首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Planetary magnetic fields could impact the evolution of planetary atmospheres and have a role in the determination of the required conditions for the emergence and evolution of life (planetary habitability). We study here the role of rotation in the evolution of dynamo-generated magnetic fields in massive Earth-like planets, Super Earths (1–10 M). Using the most recent thermal evolution models of Super Earths (Gaidos, E., Conrad, C.P., Manga, M., Hernlund, J. [2010]. Astrophys. J. 718, 596–609; Tachinami, C., Senshu, H., Ida, S. [2011]. Astrophys. J. 726, 70) and updated scaling laws for convection-driven dynamos, we predict the evolution of the local Rossby number. This quantity is one of the proxies for core magnetic field regime, i.e. non-reversing dipolar, reversing dipolar and multipolar. We study the dependence of the local Rossby number and hence the core magnetic field regime on planetary mass and rotation rate. Previous works have focused only on the evolution of core magnetic fields assuming rapidly rotating planets, i.e. planets in the dipolar regime. In this work we go further, including the effects of rotation in the evolution of planetary magnetic field regime and obtaining global constraints to the existence of intense protective magnetic fields in rapidly and slowly rotating Super Earths. We find that the emergence and continued existence of a protective planetary magnetic field is not only a function of planetary mass but also depend on rotation rate. Low-mass Super Earths (M ? 2 M) develop intense surface magnetic fields but their lifetimes will be limited to 2–4 Gyrs for rotational periods larger than 1–4 days. On the other hand and also in the case of slowly rotating planets, more massive Super Earths (M ? 2 M) have weak magnetic fields but their dipoles will last longer. Finally we analyze tidally locked Super Earths inside and outside the habitable zone of GKM stars. Using the results obtained here we develop a classification of Super Earths based on the rotation rate and according to the evolving properties of dynamo-generated planetary magnetic fields.  相似文献   

2.
The Venus Express (VEX) mission has been in orbit to Venus for more than 4 years now. The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument onboard VEX observes Venus in two channels (visible and infrared) obtaining spectra and multi-wavelength images of the planet that can be used to sample the atmosphere at different altitudes. Day-side images in the ultraviolet range (380 nm) are used to study the dynamics of the upper cloud at 66–72 km while night-side images in the near infrared (1.74 μm) map the opacity of the lower cloud deck at 44–48 km. Here we present a long-term analysis of the global atmospheric dynamics at these levels using a large selection of orbits from the VIRTIS-M dataset covering 860 Earth days that extends our previous work (Sánchez-Lavega, A. et al. [2008]. Geophys. Res. Lett. 35, L13204) and allows studying the variability of the global circulation at the two altitude levels. The atmospheric superrotation is evident with equatorial to mid-latitudes westward velocities of 100 and 60 m s?1 in the upper and lower cloud layers. These zonal velocities are almost constant in latitude from the equator to 50°S. From 50°S to 90°S the zonal winds at both cloud layers decrease steadily to zero at the pole. Individual cloud tracked winds have errors of 3–10 m s?1 with a mean of 5 m s?1 and the standard deviations for a given latitude of our zonal and meridional winds are 9 m s?1. The zonal winds in the upper cloud change with the local time in a way that can be interpreted in terms of a solar tide. The zonal winds in the lower cloud are stable at mid-latitudes to the tropics and present variability at subpolar latitudes apparently linked to the activity of the South polar vortex. While the upper cloud presents a net meridional motion consistent with the upper branch of a Hadley cell with peak velocity v = 10 m s?1 at 50°S, the lower cloud meridional motions are less organized with some cloud features moving with intense northwards and southwards motions up to v = ±15 m s?1 but, on average, with almost null global meridional motions at all latitudes. We also examine the long-term behavior of the winds at these two vertical layers by comparing our extended wind tracked data with results from previous missions.  相似文献   

3.
We perform numerical simulations to investigate potential Earth-like planets in the GJ 876 planetary system. We show that the secular resonances ν1 and ν2 (resulting respectively from the inner and outer giant planets) can excite the eccentricities of Earth-like planets with orbits 0.21 AU  a < 0.50 AU and cause them to be ejected out of the system in a short time. However, in the dynamical sense, Earth-like planets potentially exist in the region 0.50 AU  a  1.00 AU, in stable low-eccentricity orbits which may last up to 105 yr.  相似文献   

