteroids to reside in such resonances. We develop specialized algorithms and software for massive automatic identification of asteroids in the three-body, as well as two-body, resonances of arbitrary order, by means of automatic analysis of the time behaviour of resonant arguments. In the computation of orbits, all essential perturbations are taken into account. We integrate the asteroidal orbits on the time interval of 100,000 yr and identify main-belt asteroids in the three-body Jupiter–Saturn–asteroid resonances up to the 6th order inclusive, and in the two-body Jupiter–asteroid resonances up to the 9th order inclusive, in the set of ~250,000 objects from the “Asteroids – Dynamic Site” (AstDyS) database. The percentages of resonant objects, including extrapolations for higher-order resonances, are determined. In particular, the observed fraction of pure-resonant asteroids (those exhibiting resonant libration on the whole interval of integration) in the three-body resonances up to the 6th order inclusive is ≈0.9% of the whole set; and, using a higher-order extrapolation, the actual total fraction of pure-resonant asteroids in the three-body resonances of all orders is estimated as ≈1.1% of the whole set.  相似文献   

8.
A possible mechanism to explain the depletion of the Kirkwood gaps in the asteroid belt would be the slow dissipation of the solar nebula at the origin of the Solar System. The effects of this dissipation on a uniform distribution of asteroids are explored by means of the adiabatic invariant theory for the 2/1, 3/1 and 5/2 resonance cases. The framework is the restricted, circular and planar three body problem.  相似文献   

9.
J.M. Carvano  T. Mothé-Diniz 《Icarus》2003,161(2):356-382
We present an analysis of 460 featureless asteroid spectra in the range 0.5-0.92 μm obtained in the Small Solar System Objects Spectroscopic Survey. The spectra are described in terms of the continuum steepness (cSlope), its concavity (RRE), and the blue wing of drop in the UV reflectance (BD). Comparison with meteorite spectra confirms the link between CM meteorites and asteroids with asteroids with 0.7 μm band. Also, it is found that asteroids with extreme negative slope values may be related to CK chondrites and that asteroids with pronounced concave-down curvature are related to CO chondrites. An analysis of the distribution of the spectral parameters with semimajor axis, diameter, and albedo is performed.  相似文献   

10.
Multiple reflectance spectra of 11 CV chondrites have been measured to determine spectral–compositional relationships for this meteorite class and to aid the search for CV parent bodies. The reflectance of CV chondrite spectra is variable, ranging from ~5% to 13% at 0.56 μm, and ~5% to 15% at the 0.7 μm region local reflectance maximum. Overall slopes range from slightly blue to red for powders, while slab spectra are strongly blue-sloped. With increasing average grain size and/or removal of the finest fraction, CV spectra generally become more blue-sloped. CV spectra are characterized by ubiquitous absorption features in the 1 and 2 μm regions. The 1 μm region is usually characterized by a band centered near 1.05–1.08 μm and a band or shoulder near 1.3 μm that are characteristic of Fe-rich olivine. Band depths in the 1 μm region for powdered CVs and slabs range from ~1% to 10%. The 2 μm region is characterized by a region of broad absorption that extends beyond 2 μm and usually includes band minima near 1.95 and 2.1 μm; these features are characteristic of Fe2+-bearing spinel. The sample suite is not comprehensive enough to firmly establish whether spectral differences exist between CVR, CVOxA, and CVOxB subclasses, or as a function of metamorphic grade. However, we believe that the mineralogic and petrologic differences that exist between these classes, and with varying petrologic subtype (CV3.0–>3.7), may not be significant enough to result in measurable spectral differences that exceed spectral variations within a subgroup, within an individual meteorite, or as a function of grain size. Terrestrial weathering seems to affect CV spectra most noticeably in the visible region, resulting in more red-sloped spectra for finds as compared to falls. The search for CV parent bodies should focus on the detection of olivine and spinel absorption bands, specifically absorption features near 1.05, 1.3, 1.95, and 2.1 μm, as these are the most commonly seen spectral features of CV chondrites.  相似文献   

