首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
Mare basalts collected at the Apollo 15 landing site are classified as belonging to either the quartz-normative suite or the olivine-normative suite, based on differences in whole-rock major element chemistry. A wide range of textures are displayed within samples from both suites, which provide insight into eruption processes on the Moon. Here we use crystal size distribution (CSD) analysis and spatial distribution pattern (SDP) analysis of pyroxene, olivine, and plagioclase crystals in eight Apollo 15 mare basalt samples to investigate the crystallization and emplacement of the quartz-normative and olivine-normative suites. In general, our results show similarities between the CSDs and SDPs for both mare basalt suites. However, we also report two distinct groups of pyroxene CSD trends that likely represent samples with common cooling histories, originating from comparable depths within respective olivine-normative and quartz-normative lava flows. We use our results to determine the relative depths of samples within the lava flows at the Apollo 15 landing site.  相似文献   

3.
Abstract— We present the petrography and geochemistry of five 2–4 mm basalt fragments from the Apollo 16 regolith. These fragments are 1) a high‐Ti vitrophyric basalt compositionally similar to Apollo 17 high‐Ti mare basalts, 2) a very high‐Ti vitrophyric basalt compositionally similar to Apollos 12 and 14 red‐black pyroclastic glass, 3) a coarsely crystalline high‐Al basalt compositionally similar to group 5 Apollo 14 high‐Al mare basalts, 4) a very low‐Ti (VLT) crystalline basalt compositionally similar to Luna 24 VLT basalts, and 5) a VLT basaltic glass fragment compositionally similar to Apollo 17 VLT basalts. High‐Ti basalt has been reported previously at the Apollo 16 site; the other basalt types have not been reported previously. As there are no known cryptomaria or pyroclastic deposits in the highlands near the Apollo 16 site (ruling out a local origin), and scant evidence for basaltic material in the Apollo 16 ancient regolith breccias or Apollo 16 soils collected near North Ray Crater (ruling out a basin ejecta origin), we infer that the basaltic material in the Apollo 16 regolith originated in maria near the Apollo 16 site and was transported laterally to the site by small‐ to medium‐sized post‐basin impacts. On the basis of TiO2 concentrations derived from the Clementine UVVIS data, Mare Tranquillitatis (?300 km north) is the most likely source for the high‐Ti basaltic material at the Apollo 16 site (craters Ross, Arago, Dionysius, Maskelyne, Moltke, Sosigenes, Schmidt), Mare Nectaris/Sinus Asperitatis (?220 km east) is the most likely source for the low‐Ti and VLT basaltic material (craters Theophilus, Madler, Torricelli), and a large regional pyroclastic deposit near Mare Vaporum (?600 km northwest) is the most likely source region for pyroclastic material (although no source craters are apparent in the region).  相似文献   

4.
New data from a petrological and geochemical examination of 12 coarse basaltic fines from the Apollo 12 soil sample 12023,155 provide evidence of additional geochemical diversity at the landing site. In addition to the bulk chemical composition, major, minor, and trace element analyses of mineral phases are employed to ascertain how these samples relate to the Apollo 12 lithological basalt groups, thereby overcoming the problems of representativeness of small samples. All of the samples studied are low‐Ti basalts (0.9–5.7 wt% TiO2), and many fall into the established olivine, pigeonite, and ilmenite classification of Apollo 12 basaltic suites. There are five exceptions: sample 12023,155_1A is mineralogically and compositionally distinct from other Apollo 12 basalt types, with low pigeonite REE concentrations and low Ni (41–55 ppm) and Mn (2400–2556 ppm) concentrations in olivine. Sample 12023,155_11A is also unique, with Fe‐rich mineral compositions and low bulk Mg# (=100 × atomic Mg/[Mg+Fe]) of 21.6. Sample 12023,155_7A has different plagioclase chemistry and crystallization trends as well as a wider range of olivine Mg# (34–55) compared with other Apollo 12 basalts, and shows greater similarities to Apollo 14 high‐Al basalts. Two other samples (12023,155_4A, and _5A) are similar to the Apollo 12 feldspathic basalt 12038, providing additional evidence that feldspathic basalts represent a lava flow proximal to the Apollo 12 site rather than material introduced by impacts. We suggest that at least one parent magma, and possibly as many as four separate parent magmas, are required in addition to the previously identified olivine, pigeonite, and ilmenite basaltic suites to account for the observed chemical diversity of basalts found in this study.  相似文献   

