首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seven different tree-ring parameters (tree-ring width, earlywood width, latewood width, maximum density, minimum density, mean earlywood density, and mean latewood density) were obtained from Qinghai spruce (Picea crassifolia) at one chronology site in the Hexi Corridor, China. The chronologies were analyzed individually and then compared with each other. Growth–climate response analyses showed that the tree-ring width and maximum latewood density (MXD) are mainly influenced by warm season temperature variability. Based on the relationships derived from the climate response analysis, the MXD chronology was used to reconstruct the May–August maximum temperature for the period 1775–2008 A.D., and it explained the 38.1% of the total temperature variance. It shows cooling in the late 1700s to early 1800s and warming in the twentieth century. Spatial climate correlation analyses with gridded land surface data revealed that our warm season temperature reconstruction contains a strong large-scale temperature signal for north China. Comparison with regional and Northern Hemisphere reconstructions revealed similar low-frequency change to longer-term variability. Several cold years coincide with major volcanic eruptions.  相似文献   

2.
The longest chronology from New Zealand so faris from Libocedrus bidwillii Hook. f. (i.e.,from AD 1992 back to AD 1140, a span of 853 years). A subset of 11 chronologies was selected from anetwork of 23 sites to reconstruct past temperaturesbased on the similarity of significant responsefunctions. A comparison of climate data overdifferent seasons with these 11 chronologies wascarried out using a bootstrap transfer function. Average late-summer (February–March) temperature wasselected for reconstruction based on independentverification results. The reconstructed temperaturewas then presented for the period back to AD 1720. The chronologies reconstructed years experiencing hotsummers better than cold summers. The power spectrumof the reconstructed temperatures showed periodicitiessimilar to those of the observed temperatures. Reconstructed temperatures were significantlycorrelated with other proxy climate reconstructionsderived from tree rings in New Zealand. However,unlike the other tree ring-based reconstructions, theLibocedrus bidwillii series reconstructed boththe 1950s and 1970s warming periods. The resultsalso compared very favourably with other palaeoclimateevidence.  相似文献   

3.
Australian climate-proxy reconstructions based on tree rings from tropical and subtropical forests have not been achieved so far due to the rarity of species producing anatomically distinct annual growth rings. Our study identifies the Australian Red Cedar (Toona ciliata) as one of the most promising tree species for tree-ring research in Australasia because this species exhibits distinct annual tree rings, a prerequisite for high quality tropical dendroclimatology. Based on these preliminary studies, we were able, for the first time in subtropical and tropical Australia, to develop a statistically robust, precisely dated and annually resolved chronology back to AD1854. We show that the variability in ring widths of T. ciliata is mainly dependent on annual precipitation. The developed proxy data series contains both high- and low-frequency climate signals which can be associated with the El Niño Southern Oscillation (ENSO) and the Interdecadal Pacific Oscillation (IPO). A comparison of different data sets (Brisbane precipitation, tree rings, coral luminescence record from the Great Barrier Reef, ENSO and IPO) revealed non-stationary correlation patterns throughout the twentieth century but little instability between the new tree-ring chronology and Brisbane precipitation.  相似文献   

4.
For the first time we present a multi-proxy data set for the Russian Altai, consisting of Siberian larch tree-ring width (TRW), latewood density (MXD), δ13C and δ18O in cellulose chronologies obtained for the period 1779–2007 and cell wall thickness (CWT) for 1900–2008. All of these parameters agree well between each other in the high-frequency variability, while the low-frequency climate information shows systematic differences. The correlation analysis with temperature and precipitation data from the closest weather station and gridded data revealed that annual TRW, MXD, CWT, and δ13C data contain a strong summer temperature signal, while δ18O in cellulose represents a mixed summer and winter temperature and precipitation signal. The temperature and precipitation reconstructions from the Belukha ice core and Teletskoe lake sediments were used to investigate the correspondence of different independent proxies. Low frequency patterns in TRW and δ13C chronologies are consistent with temperature reconstructions from nearby Belukha ice core and Teletskoe lake sediments showing a pronounced warming trend in the last century. Their combination could be used for the regional temperature reconstruction. The long-term δ18O trend agrees with the precipitation reconstruction from the Teletskoe lake sediment indicating more humid conditions during the twentieth century. Therefore, these two proxies could be combined for the precipitation reconstruction.  相似文献   