11.
E. Beitz  C. Güttler  R. Weidling  J. Blum 《Icarus》2012,218(1):701-706
The formation of planetesimals in the early Solar System is hardly understood, and in particular the growth of dust aggregates above millimeter sizes has recently turned out to be a difficult task in our understanding (Zsom, A., Ormel, C.W., Güttler, C., Blum, J., Dullemond, C.P. [2010]. Astron. Astrophys., 513, A57). Laboratory experiments have shown that dust aggregates of these sizes stick to one another only at unreasonably low velocities. However, in the protoplanetary disk, millimeter-sized particles are known to have been ubiquitous. One can find relics of them in the form of solid chondrules as the main constituent of chondrites. Most of these chondrules were found to feature a fine-grained rim, which is hypothesized to have formed from accreting dust grains in the solar nebula. To study the influence of these dust-coated chondrules on the formation of chondrites and possibly planetesimals, we conducted collision experiments between millimeter-sized, dust-coated chondrule analogs at velocities of a few cm s?1. For 2 and 3 mm diameter chondrule analogs covered by dusty rims of a volume filling factor of 0.18 and 0.35–0.58, we found sticking velocities of a few cm s?1. This velocity is higher than the sticking velocity of dust aggregates of the same size. We therefore conclude that chondrules may be an important step towards a deeper understanding of the collisional growth of larger bodies. Moreover, we analyzed the collision behavior in an ensemble of dust aggregates and non-coated chondrule analogs. While neither the dust aggregates nor the solid chondrule analogs show sticking in collisions among their species, we found an enhanced sicking efficiency in collisions between the two constituents, which leads us to the conjecture that chondrules might act as “catalyzers” for the growth of larger bodies in the young Solar System.  相似文献   

12.
It has recently become possible to do a photometric survey of many asteroids at once, rather than observing single asteroids one (or occasionally a couple) at a time. We evaluate two such surveys. Dermawan et al. (Dermawan et al. [2011]. Publ. Astron. Soc. Jpn. 63, S555–S576) observed one night on the Subaru 8.2 m telescope, and Masiero et al. (Masiero, J., Jedicke, R., Durech, J., Gwen, S., Denneau, L., Larsen, J. [2009]. Icarus 204, 145–171) observed six nights over 2 weeks with the 3.6 m CFHT. Dermawan claimed 83 rotation periods from 127 detected asteroids; Masiero et al. claimed 218 rotation periods from 828 detections. Both teams claim a number of super-fast rotators (P < 2.2 h) among main belt asteroids larger than 250 m diameter, some up to several km in diameter. This would imply that the spin rate distribution of main belt asteroids differs from like-sized NEAs, that there are larger super-fast rotators (monolithic asteroids) in the main belt than among NEAs. Here we evaluate these survey results, applying the same criteria for reliability of results that we apply to all results listed in our Lightcurve Database (Warner, B.D., Harris, A.W., Pravec, P. [2009a]. Icarus 202, 134–146). In doing so, we assigned reliability estimates judged sufficient for inclusion in statistical studies for only 27 out of 83 (33%) periods claimed by Dermawan, and only 87 out of 218 (40%) periods reported by Masiero et al.; none of the super-fast rotators larger than about 250 m diameter claimed by either survey received a reliability rating judged sufficient for analysis. We find no reliable basis for the claim of different rotation properties between main belt and near-Earth asteroids. Our analysis presents a cautionary message for future surveys.  相似文献   