4.
Mapping tectonic features using MESSENGER data mainly acquired at high Sun incidence angle (>50°) reveals previously undetected structures. The analysis of the latter features determines an upward revision of measurements of density and spatial distribution of tectonism and thus of estimates of average contractional strain and planetary radius decrease. We calculated an average surface contraction of ~0.23–0.30% (~0.28% for fault dip angle θ = 30°) within an area corresponding to 21% of the planet. This strain, extrapolated to the entire surface, corresponds to a decrease in radius of about 2.4–3.6 km (~3.0 km for θ = 30°). These values are three–four times higher with respect to previous estimates and are compatible with results from thermomechanical models.  相似文献   

5.
We use two independent General Circulation Models (GCMs) to estimate surface winds at Titan’s Ligeia Mare (78° N, 250° W), motivated by a proposed mission to land a floating capsule in this ~500 km hydrocarbon sea. The models agree on the overall magnitude (~0.5–1 m/s) and seasonal variation (strongest in summer) of windspeeds, but details of seasonal and diurnal variation of windspeed and direction differ somewhat, with the role of surface exchanges being more significant than that of gravitational tides in the atmosphere. We also investigate the tidal dynamics in the sea using a numerical ocean dynamics model: assuming a rigid lithosphere, the tidal amplitude is up to ~0.8 m. Tidal currents are overall proportional to the reciprocal of depth—with an assumed central depth of 300 m, the characteristic tidal currents are ~1 cm/s, with notable motions being a slosh between Ligeia’s eastern and western lobes, and a clockwise flow pattern.We find that a capsule will drift at approximately one tenth of the windspeed, unless measures are adopted to augment the drag areas above or below the waterline. Thus motion of a floating capsule is dominated by the wind, and is likely to be several km per Earth day, a rate that will be readily measured from Earth by radio navigation methods. In some instances, the wind vector rotates diurnally such that the drift trajectory is epicyclic.  相似文献   

6.
The martian polar regions have layered deposits of ice and dust. The stratigraphy of these deposits is exposed within scarps and trough walls and is thought to have formed due to climate variations in the past. Insolation has varied significantly over time and caused dramatic changes in climate, but it has remained unclear whether insolation variations could be linked to the stratigraphic record. We present a model of layer formation based on physical processes that expresses polar deposition rates of ice and dust in terms of insolation. In this model, layer formation is controlled by the insolation record, and dust-rich layers form by two mechanisms: (1) increased summer sublimation during high obliquity, and (2) variations in the polar deposition of dust modulated by obliquity variations. The model is simple, yet physically plausible, and allows for investigations of the climate control of the polar layered deposits (PLD). We compare the model to a stratigraphic column obtained from the north polar layered deposits (NPLD) (Fishbaugh, K.E., Hvidberg, C.S., Byrne, S., Russel, P.S., Herkenhoff, K.E., Winstrup, M., Kirk, R. [2010a]. Geophys. Res. Lett., 37, L07201) and show that the model can be tuned to reproduce complex layer sequences. The comparison with observations cannot uniquely constrain the PLD chronology, and it is limited by our interpretation of the observed stratigraphic column as a proxy for NPLD composition. We identified, however, a set of parameters that provides a chronology of the NPLD tied to the insolation record and consistently explains layer formation in accordance with observations of NPLD stratigraphy. This model dates the top 500 m of the NPLD back to ~1 million years with an average net deposition rate of ice and dust of 0.55 mm a?1. The model stratigraphy contains a quasi-periodic ~30 m cycle, similar to a previously suggested cycle in brightness profiles from the NPLD (Laskar, J., Levrard, B., Mustard, F. [2002]. Nature, 419, 375–377; Milkovich, S., Head, J.W. [2005]. J. Geophys. Res. 110), but here related to half of the obliquity cycles of 120 and 99 kyr and resulting from a combination of the two layer formation mechanisms. Further investigations of the non-linear insolation control of PLD formation should consider data from other geographical locations and include radar data and other stratigraphic datasets that can constrain the composition and stratigraphy of the NPLD layers.  相似文献   