5.
In 1972, Apollo 17 astronauts returned 170.4 kg of lunar material. Within 1 month of their return, a subset of those samples was specially curated with the forethought that future analytical techniques would offer new insight into the formation and evolution of the Moon. Of interest in this work is sample 71036, a basalt collected from the rim of Steno crater in the Taurus–Littrow Valley, which was stored frozen and was processed and released for study 50 years later. We report, for the first time, the detailed mineralogy and petrology of 71036 and its companion samples 71035, 71037, and 71055 using a novel combination of 2-D and 3-D methods. We investigate lunar volatiles through in situ measurements of apatite and 3-D measurements of vesicles to understand the degassing histories of the Steno crater basalts. Our coupled 2-D petrography and 3-D tomography data sets support a model of the Steno crater basalts crystallizing in the upper crust of a mare lava flow. Apatite F and OH chemistry and the late-stage deformation of voids and formation of smaller vesicles provide evidence supporting coeval degassing of volatiles and crystallization of mesostasis apatite in Apollo 17 basalts. This work helps to close knowledge gaps surrounding the origin, magmatic evolution, emplacement, and crystallization history of high-titanium basalts.  相似文献   

6.
Abstract– We have studied 27 KREEP basalt fragments in six thin sections of samples collected from four Apollo 15 stations. Based on local geology and regional remote sensing data, these samples represent KREEP basalt lava flows that lie beneath the younger, local Apollo 15 mare basalts and under other mare flows north of the Apollo 15 site. Some of these rocks were deposited at the site as ejecta from the large craters Aristillus and Autolycus. KREEP basalts in this igneous province have a volume of 103–2 × 104 km3. Mineral and bulk compositional data indicate that the erupted magmas had Mg# [100 × molar Mg/(Mg + Fe)] up to 73, corresponding to orthopyroxene‐rich interior source regions with Mg# up to 90. Minor element variations in the parent magmas of the KREEP basalts, inferred from compositions of the most magnesian pyroxene and most calcic plagioclase in each sample, indicate small but significant differences in the concentrations of minor elements and Mg#, reflecting variations in the composition of lower crustal or mantle source regions and/or different amounts of partial melting of those source regions.  相似文献   

7.
We have classified 1858 lithic and vitreous fragments from the Luna 16 core-tube sample. They were taken from the soil fractions ranging in size from 150 to 425 μ, at levels A and G (γ). No important differences are observed between the proportions of particle types in levels A and G, nor between the soils of Luna 16 and those from the Apollo 11 landing site in the nearby Mare Tranquillitatis. Luna 16 basalts are texturally and mineralogically similar to Apollo 11 basalts, though the former are characterized by more Fe-rich olivines and pyroxenes and by lower ilmenite contents than are Apollo 11 basalts. The atomic ratio Al/Ti in Luna 16 basalt pyroxenes in about 1.5; Apollo 11 basalt pyroxenes have Al/Ti = 2.0, indicating the possibility of a lower mean valence for Ti in the Luna 16 material than in the Apollo 11 material. Most light-colored lithic fragments are anorthositic rather than noritic in character and are comparable to Apollo 11 anorthosites in mineral chemistry. We believe they are samples of terra regions to the north of the Luna 16 landing site. Triangular diagrams plotting normative plagioclase, normative mafics plus oxides, and normative orthoclase plus apatite neatly separate the three major types of lunar materials — mare basalts, anorthosites, and noritic rocks — and reveal that the Luna 16 regolith is composed of mare basalt and anorthosite, with very little norite component. Colorless-to-greenish glass occurs in the Luna 16 sample, which has high Fe and low Ti; it may represent gabbroic rock related to the anorthosites  相似文献   

8.
Abstract— New data are reported from five previously unanalyzed Apollo 12 mare basalts that are incorporated into an evaluation of previous petrogenetic models and classification schemes for these basalts. This paper proposes a classification for Apollo 12 mare basalts on the basis of whole-rock Mg# [molar 100*(Mg/(Mg+Fe))] and Rb/Sr ratio (analyzed by isotope dilution), whereby the ilmenite, olivine, and pigeonite basalt groups are readily distinguished from each other. Scrutiny of the Apollo 12 feldspathic “suite” demonstrates that two of the three basalts previously assigned to this group (12031, 12038, 12072) can be reclassified: 12031 is a plagioclase-rich pigeonite basalt (Nyquist et al, 1979); and 12072 is an olivine basalt Only basalt 12038 stands out as a unique sample (Nyquist et al., 1981) to the Apollo 12 she, but whether this represents a single sample from another flow at the Apollo 12 site or is exotic to this site is equivocal. The question of whether the olivine and pigeonite basalt suites are co-magmatic is addressed by incompatible trace-element chemistry: the trends defined by these two suites when Co/Sm and Sm/Eu ratios are plotted against Rb/Sr ratio demonstrate that these two basaltic types cannot be co-magmatic. Crystal fractionation/accumulation paths have been calculated and show that neither the pigeonite, olivine, or ilmenite basalts are related by this process. Each suite requires a distinct and separate source region. This study also examines sample heterogeneity and the degree to which whole-rock analyses are representative, which is critical when petrogenetic interpretation is undertaken. Sample heterogeneity has been investigated petrographically (inhomogeneous mineral distribution) with consideration of duplicate analyses, and whether a specific sample (using average data) plots consistently upon a fractionation trend when a number of different compositional parameters are considered. Using these criteria, four basalts have been identified where reported analyses are not representative of the whole-rock composition: 12005, an ilmenite basalt; 12006 and 12036, olivine basalts; and 12031 previously classified as a feldspathic basalt, but reclassified as part of the pigeonite suite (Nyquist et al., 1979).  相似文献   