13.
BDS (BeiDou Navigation Satellite System) ground tracking stations are equipped with high accuracy atomic clocks, and they are synchronized with the BDS time scale (BDT) via the Precise Orbit Determination (POD) processing. During the periods of satellite maneuver and post-maneuver, station clocks are kept fixed as known values in the POD processing. To improve the real-time POD capability, station clocks need to be predicted. In this paper, the performance of three clock prediction models is evaluated, including quadratic polynomial model (QP), periodical term model (PM), and grey model (GM). The precision of clock fitting and prediction, as well as the performance of the prediction models in POD are compared. Data of six stations are used for test, and the results show that: the mean fitting accuracy of quadratic polynomial model, periodical term model, and grey model is 0.14 ns, 0.05 ns, 0.27 ns, respectively; the 1 h and 2 h prediction precision of the three models is 1.17 ns, 0.88 ns, 1.28 ns, and 2.72 ns, 2.09 ns, 2.53 ns, respectively. Applying the 1 h and 2 h predicted station clocks in the POD, the 3D orbit accuracy reaches the best using the periodical term model, while the radial accuracy of satellite orbit is rather close for the three models with the difference within 3 cm.  相似文献   

14.
Abstract— Reflectance spectra from 0.44 to 1.65 μm were obtained for three K asteroids. These objects all have spectra consistent with olivine‐dominated assemblages whose absorption bands have been suppressed by opaques. The two observed Eos family members (221 Eos and 653 Berenike) are spectral analogs to the CO3 chondrite Warrenton. The other observed object (599 Luisa) is a spectral analog for CV3 chondrite Mokoia. These asteroids are all located near meteorite‐supplying resonances with the Eos family cut by the 9:4 resonance and Luisa is found near the 5:2 resonance. However, K asteroids have been identified throughout the main belt so it is difficult to rule out other possible parent bodies for the CO3 and CV3 chondrites.  相似文献   

15.
We obtained estimates of the Johnson V absolute magnitudes (H) and slope parameters (G) for 583 main-belt and near-Earth asteroids observed at Ond?ejov and Table Mountain Observatory from 1978 to 2011. Uncertainties of the absolute magnitudes in our sample are <0.21 mag, with a median value of 0.10 mag. We compared the H data with absolute magnitude values given in the MPCORB, Pisa AstDyS and JPL Horizons orbit catalogs. We found that while the catalog absolute magnitudes for large asteroids are relatively good on average, showing only little biases smaller than 0.1 mag, there is a systematic offset of the catalog values for smaller asteroids that becomes prominent in a range of H greater than ~10 and is particularly big above H  12. The mean (Hcatalog ? H) value is negative, i.e., the catalog H values are systematically too bright. This systematic negative offset of the catalog values reaches a maximum around H = 14 where the mean (Hcatalog ? H) is ?0.4 to ?0.5. We found also smaller correlations of the offset of the catalog H values with taxonomic types and with lightcurve amplitude, up to ~0.1 mag or less. We discuss a few possible observational causes for the observed correlations, but the reason for the large bias of the catalog absolute magnitudes peaking around H = 14 is unknown; we suspect that the problem lies in the magnitude estimates reported by asteroid surveys. With our photometric H and G data, we revised the preliminary WISE albedo estimates made by Masiero et al. (Masired, J.R. et al. [2011]. Astrophys. J. 741, 68–89) and Mainzer et al. (Mainzer, A. et al. [2011b]. Astrophys. J. 743, 156–172) for asteroids in our sample. We found that the mean geometric albedo of Tholen/Bus/DeMeo C/G/B/F/P/D types with sizes of 25–300 km is pV = 0.057 with the standard deviation (dispersion) of the sample of 0.013 and the mean albedo of S/A/L types with sizes 0.6–200 km is 0.197 with the standard deviation of the sample of 0.051. The standard errors of the mean albedos are 0.002 and 0.006, respectively; systematic observational or modeling errors can predominate over the quoted formal errors. There is apparent only a small, marginally significant difference of 0.031 ± 0.011 between the mean albedos of sub-samples of large and small (divided at diameter 25 km) S/A/L asteroids, with the smaller ones having a higher albedo. The difference will have to be confirmed and explained; we speculate that it may be either a real size dependence of surface properties of S type asteroids or a small size-dependent bias in the data (e.g., a bias towards higher albedos in the optically-selected sample of asteroids). A trend of the mean of the preliminary WISE albedo estimates increasing with asteroid size decreasing from D  30 down to ~5 km (for S types) showed in Mainzer et al. (Mainzer, A. et al. [2011a]. Astrophys. J. 741, 90–114) appears to be mainly due to the systematic bias in the MPCORB absolute magnitudes that progressively increases with H in the corresponding range H = 10–14.  相似文献   