7.
Phase reddening is an effect that produces an increase of the spectral slope and variations in the strength of the absorption bands as the phase angle increases. In order to understand its effect on spectroscopic observations of asteroids, we have analyzed the visible and near-infrared spectra (0.45–2.5 μm) of 12 near-Earth asteroids observed at different phase angles. All these asteroids are classified as either S-complex or Q-type asteroids. In addition, we have acquired laboratory spectra of three different types of ordinary chondrites at phase angles ranging from 13° to 120°. We have found that both, asteroid and meteorite spectra show an increase in band depths with increasing phase angle. In the case of the asteroids the Band I depth increases in the range of ~2° < g < 70° and the Band II depth increases in the range of ~2° < g < 55°. Using this information we have derived equations that can be used to correct the effect of phase reddening in the band depths. Of the three meteorite samples, the (olivine-rich) LL6 ordinary chondrite is the most affected by phase reddening. The studied ordinary chondrites have their maximum spectral contrast of Band I depths at a phase angle of ~60°, followed by a decrease between 60° and 120° phase angle. The Band II depths of these samples have their maximum spectral contrast at phase angles of 30–60° which then gradually decreases to 120° phase angle. The spectral slope of the ordinary chondrites spectra shows a significant increase with increasing phase angle for g > 30°. Variations in band centers and band area ratio (BAR) values were also found, however they seems to have no significant impact on the mineralogical analysis. Our study showed that the increase in spectral slope caused by phase reddening is comparable to certain degree of space weathering. In particular, an increase in phase angle in the range of 30–120° will produce a reddening of the reflectance spectra equivalent to exposure times of ~0.1 × 106–1.3 × 106 years at about 1 AU from the Sun. This increase in spectral slope due to phase reddening is also comparable to the effects caused by the addition of different fractions of SMFe. Furthermore, we found that under some circumstances phase reddening could lead to an ambiguous taxonomic classification of asteroids.  相似文献   

8.
The two orders of magnitude drop between the measured atmospheric abundances of non-radiogenic argon, krypton and xenon in Earth versus Mars is striking. Here, in order to account for this difference, we explore the hypothesis that clathrate deposits incorporated into the current martian cryosphere have sequestered significant amounts of these noble gases assuming they were initially present in the paleoatmosphere in quantities similar to those measured on Earth (in mass of noble gas per unit mass of the planet). To do so, we use a statistical-thermodynamic model that predicts the clathrate composition formed from a carbon dioxide-dominated paleoatmosphere whose surface pressure ranges up to 3 bars. The influence of the presence of atmospheric sulfur dioxide on clathrate composition is investigated and we find that it does not alter the trapping efficiencies of other minor species. Assuming nominal structural parameters for the clathrate cages, we find that a carbon dioxide equivalent pressure of 0.03 and 0.9 bar is sufficient to trap masses of xenon and krypton, respectively, equivalent to those found on Earth in the clathrate deposits of the cryosphere. In this case, the amount of trapped argon is not sufficient to explain the measured Earth/Mars argon abundance ratio in the considered pressure range. In contrast, with a 2% contraction of the clathrate cages, masses of xenon, krypton and argon at least equivalent to those found on Earth can be incorporated into clathrates if one assumes the trapping of carbon dioxide at equivalent atmospheric pressures of ~2.3 bar. The proposed clathrate trapping mechanism could have then played an important role in the shaping of the current martian atmosphere.  相似文献   

9.
The Stardust mission returned two types of unprecedented extraterrestrial samples: the first samples of material from a known solar system body beyond the moon, the comet 81P/Wild2, and the first samples of contemporary interstellar dust. Both sets of samples were captured in aerogel and aluminum foil collectors and returned to Earth in January 2006. While the analysis of particles from comet Wild 2 yielded exciting new results, the search for and analysis of collected interstellar particles is more demanding and is ongoing.Novel dust instrumentation will tremendously improve future dust collection in interplanetary space: an Active Cosmic Dust Collector is a combination of an in-situ dust trajectory sensor (DTS) together with a dust collector consisting of aerogel and/or other collector materials, e.g. such as those used by the Stardust mission. Dust particles’ trajectories are determined by the measurement of induced electrical signals when charged particles fly through a position sensitive electrode system. The recorded waveforms enable the reconstruction of the velocity vector with high precision.The DTS described here was subject to performance tests at the Heidelberg dust accelerator at the same time as the recording of impact signals from potential collector materials. The tests with dust particles in the speed range from 3 to 40 km/s demonstrate that trajectories can be measured with accuracies of ~1° in direction and ~1% in speed. The sensitivity of the DTS electronics is of the order of 10?16 C and thus the trajectory of cosmic dust particles as small as 0.4 μm size can be measured. The impact position on the collector can be determined with better than 1 mm precision, which will ease immensely the task of locating sub-micron-sized particles on the collector. Statistically significant numbers of trajectories of interplanetary and interstellar dust particles can thus be collected in interplanetary space and their compositions correlated with their trajectories.  相似文献   