5.
May–July Standardized Precipitation Index (SPI) for the land area of most of Turkey and some adjoining regions are reconstructed from tree rings for the period 1251–1998. The reconstruction was developed from principal components analysis (PCA) of four Juniperus excelsa chronologies from southwestern and south-central Turkey and is based on reliable and replicable statistical relationships between climate and tree ring growth. The SPI reconstruction shows climate variability on both interannual and interdecadal time scales. The longest period of consecutive drought years in the reconstruction (SPI threshold ≤−1) is 2 yr. These occur in 1607–1608, 1675–1676, and 1907–1908. There are five wet events (SPI threshold ≥+1) of two consecutive years each (1330–1331, 1428–1429, 1503–1504, 1629–1630, and 1913–1914). A 5-yr moving average of the reconstructed SPI shows that two sustained drought periods occurred from the mid to late 1300s and the early to mid 1900s. Both episodes are characterized by low variability.  相似文献   

6.
The Mediterranean region has been identified as a global warming hotspot, where future climate impacts are expected to have significant consequences on societal and ecosystem well-being. To put ongoing trends of summer climate into the context of past natural variability, we reconstructed climate from maximum latewood density (MXD) measurements of Pinus heldreichii (1521–2010) and latewood width (LWW) of Pinus nigra (1617–2010) on Mt. Olympus, Greece. Previous research in the northeastern Mediterranean has primarily focused on inter-annual variability, omitting any low-frequency trends. The present study utilizes methods capable of retaining climatically driven long-term behavior of tree growth. The LWW chronology corresponds closely to early summer moisture variability (May–July, r = 0.65, p < 0.001, 1950–2010), whereas the MXD-chronology relates mainly to late summer warmth (July–September, r = 0.64, p < 0.001; 1899–2010). The chronologies show opposing patterns of decadal variability over the twentieth century (r = ?0.68, p < 0.001) and confirm the importance of the summer North Atlantic Oscillation (sNAO) for summer climate in the northeastern Mediterranean, with positive sNAO phases inducing cold anomalies and enhanced cloudiness and precipitation. The combined reconstructions document the late twentieth—early twenty-first century warming and drying trend, but indicate generally drier early summer and cooler late summer conditions in the period ~1700–1900 CE. Our findings suggest a potential decoupling between twentieth century atmospheric circulation patterns and pre-industrial climate variability. Furthermore, the range of natural climate variability stretches beyond summer moisture availability observed in recent decades and thus lends credibility to the significant drying trends projected for this region in current Earth System Model simulations.  相似文献   

7.
Using 1,981 pieces of temperature records extracted from a selection of tree rings, ice cores, sediments, and other materials with high-resolution historical temperature proxy data, a temperature series of the past 2,000 years on the Tibetan Plateau (TP) with 10-year intervals was reconstructed by the method of single sample correction—multi-sample average integration equations. This series shows that the warm periods mainly appeared before 235 A.D., 775–1275 A.D. and 1845–2000 A.D., while the cold periods occurred 245–765 A.D., 1045–1145 A.D., and 1285–1835 A.D. The Little Ice Age left clear evidence on the TP and its coldest period was between 1635 and 1675 A.D. The Medieval Warm Period on the TP was not as warm as that in the late twentieth century. During the nineteenth century, overall temperature tends to be warmer with a clear rising trend, and in the late twentieth century new highs broke the record of the past 2,000 years. Power spectrum analysis shows that temperature on the TP changes consistently and evidently in a 150-year cycle. This integrated series also shows clear correlations with sunspot activity and solar radiation, as high sunspot activities generally led to warmer periods, and vice versa. Solar activities and intense radiation of recent years are naturally conducive to the global warming since the nineteenth century. The combination of greenhouse gases and natural fluctuations in climate has been the main culprit behind the global warming in the twentieth century.  相似文献   