16.
The space weathering process and its implications for the relationships between S- and Q-type asteroids and ordinary chondrite meteorites is an often debated topic in asteroid science. Q-type asteroids have been shown to display the best spectral match to ordinary chondrites (McFadden, L.A., Gaffey, M.J., McCord, T.B. [1985]. Science 229, 160–163). While the Q-types and ordinary chondrites share some spectral features with S-type asteroids, the S-types have significantly redder spectral slopes than the Q-types in visible and near-infrared wavelengths. This reddening of spectral slope is attributed to the effects of space weathering on the observed surface composition. The analysis by Binzel et al. (Binzel, R.P., Rivkin, A.S., Stuart, J.S., Harris, A.W., Bus, S.J., Burbine, T.H. [2004]. Icarus 170, 259–294) provided a missing link between the Q- and S-type bodies in near-Earth space by showing a reddening of spectral slope in objects from 0.1 to 5 km that corresponded to a transition from Q-type to S-type asteroid spectra, implying that size, and therefore surface age, is related to the relationship between S- and Q-types. The existence of Q-type asteroids in the main-belt was not confirmed until Mothé-Diniz and Nesvorny (Mothé-Diniz, T., Nesvorny, D. [2008]. Astron. Astrophys. 486, L9–L12) found them in young S-type clusters. The young age of these families suggest that the unweathered surface could date to the formation of the family. This leads to the question of whether older S-type main-belt families can contain Q-type objects and display evidence of a transition from Q- to S-type. To answer this question we have carried out a photometric survey of the Koronis family using the Kitt Peak 2.1 m telescope. This provides a unique opportunity to compare the effects of the space weathering process on potentially ordinary chondrite-like bodies within a population of identical initial conditions. We find a trend in spectral slope for objects 1–5 km that shows the transition from Q- to S-type in the main-belt. This data set will prove crucial to our understanding of the space weathering process and its relevant timescales.  相似文献   

17.
Most phyllosilicates on Mars appear to be associated with ancient terrains. As such, they may have experienced shock heating produced by impacts and could have been significantly altered or melted. We characterized the effects of high temperatures on the mid-to-far-infrared (mid-to-far-IR) emission (100–1400 cm?1; 7.1–100 μm) and near-infrared (NIR) reflectance (1.2–2.5 μm) spectra of phyllosilicates by measuring experimentally calcined (100–900 °C) phyllosilicates and also two zeolites. Correlated differential scanning calorimetry (DSC) measurements were also performed on each sample to provide insight into the thermal activities of the phyllosilicates and natural zeolites. Our results indicate that all phyllosilicates exhibit characteristic degradations in both NIR and mid-to-far-IR spectral properties between 400 and 800 °C, mainly attributable to the dehydroxylation and recrystallization processes as temperature increases. Spectral features of natural zeolites persist to higher temperatures compared to features of phyllosilicates during heating treatments. The thermal behaviors of phyllosilicate infrared (IR) properties are greatly influenced by the compositions of the octahedral cations: (1) changes in both the NIR and mid-to-far-IR spectra of phyllosilicates tend to occur at lower temperatures (300–400 °C) in the Fe3+-rich samples as compared to the Al3+-rich types (400–600 °C); (2) Mg2+-trioctahedral phyllosilicates hectorite, saponite, and sepiolite all display major mid-to-far-IR spectral changes at 700 °C, corresponding to the formation of enstatite; (3) phyllosilicates that have minor replacement of Mg2+ for Al3+ in octahedral positions (e.g. cheto-type montmorillonite and palygorskite) show an absorption band at ~920 cm?1 that becomes strong at 900 °C. Inconsistency between spectral behaviors in the mid-to-far-IR and NIR regions is also discussed for phyllosilicates. Results from this study have provided suggestive evidence for the scenario that some phyllosilicates could lose all original spectral features in mid-to-far-IR region while maintaining their characteristic hydration bands in NIR region in the same temperature range.  相似文献   