10.
Phase angle and temperature are two important parameters that affect the photometric and spectral behavior of planetary surfaces in telescopic and spacecraft data. We have derived photometric and spectral phase functions for the Asteroid 4 Vesta, the first target of the Dawn mission, using ground-based telescopes operating at visible and near-infrared wavelengths (0.4–2.5 μm). Photometric lightcurve observations of Vesta were conducted on 15 nights at a phase angle range of 3.8–25.7° using duplicates of the seven narrowband Dawn Framing Camera filters (0.4–1.0 μm). Rotationally resolved visible (0.4–0.7 μm) and near-IR spectral observations (0.7–2.5 μm) were obtained on four nights over a similar phase angle range. Our Vesta photometric observations suggest the phase slope is between 0.019 and 0.029 mag/deg. The G parameter ranges from 0.22 to 0.37 consistent with previous results (e.g., Lagerkvist, C.-I., Magnusson, P., Williams, I.P., Buontempo, M.E., Argyle, R.W., Morrison, L.V. [1992]. Astron. Astrophys. Suppl. Ser. 94, 43–71; Piironen, J., Magnusson, P., Lagerkvist, C.-I., Williams, I.P., Buontempo, M.E., Morrison, L.V. [1997]. Astron. Astrophys. Suppl. Ser. 121, 489–497; Hasegawa, S. et al. [2009]. Lunar Planet. Sci. 40. ID 1503) within the uncertainty. We found that in the phase angle range of 0° < α ? 25° for every 10° increase in phase angle Vesta’s visible slope (0.5–0.7 μm) increases 20%, Band I and Band II depths increase 2.35% and 1.5% respectively, and the BAR value increase 0.30. Phase angle spectral measurements of the eucrite Moama in the lab show a decrease in Band I and Band II depths and BAR from the lowest phase angle 13° to 30°, followed by possible small increases up to 90°, and then a dramatic drop between 90° and 120° phase angle. Temperature-induced spectral effects shift the Band I and II centers of the pyroxene bands to longer wavelengths with increasing temperature. We have derived new correction equations using a temperature series (80–400 K) of HED meteorite spectra that will enable interpretation of telescopic and spacecraft spectral data using laboratory calibrations at room temperature (300 K).  相似文献   

11.
Vertical distributions and spectral characteristics of Titan’s photochemical aerosol and stratospheric ices are determined between 20 and 560 cm?1 (500–18 μm) from the Cassini Composite Infrared Spectrometer (CIRS). Results are obtained for latitudes of 15°N, 15°S, and 58°S, where accurate temperature profiles can be independently determined.In addition, estimates of aerosol and ice abundances at 62°N relative to those at 15°S are derived. Aerosol abundances are comparable at the two latitudes, but stratospheric ices are ~3 times more abundant at 62°N than at 15°S. Generally, nitrile ice clouds (probably HCN and HC3N), as inferred from a composite emission feature at ~160 cm?1, appear to be located over a narrow altitude range in the stratosphere centered at ~90 km. Although most abundant at high northern latitudes, these nitrile ice clouds extend down through low latitudes and into mid southern latitudes, at least as far as 58°S.There is some evidence of a second ice cloud layer at ~60 km altitude at 58°S associated with an emission feature at ~80 cm?1. We speculate that the identify of this cloud may be due to C2H6 ice, which in the vapor phase is the most abundant hydrocarbon (next to CH4) in the stratosphere of Titan.Unlike the highly restricted range of altitudes (50–100 km) associated with organic condensate clouds, Titan’s photochemical aerosol appears to be well-mixed from the surface to the top of the stratosphere near an altitude of 300 km, and the spectral shape does not appear to change between 15°N and 58°S latitude. The ratio of aerosol-to-gas scale heights range from 1.3–2.4 at about 160 km to 1.1–1.4 at 300 km, although there is considerable variability with latitude. The aerosol exhibits a very broad emission feature peaking at ~140 cm?1. Due to its extreme breadth and low wavenumber, we speculate that this feature may be caused by low-energy vibrations of two-dimensional lattice structures of large molecules. Examples of such molecules include polycyclic aromatic hydrocarbons (PAHs) and nitrogenated aromatics.Finally, volume extinction coefficients NχE derived from 15°S CIRS data at a wavelength of λ = 62.5 μm are compared with those derived from the 10°S Huygens Descent Imager/Spectral Radiometer (DISR) data at 1.583 μm. This comparison yields volume extinction coefficient ratios NχE(1.583 μm)/NχE(62.5 μm) of roughly 70 and 20, respectively, for Titan’s aerosol and stratospheric ices. The inferred particle cross-section ratios χE(1.583 μm)/χE(62.5 μm) appear to be consistent with sub-micron size aerosol particles, and effective radii of only a few microns for stratospheric ice cloud particles.  相似文献   