8.
 Distinct periods of warmth have been identified in instrumental records for New Zealand and the surrounding southwest Pacific over the past 120 years. Whether this warming is due to natural climate variability or the effects of increasing greenhouse gases is difficult to determine given the limited length of instrumental record. Longer records derived from tree rings can help reduce uncertainties in detection of possible causes of climatic change, although relatively few such records have been developed for the Southern Hemisphere. In this work, we describe five temperature-sensitive tree-ring width chronologies for New Zealand which place the recent warming trend into a long-term (pre-anthropogenic) context. Included are three pink pine (Halocarpus biformis) chronologies, two for Stewart Island and one for the North Island of New Zealand. Two silver pine (Lagarostrobus colensoi) series, one each from the North and South Islands, are updated from previous work. The length of record ranges from AD 1700 for Putara, North Island to AD 1400 for Ahaura, South Island. The pink and silver pine are different species from those used previously to reconstruct temperatures for New Zealand. All five chronologies are positively and significantly correlated with warm-season (November-April) individual station temperature records, a New Zealand-wide surface air temperature index and gridded land/marine temperatures for New Zealand and vicinity. The highest 20 and 40-year growth periods in all five tree-ring series coincide with the New Zealand temperature increase after 1950. An exception is found for the 40-year interval at Ahaura, the least temperature-sensitive of the five sites. A t-test comparison indicates that these recent growth intervals are significantly higher (0.01 to 0.0001 level) than any of those prior to the twentieth century for three of the five sites, dating as far back as AD 1500. The results suggest that the recent warming has been distinctive, although not clearly unprecedented, relative to temperature conditions inferred from tree-ring records of prior centuries. Received: 18 February 1997/Accepted: 11 September 1997  相似文献   

9.
A 520-year stable carbon isotope chronology from tree ring cellulose in high altitude larch trees (Larix decidua Mill.), from the eastern European Alps, correlates more strongly with summer temperature than with summer sunshine hours. However, when instrumental records of temperature and sunshine diverge after AD1980, the tree ring time series does not follow warming summer temperatures but more closely tracks summer sunshine trends. When the tree ring stable carbon isotope record is used to reconstruct summer temperature the reconstruction is not robust. Reconstructed temperatures prior to the twentieth century are higher than regional instrumental records, and the evolution of temperature conflicts with other regional temperature reconstructions. It is concluded that sunshine is the dominant control on carbon isotope fractionation in these trees, via the influence of photosynthetic rate on the internal partial pressure of CO2, and that high summer (July–August) sunshine hours is a suitable target for climate reconstruction. We thus present the first reconstruction of summer sunshine for the eastern Alps and compare it with the regional temperature evolution.  相似文献   

10.
Annual Northern Hemisphere surface temperature departures for the past 300 yr were reconstructed using eleven tree-ring chronologies from high-latitude, boreal sites in Canada and Alaska, spanning over 90 degrees of longitude. This geographic coverage is believed to be adequate for a useful representation of hemispheric-scale temperature trends, as high northern latitudes are particularly sensitive to climatic change. We also present a reconstruction of Arctic annual temperatures. The reconstructions show a partial amelioration of the Little Ice Age after the early 1700's, an abrupt, severe renewal of cold in the early 1800's and a prolonged wanning since approximately 1840. These trends are supported by other proxy data. Similarities and differences between our Northern Hemisphere reconstruction and other large-scale proxy temperature records depend on such factors as the data sources, methods, and degree of spatial representation. Analyses of additional temperature records, as they become available, are needed to determine the degree to which each series represents fluctuations for the entire hemisphere. There appear to be relationships between trends observed in our Northern Hemisphere reconstruction and certain climatic forcing functions, including solar fluctuations, volcanic activity and atmospheric CO2. In particular, our reconstruction supports the hypothesis that the global warming trend over the past century of increasing atmospheric CO2 has exceeded the recent level of natural variability of the climate system.Of Columbia University Department of Geological Sciences.  相似文献   