18.
Micrometeorite bombardment and irradiation by solar wind and cosmic ions cause variations in the optical properties of the small Solar System bodies surface materials. These space weathering processes are reasonably well understood for the Moon and S-type asteroids. The research is based on laboratory experiments performed by several groups on meteorites and minor bodies surface analogues, whose results have been applied to the spectral modeling and interpretation of observations from large surveys and space missions. Recent results from young asteroidal families, and the relation between spectral slopes and dynamical properties, have stressed the role of the solar wind exposure timescale. Space weathering processes remain poorly investigated in the case of other types of asteroids, and they are still unclear in the case of outer Solar System bodies, due to a strong dependence of the weathering process on the original composition.  相似文献   

19.
This is the first focused study of non-Eos K asteroids. We have observed a total of 30 K-complex objects (12 K-2 Sk- and 13 Xk-type asteroids (from the Bus taxonomy), plus 3 K-candidates from previous work) and we present an analysis of their spectral properties from 0.4 to 2.5 μm. We targeted these asteroids because their previous observations are spectrally similar enough to suggest a possible compositional relationship. All objects have exhibited spectral redness in the visible wavelengths and minor absorptions near 1 micron. If, as suggested, K-complex asteroids (including K, Xk, and Sk) are the parent bodies of carbonaceous meteorites, knowledge of K-asteroid properties and distribution is essential to our understanding of the cosmochemical importance of some of the most primitive meteorite materials in our collection. This paper presents initial results of our analysis of telescopic data, with supporting analysis of laboratory measurements of meteorite analogs. Our results indicate that K-complex asteroids are distinct from other main belt asteroid types (S, B, C, F, and G). They do not appear to be a subset of these other types. K asteroids nearly span the range of band center positions and geometric albedos exhibited by the carbonaceous chondrites (CO, CM, CV, CH, CK, CR, and CI). We find that B-, C-, F- and G-type asteroids tend to be darker than meteorites, and can have band centers longer than any of the chondrites measured here. This could indicate that K-complex asteroids are better spectral analogues for the majority of our carbonaceous meteorites than the traditional B-, C-, F- and G-matches suggested in the literature. This paper present first results of our ongoing survey to determine K-type mineralogy, meteorite linkages, and significance to the geology of the asteroid regions.  相似文献   

20.
We present a method to constrain the albedo and diameters of near-Earth asteroids (NEAs) based on thermal flux in their near-infrared spectra (0.7–2.5 μm) using the Standard Thermal Model. Near-infrared spectra obtained with the SpeX instrument on NASA Infrared Telescope Facility are used to estimate the albedo and diameters of 12 NEAs (1992 JE, 1992 UY4, 1999 JD6, 2004 XP14, 2005 YY93, 2007 DS84, 2005 AD13, 2005 WJ56, 1999 JM8, 2005 RC34, 2003 YE45, and 2008 QS11). Albedo estimates were compared with average albedo for various taxonomic classes outlined by Thomas et al. (Thomas, C.A. et al. [2011]. Astron. J. 142(3)) and are consistent with their results. Spectral band parameters, like band centers, are derived and compared to spectra of laboratory mineral mixtures and meteorites to constrain their composition and possible meteorite analogs. Based on our study we estimate the albedos and diameters of these NEAs and compare them with those obtained by other techniques such as ground-based mid-infrared, Spitzer thermal infrared and Arecibo radar. Our results are broadly consistent with the results from other direct methods like radar. Determining the compositions of low albedo asteroids is a challenge due to the lack of deep silicate absorption features. However, based on weak absorption features and albedo, we suggest possible meteorite analogs for these NEAs, which include black chondrites, CM2 carbonaceous chondrites and enstatite achondrites. We did not find any specific trends in albedo and composition among the asteroids we observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号