12.
The lunar sodium tail extends long distances due to radiation pressure on sodium atoms in the lunar exosphere. Our earlier observations measured the average radial velocity of sodium atoms moving down the lunar tail beyond Earth (i.e., near the anti-lunar point) to be ~12.5 km/s. Here we use the Wisconsin H-alpha Mapper to obtain the first kinematically resolved maps of the intensity and velocity distribution of this emission over a 15° × 15 ° region on the sky near the anti-lunar point. We present both spatially and spectrally resolved observations obtained over four nights bracketing new Moon in October 2007. The spatial distribution of the sodium atoms is elongated along the ecliptic with the location of the peak intensity drifting 3° east along the ecliptic per night. Preliminary modeling results suggest the spatial and velocity distributions in the sodium exotail are sensitive to the near surface lunar sodium velocity distribution. Future observations of this sort along with detailed modeling offer new opportunities to describe the time history of lunar surface sputtering over several days.  相似文献   

13.
The evolution of the spin rate of Comet 9P/Tempel 1 through two perihelion passages (in 2000 and 2005) is determined from 1922 Earth-based observations taken over a period of 13 year as part of a World-Wide observing campaign and from 2888 observations taken over a period of 50 days from the Deep Impact spacecraft. We determine the following sidereal spin rates (periods): 209.023 ± 0.025°/dy (41.335 ± 0.005 h) prior to the 2000 perihelion passage, 210.448 ± 0.016°/dy (41.055 ± 0.003 h) for the interval between the 2000 and 2005 perihelion passages, 211.856 ± 0.030°/dy (40.783 ± 0.006 h) from Deep Impact photometry just prior to the 2005 perihelion passage, and 211.625 ± 0.012°/dy (40.827 ± 0.002 h) in the interval 2006–2010 following the 2005 perihelion passage. The period decreased by 16.8 ± 0.3 min during the 2000 passage and by 13.7 ± 0.2 min during the 2005 passage suggesting a secular decrease in the net torque. The change in spin rate is asymmetric with respect to perihelion with the maximum net torque being applied on approach to perihelion. The Deep Impact data alone show that the spin rate was increasing at a rate of 0.024 ± 0.003°/dy/dy at JD2453530.60510 (i.e., 25.134 dy before impact), which provides independent confirmation of the change seen in the Earth-based observations.The rotational phase of the nucleus at times before and after each perihelion and at the Deep Impact encounter is estimated based on the Thomas et al. (Thomas et al. [2007]. Icarus 187, 4–15) pole and longitude system. The possibility of a 180° error in the rotational phase is assessed and found to be significant. Analytical and physical modeling of the behavior of the spin rate through of each perihelion is presented and used as a basis to predict the rotational state of the nucleus at the time of the nominal (i.e., prior to February 2010) Stardust-NExT encounter on 2011 February 14 at 20:42.We find that a net torque in the range of 0.3–2.5 × 107 kg m2 s?2 acts on the nucleus during perihelion passage. The spin rate initially slows down on approach to perihelion and then passes through a minimum. It then accelerates rapidly as it passes through perihelion eventually reaching a maximum post-perihelion. It then decreases to a stable value as the nucleus moves away from the Sun. We find that the pole direction is unlikely to precess by more than ~1° per perihelion passage. The trend of the period with time and the fact that the modeled peak torque occurs before perihelion are in agreement with published accounts of trends in water production rate and suggests that widespread H2O out-gassing from the surface is largely responsible for the observed spin-up.  相似文献   