11.
Recent temperature trends in long tree-ring and coral proxy temperature histories are evaluated and compared in an effort to objectively determine how anomalous twentieth century temperature changes have been. These histories mostly reflect regional variations in summer warmth from the tree rings and annual warmth from the corals. In the Northern Hemisphere, the North American tree-ring temperature histories and those from the north Polar Urals, covering the past 1000 or more years, indicate that the twentieth century has been anomalously warm relative to the past. In contrast, the tree-ring history from northern Fennoscandia indicates that summer temperatures during the Medieval Warm Period were probably warmer on average than those than during this century. In the Southern Hemisphere, the tree-ring temperature histories from South America show no indication of recent warming, which is in accordance with local instrumental records. In contrast, the tree-ring records from Tasmania and New Zealand indicate that the twentieth century has been unusually warm particularly since 1960. The coral temperature histories from the Galapagos Islands and the Great Barrier Reef are in broad agreement with the tree-ring temperature histories in those sectors, with the former showing recent cooling and the latter showing recent warming that may be unprecedented. Overall, the regional temperature histories evaluated here broadly support the larger-scale evidence for anomalous twentieth century warming based on instrumental records. However, this warming cannot be confirmed as an unprecedented event in all regions.  相似文献   

12.
Temperature reconstructions for recent centuries provide a historical context for the warming over the twentieth century. We reconstruct annual averaged surface temperatures of the past 400?years on hemispherical and global scale from glacier length fluctuations. We use the glacier length records of 308 glaciers. The reconstruction is a temperature proxy with decadal resolution that is completely independent of other temperature records. Temperatures are derived from glacier length changes using a linear response equation and an analytical glacier model that is calibrated on numerical model results. The global and hemispherical temperatures reconstructed from glacier length fluctuations are in good agreement with the instrumental record of the last century. Furthermore our results agree with existing multi-proxy reconstructions of temperature in the pre-instrumental period. The temperature record obtained from glacier fluctuations confirms the pronounced warming of the twentieth century, giving a global cumulative warming of 0.94?±?0.31?K over the period 1830–2000 and a cumulative warming of 0.84?±?0.35?K over the period 1600–2000.  相似文献   

13.
Existing multi-proxy climate reconstruction methods assume the suitably transformed proxy time series are linearly related to the target climate variable, which is likely a simplifying assumption for many proxy records. Furthermore, with a single exception, these methods face problems with varying temporal resolutions of the proxy data. Here we introduce a new reconstruction method that uses the ordering of all pairs of proxy observations within each record to arrive at a consensus time series that best agrees with all proxy records. The resulting unitless composite time series is subsequently calibrated to the instrumental record to provide an estimate of past climate. By considering only pairwise comparisons, this method, which we call PaiCo, facilitates the inclusion of records with differing temporal resolutions, and relaxes the assumption of linearity to the more general assumption of a monotonically increasing relationship between each proxy series and the target climate variable. We apply PaiCo to a newly assembled collection of high-quality proxy data to reconstruct the mean temperature of the Northernmost Atlantic region, which we call Arctic Atlantic, over the last 2,000 years. The Arctic Atlantic is a dynamically important region known to feature substantial temperature variability over recent millennia, and PaiCo allows for a more thorough investigation of the Arctic Atlantic regional climate as we include a diverse array of terrestrial and marine proxies with annual to multidecadal temporal resolutions. Comparisons of the PaiCo reconstruction to recent reconstructions covering larger areas indicate greater climatic variability in the Arctic Atlantic than for the Arctic as a whole. The Arctic Atlantic reconstruction features temperatures during the Roman Warm Period and Medieval Climate Anomaly that are comparable or even warmer than those of the twentieth century, and coldest temperatures in the middle of the nineteenth century, just prior to the onset of the recent warming trend.  相似文献   

14.
The Gulf of Alaska (GOA) is highly sensitive to shifts in North Pacific climate variability. Here we present an extended tree-ring record of January–September GOA coastal surface air temperatures using tree-ring width data from coniferous trees growing in the mountain ranges along the GOA. The reconstruction (1514–1999), based on living trees, explains 44% of the temperature variance, although, as the number of chronologies decreases back in time, this value decreases to, and remains around ∼30% before 1840. Verification of the calibrated models is, however, robust. Utilizing sub-fossil wood, we extend the GOA reconstruction back to the early eighth century. The GOA reconstruction correlates significantly (95% CL) with both the Pacific Decadal Oscillation Index (0.53) and North Pacific Index (−0.42) and therefore likely yields important information on past climate variability in the North Pacific region. Intervention analysis on the GOA reconstruction identifies the known twentieth century climate shifts around the 1940s and 1970s, although the mid-1920s shift is only weakly expressed. In the context of the full 1,300 years record, the well studied 1976 shift is not unique. Multi-taper method spectral analysis shows that the spectral properties of the living and sub-fossil data are similar, with both records showing significant (95% CL) spectral peaks at ∼9–11, 13–14 and 18–19 years. Singular spectrum analysis identifies (in order of importance) significant oscillatory modes at 18.7, 50.4, 38.0, 91.8, 24.4, 15.3 and 14.1 years. The amplitude of these modes varies through time. It has been suggested (Minobe in Geophys Res Lett 26:855–858, 1999) that the regime shifts during the twentieth century can be explained by the interaction between pentadecadal (50.4 years) and bidecadal (18.7 years) oscillatory modes. Removal of these two modes of variance from our GOA time series does indeed remove the twentieth century shifts, but many are still identified prior to the twentieth century. Our analysis suggests that climate variability of the GOA is very complex, and that much more work is required to understand the underlying oscillatory behavior that is observed in instrumental and proxy records from the North Pacific region.
Rob WilsonEmail:
  相似文献   