14.
We have examined thermal emission from 240 active or recently-active volcanic features on Io and quantified the magnitude and distribution of their volcanic heat flow during the Galileo epoch. We use spacecraft data and a geological map of Io to derive an estimate of the maximum possible contribution from small dark areas not detected as thermally active but which nevertheless appear to be sites of recent volcanic activity. We utilize a trend analysis to extrapolate from the smallest detectable volcanic heat sources to these smallest mapped dark areas. Including the additional heat from estimates for “outburst” eruptions and for a multitude of very small (“myriad”) hot spots, we account for ~62 × 1012 W (~59 ± 7% of Io’s total thermal emission). Loki Patera contributes, on average, 9.6 × 1012 W (~9.1 ± 1%). All dark paterae contribute 45.3 × 1012 W (~43 ± 5%). Although dark flow fields cover a much larger area than dark paterae, they contribute only 5.6 × 1012 W (~5.3 ± 0.6%). Bright paterae contribute ~2.6 × 1012 W (~2.5 ± 0.3%). Outburst eruption phases and very small hot spots contribute no more than ~4% of Io’s total thermal emission: this is probably a maximum value. About 50% of Io’s volcanic heat flow emanates from only 1.2% of Io’s surface. Of Io’s heat flow, 41 ± 7.0% remains unaccounted for in terms of identified sources. Globally, volcanic heat flow is not uniformly distributed. Power output per unit surface area is slightly biased towards mid-latitudes, although there is a stronger bias toward the northern hemisphere when Loki Patera is included. There is a slight favoring of the northern hemisphere for outbursts where locations were well constrained. Globally, we find peaks in thermal emission at ~315°W and ~105°W (using 30° bins). There is a minimum in thermal emission at around 200°W (almost at the anti-jovian longitude) which is a significant regional difference. These peaks and troughs suggest a shift to the east from predicted global heat flow patterns resulting from tidal heating in an asthenosphere. Global volcanic heat flow is dominated by thermal emission from paterae, especially from Loki Patera (312°W, 12°N). Thermal emission from dark flows maximises between 165°W and 225°W. Finally, it is possible that a multitude of very small hot spots, smaller than the present angular resolution detection limits, and/or cooler, secondary volcanic processes involving sulphurous compounds, may be responsible for at least part of the heat flow that is not associated with known sources. Such activity should be sought out during the next mission to Io.  相似文献   

15.
The exosphere of an atmosphereless icy moon is the result of different surface release processes and subsequent modification of the released particles. At Europa icy moon, water molecules are directly released, but photolysis and radiolysis due to solar UV and Jupiter’s magnetospheric plasma, respectively, can result in OH, H, O and (possibly) H2 production. These molecules can recombine to reform water and/or new chemical species. As a consequence, Europa’s neutral environment becomes a mixture of different molecules, among which, H2O dominates in the highest altitudes and O2, formed mainly by radiolysis of ice and subsequent release of the produced molecules, prevails at lower altitudes. In this work, starting from a previously developed Monte Carlo model for the generation of Europa’s exosphere, where the only considered species was water, we make a first attempt to simulate also the H2 and O2 components of the neutral environment around Europa, already observed by the Hubble Space Telescope and the Ultraviolet Imaging Spectrograph on board Cassini, during its flyby of Jupiter. Considering a specific configuration where the leading hemisphere coincides with the sunlit hemisphere, we estimate along the Europa–Sun line an O2 column density of about 1.5 × 1019 m?2 at the dayside and 3 × 1018 m?2 at the nightside. In this work we also improve our previous estimation of the sputtered H2O exosphere of this moon, taking into consideration the trailing–leading asymmetry in the magnetospheric ion bombardment and the energy and temperature dependences of the process yields. We find that a density of 1.5 × 1012 H2O/m3 is expected at altitudes ~0.1RE above the surface of the trailing hemisphere. Additionally, we calculate the escape of H2O, O2 and H2. The total number of neutral atoms in Europa’s neutral torus, is estimated to be in the range 7.8 × 1032–3.3 × 1033.  相似文献   