15.
We developed ring-width chronologies of Cedrus deodara [(Roxb.) G. Don] and Pinus gerardiana (Wall. Ex. Lamb) from a homogeneous moisture stressed area in Kinnaur, Himachal Pradesh. Running correlation using a 50-year window with overlap of 25 years showed strong correlations between these species chronologies during the entire common period (ad 1310–2005). Response function analysis indicated that except for January–February, precipitation has a direct relationship with growth of these species. We therefore combined both the species chronologies to develop a statistically calibrated reconstruction of March–July precipitation that spans from ad 1310–2004, and explains 46% of the variance contained in the instrumental data from the calibration period 1951–1994. In the past 694 years of the reconstruction, the wettest period was in the twentieth century (1963–1992) and the driest in the eighteenth century (1773–1802). The relationships observed between reconstructed precipitation and Indian summer monsoon on interdecadal scale, SOI, PDO and NAO indicate the potential utility of such long-term reconstructions in understanding the large-scale climate variability. Multi-taper method (MTM) spectral analysis indicated significant (p < 0.05) spectral peaks at 2–4, 6, 8, 10, 30, 33, 37 and 40–42 years in the reconstructed precipitation data.  相似文献   

16.
A land–sea surface warming ratio (or φ) that exceeds unity is a robust feature of both observed and modelled climate change. Interestingly, though climate models have differing values for φ, it remains almost time-invariant for a wide range of twenty-first century climate transient warming scenarios, while varying in simulations of the twentieth century. Here, we present an explanation for time-invariant land–sea warming ratio that applies if three conditions on radiative forcing are met: first, spatial variations in the climate forcing must be sufficiently small that the lower free troposphere warms evenly over land and ocean; second, the temperature response must not be large enough to change the global circulation to zeroth order; third, the temperature response must not be large enough to modify the boundary layer amplification mechanisms that contribute to making φ exceed unity. Projected temperature changes over this century are too small to breach the latter two conditions. Hence, the mechanism appears to show why both twenty-first century and time-invariant CO2 forcing lead to similar values of φ in climate models despite the presence of transient ocean heat uptake, whereas twentieth century forcing—which has a significant spatially confined anthropogenic tropospheric aerosol component that breaches the first condition—leads to modelled values of φ that vary widely amongst models and in time. Our results suggest an explanation for the behaviour of φ when climate is forced by other regionally confined forcing scenarios such as geo-engineered changes to oceanic clouds. Our results show how land–sea contrasts in surface and boundary layer characteristics act in tandem to produce the land–sea surface warming contrast.  相似文献   

17.
Due to the dramatic increase in the global mean surface temperature (GMST) during the twentieth century, the climate science community has endeavored to determine which mechanisms are responsible for global warming. By analyzing a millennium simulation (the period of 1000–1990 ad) of a global climate model and global climate proxy network dataset, we estimate the contribution of solar and greenhouse gas forcings on the increase in GMST during the present warm period (1891–1990 ad). Linear regression analysis reveals that both solar and greenhouse gas forcing considerably explain the increase in global mean temperature during the present warm period, respectively, in the global climate model. Using the global climate proxy network dataset, on the other hand, statistical approach suggests that the contribution of greenhouse gas forcing is slightly larger than that of solar forcing to the increase in global mean temperature during the present warm period. Overall, our result indicates that the solar forcing as well as the anthropogenic greenhouse gas forcing plays an important role to increase the global mean temperature during the present warm period.  相似文献   

18.
Widely distributed proxy records indicate that the Medieval Climate Anomaly (MCA; ~900–1350 AD) was characterized by coherent shifts in large-scale Northern Hemisphere atmospheric circulation patterns. Although cooler sea surface temperatures in the central and eastern equatorial Pacific can explain some aspects of medieval circulation changes, they are not sufficient to account for other notable features, including widespread aridity through the Eurasian sub-tropics, stronger winter westerlies across the North Atlantic and Western Europe, and shifts in monsoon rainfall patterns across Africa and South Asia. We present results from a full-physics coupled climate model showing that a slight warming of the tropical Indian and western Pacific Oceans relative to the other tropical ocean basins can induce a broad range of the medieval circulation and climate changes indicated by proxy data, including many of those not explained by a cooler tropical Pacific alone. Important aspects of the results resemble those from previous simulations examining the climatic response to the rapid Indian Ocean warming during the late twentieth century, and to results from climate warming simulations—especially in indicating an expansion of the Northern Hemisphere Hadley circulation. Notably, the pattern of tropical Indo-Pacific sea surface temperature (SST) change responsible for producing the proxy-model similarity in our results agrees well with MCA-LIA SST differences obtained in a recent proxy-based climate field reconstruction. Though much remains unclear, our results indicate that the MCA was characterized by an enhanced zonal Indo-Pacific SST gradient with resulting changes in Northern Hemisphere tropical and extra-tropical circulation patterns and hydroclimate regimes, linkages that may explain the coherent regional climate shifts indicated by proxy records from across the planet. The findings provide new perspectives on the nature and possible causes of the MCA—a remarkable, yet incompletely understood episode of Late Holocene climatic change.  相似文献   

19.
Treeline ecotones are regarded as sensitive monitors of the recent climatic warming. However, it has been suggested that their sensitivity depends more on changes in tree density than on treeline position. We study these processes and the effect of climate, mainly air temperature, on tree recruitment and recent treeline dynamics. We selected three relatively undisturbed sites in the Spanish Pyrenees, dominated by Pinusuncinata, and analyzed their recent dynamics at local spatial (0.3–0.5 ha) and short temporal scales (100–300 years). We wanted to establish whether higher temperature was the only climatic factor causing an upward shift of the studied alpine treelines. The data we report show that treelines were ascending until a period of high interannual variability in mean temperature started (1950–95). During the late twentieth century, treeline fluctuation was less sensitive to climate than was the change in tree density within the ecotone. Tree recruitment and treeline position responded to contrasting climatic signals; tree recruitment was favored by high March temperatures whereas treeline position ascended in response to warm springs. We found a negative relationship between mean treeline-advance rate and March temperature variability. According to our findings, if the interannual variability of March temperature increases, the probability of successful treeline ascent will decrease.  相似文献   

20.
We review here proxy records of temperature and precipitation in China during the Holocene, especially the last two millennia. The quality of proxy data, methodology of reconstruction, and uncertainties in reconstruction were emphasized in comparing different temperature and precipitation reconstruction and clarifying temporal and spatial patterns of temperature and precipitation during the Holocene. The Holocene climate was generally warm and wet. The warmest period occurred in 9.6-6.2 cal ka BP, whereas a period of maximum monsoon precipitation started at about 11.0 cal ka BP and lasted until about 8.0-5.0 cal ka BP. There were a series of millennial-scale cold or dry events superimposed on the general trend of climate changes. During past two millennia, a warming trend in the 20th century was clearly detected, but the warming magnitude was smaller than the maximum level of the Medieval Warm Period and the Middle Holocene. Cold conditions occurred over the whole of China during the Little Ice Age (AD 1400-AD 1900), but the warming of the Medieval Warm Period (AD 900-AD 1300) was not distinct in China, especially west China. The spatial pattern of precipitation showed significant regional differences in China, especially east China. The modern warm period has lasted 20 years from 1987 to 2006. Bi-decadal oscillation in precipitation variability was apparent over China during the 20th century. Solar activity and volcanic eruptions both were major forcings governing the climate variability during the last millennium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号