16.
Gullies are widespread on slopes on the surface of Mars and have been investigated by numerous authors, yet their formation processes remain elusive. In an attempt to understand the possibility of a water-based origin for these forms, we undertook a series of flume experiments at Earth surface temperatures and pressures. Our objectives were to produce forms that resemble those most commonly observed on Mars, documenting their morphometric characteristics and identifying any statistically significant relationships between form and controlling factors of slope and flow rate. Experiments were conducted in a 1×1.5 m2 flume filled with medium grain size sand. The experiments were run over a slope angle range of 10–30°, corresponding to the range for gullies on Mars. Water from a constant-head tank fed through 5 mm silicone hose to a rotameter and then released just below the surface at the top of the slope. Gullies were produced at slope angle values of 10°, 20°, and 30° and flow rate values of 445, 705, 965, and 1260 mL min?1 at each angle. Eighteen parameters were identified and subsequently measured on each gully produced in the flume. Gully forms were successfully reproduced and displayed development of the fundamental morphological components observed on Mars: alcove, channel, and apron. Slope–gully form relationships for each component revealed the following results: higher slope angles formed shorter gullies with thicker apron deposits. Moreover, longer gullies were seen at higher flow rates. We concluded that forms visually similar to those observed on Mars can be created by water in the laboratory flume under terrestrial conditions. Morphometric parameters can be measured and permit identification of controlling factors. Experimental simulation of gullies appears possible with proper scaling of experimental parameters. Although not directly scalable to Mars, flume gully parameters may be used to develop numerical models in the future.  相似文献   

17.
In the present study, the temperature- and pressure-dependent transport and thermal properties, i.e., viscosity, phonon thermal conductivity, thermal expansivity and heat capacities, as well as electronic and radiative thermal conductivities, have been derived for the mantles of super-Earths. These properties are necessary to understand the interior dynamics and the thermal evolution of those planets. We assume that the mantles consist of MgSiO3 perovskite (pv), but we discuss the effects of the post-perovskite transition, and we elaborate on an addition of periclase MgO and incorporated Fe. However, MgO is found to only significantly influence the phonon thermal conductivity – the viscosities, heat capacities and thermal expansivities of pv and MgO remain comparable. We use the Keane theory of solids, which takes into account the behavior of solid matter at the infinite pressure limit, adopt the Keane equations of state, and adjust for pv and MgO by comparison with experimental high-pressure and high-temperature data. We find the theory of the infinite pressure limit of Keane to be in excellent agreement with recent ab initio studies and experiments. To calculate the melting curve, we further use the Lindemann–Stacey scaling law and fit it to available experimental data. The best data fitting melting temperature for pv reaches 5700 K at 135 GPa and increases to 20,000 K at 1.1 TPa, corresponding to the core-mantle boundary of a 10 Earth mass super-Earth (10MEarth). We find the pv adiabatic temperature (with a potential temperature of 1700 K) to reach 2570 K at 135 GPa and 5000 K at 1.1 TPa. To calculate the pressure-and temperature-dependent viscosity, we use the semi-empirical homologous temperature scaling to relate enthalpy change, and hence viscosity, to the melting temperature. We find that the resulting activation volume of pv decreases from 2.8 cm3/mol at 25 GPa to 1.4 cm3/mol at 1.1 TPa-resulting in a viscosity increase by ~15 orders of magnitude through the adiabatic mantle of a 10MEarth planet. Furthermore, the thermal expansivity (of pv and MgO) decreases by a factor of eight, and the total thermal conductivity (phonon, radiative and electronic) of an Earth-like pv/MgO composite increases by a factor of seven through an adiabatic mantle of a 10MEarth super-Earth. At higher temperatures, i.e., for super-adiabatic temperature profiles, the electronic and radiative thermal conductivities strongly increase and dominate the conductive heat transport. All findings indicate an increase of heat transfer solely by conduction in the lower mantles of super-Earths. Thus our results disagree with Earth-biased full-mantle convection assumptions made by previous models for super-Earths, and additionally raise questions about the differentiation of massive rocky exoplanets and their ability to generate magnetic fields or sustain plate tectonics.  相似文献   

18.
A. Aitta 《Icarus》2012,218(2):967-974
The mass and radius of our closest neighbour Venus are only slightly smaller than those of the Earth indicating a similarity in composition. However, the lack of self-sustained internal magnetic field in Venus points to a difference in the core structure. The theory of tricritical phenomena has recently been used to study solidification at the high pressures and temperatures of the Earth, revealing how the Earth’s core works. This theoretical approach is here applied to Venus. While keeping Venus’ mantle density similar to the Earth’s, one obtains the gravitational acceleration g inside Venus, its moment of inertia factor, the size, pressure and density of its core, together with the planet’s temperature profile. Mainly due to the temperature difference between the core–mantle boundary and surface being 21% smaller than on the Earth, and the 11.5% smaller gravitational acceleration, Venus’ Rayleigh number Ra parameterizing mantle convection is only 54% of the Earth’s, offering a possible explanation for the present lack of plate tectonics on Venus. The theory as discussed predicts that Venus is molten at the centre, with temperature about 5200 K, and has 8 mol.% impurities there, slightly more impurities than in the Earth’s inner core boundary fluid. These impurities are likely to be a combination of MgO and MgSiO3.  相似文献   

19.
We present an analysis of 19 μm spectra of Io’s SO2 atmosphere from the TEXES mid-infrared high spectral resolution spectrograph on NASA’s Infrared Telescope Facility, incorporating new data taken between January 2005 and June 2010 and a re-analysis of earlier data taken from November 2001 to January 2004. This is the longest set of contiguous observations of Io’s atmosphere using the same instrument and technique thus far. We have fitted all 16 detected blended absorption lines of the ν2 SO2 vibrational band to retrieve the subsolar values of SO2 column abundance and the gas kinetic temperature. By incorporating an existing model of Io’s surface temperatures and atmosphere, we retrieve sub-solar column densities from the disk-integrated data. Spectra from all years are best fit by atmospheric temperatures <150 K. Best-fit gas kinetic temperatures on the anti-Jupiter hemisphere, where SO2 gas abundance is highest, are low and stable, with a mean of 108 (±18) K. The sub-solar SO2 column density between longitudes of 90–220° varies from a low of 0.61 (±0.145) × 10?17 cm?2, near aphelion in 2004, to a high of 1.51 (±0.215) × 1017 cm?2 in 2010 when Jupiter was approaching its early 2011 perihelion. No correlation in the gas temperature was seen with the increasing SO2 column densities outside the errors.Assuming that any volcanic component of the atmosphere is constant with time, the correlation of increasing SO2 abundance with decreasing heliocentric distance provides good evidence that the atmosphere is at least partially supported by frost sublimation. The SO2 frost thermal inertias and albedos that fit the variation in atmospheric density best are between 150–1250 W m?2 s?1/2 K?1 and 0.613–0.425 respectively. Photometric evidence favors albedos near the upper end of this range, corresponding to thermal inertias near the lower end. This relatively low frost thermal inertia produces larger amplitude seasonal variations than are observed, which in turn implies a substantial additional volcanic atmospheric component to moderate the amplitude of the seasonal variations of the total atmosphere on the anti-Jupiter hemisphere. The seasonal thermal inertia we measure is unique both because it refers exclusively to the SO2 frost surface component, and also because it refers to relatively deep subsurface layers (few meters) due to the timescales of many years, while previous studies have determined thermal inertias at shallower levels (few centimeters), relevant for timescales of ~2 h (eclipse) or ~2 days (diurnal curves).  相似文献   

20.
The IRTF/CSHELL observations in February 2006 at LS = 10° and 63–93°W show ~10 ppb of methane at 45°S to 7°N and ~3 ppb outside this region that covers the deepest canyon Valles Marineris. Observations in December 2009 at LS = 20° and 0–30°W included spectra of the Moon at a similar airmass as a telluric calibrator. A technique for extraction of the martian methane line from a combination of the Mars and Moon spectra has been developed. The observations reveal no methane with an upper limit of 8 ppb. The results of both sessions agree with the observations by Mumma et al. (Mumma, M.J. et al. [2009]. Science 323, 1041–1045) at the same season in February 2006 and are smaller than those in the PFS and TES maps. Production and removal of the biological methane on Mars do not significantly change the redox state of the atmosphere and the balance of hydrogen. A search for ethane at 2977 cm?1 results in an upper limit of 0.2 ppb. However, this limit does not help to establish the origin of methane on Mars. Reanalysis of our search for SO2 using TEXES confirms the recently established upper limit of 0.3 ppb. Along with the lack of hot spots and gas vents with endogenic heat sources in the THEMIS observations, the very low upper limit to SO2 on Mars does not favor geological methane that is less abundant than SO2 in the outgassing from the terrestrial planets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号