9.
A synthesis of the majority of the available mare basalt data shows that basalts and glasses came from 28 different volcanic units. The compositions of the magmas of 12 of these units can be calculated with a high degree of confidence. Reasonable estimates can be made for the compositions of nine of the remaining units. In addition, the compositions of three general magma types can be obtained from data derived from the Luna 16, Luna 24, and Apollo 17 fines. The compositional data presented provide a firm basis for the further study of the characteristics of the mare basalt magma source region.  相似文献   

10.
Abstract— Major element and sulfur concentrations have been determined in experimentally heated olivine‐hosted melt inclusions from a suite of Apollo 12 picritic basalts (samples 12009, 12075, 12020, 12018, 12040, 12035). These lunar basalts are likely to be genetically related by olivine accumulation (Walker et al. 1976a, b). Our results show that major element compositions of melt inclusions from samples 12009, 12075, and 12020 follow model crystallization trends from a parental liquid similar in composition to whole rock sample 12009, thereby partially confirming the olivine accumulation hypothesis. In contrast, the compositions of melt inclusions from samples 12018, 12040, and 12035 fall away from model crystallization trends, suggesting that these samples crystallized from melts compositionally distinct from the 12009 parent liquid and therefore may not be strictly cogenetic with other members of the Apollo 12 picritic basalt suite. Sulfur concentrations in melt inclusions hosted in early crystallized olivine (Fo75) are consistent with a primary magmatic composition of 1050 ppm S, or about a factor of 2 greater than whole rock compositions with 400–600 ppm S. The Apollo 12 picritic basalt parental magma apparently experienced outgassing and loss of S during transport and eruption on the lunar surface. Even with the higher estimates of primary magmatic sulfur concentrations provided by the melt inclusions, the Apollo 12 picritic basalt magmas would have been undersaturated in sulfide in their mantle source regions and capable of transporting chalcophile elements from the lunar mantle to the surface. Therefore, the measured low concentration of chalcophile elements (e.g., Cu, Au, PGEs) in these lavas must be a primary feature of the lunar mantle and is not related to residual sulfide remaining in the mantle during melting. We estimate the sulfur concentration of the Apollo 12 mare basalt source regions to be ~75 ppm, which is significantly lower than that of the terrestrial mantle.  相似文献   

11.
Remotely sensed observations from recent missions (e.g., GRAIL, Kaguya, Chandrayaan‐1) have been interpreted as indicating that the deep crust and upper mantle are close to or at the lunar surface in many large impact basins (e.g., Crisium, Apollo, Moscoviense). If this is correct, the capability of either impact or volcanic processes to transport mantle lithologies to the lunar surface should be enhanced in these regions. Somewhat problematic to these observations and interpretations is that examples of mantle lithologies in the lunar sample collection (Apollo Program, Luna Program, lunar meteorites) are at best ambiguous. Dunite xenoliths in high‐Ti mare basalt 74275 are one of these ambiguous examples. In this high‐Ti mare basalt, olivine occurs in three generations: olivine associated with dunite xenoliths, olivine megacrysts, and olivine microphenocrysts. The dunite xenoliths are anhedral in shape and are generally greater than 800 μm in diameter. The interior of the xenoliths are fairly homogeneous with regard to many divalent cations. For example, the Mg# (Mg/Mg + Fe × 100) ranges from 82 to 83 in their interiors and decreases from 82 to 68 over the 10–30 μm wide outer rim. Titanium and phosphorus X‐ray maps of the xenolith illustrate that these slow diffusing elements preserve primary cumulate zoning textures. These textures indicate that the xenoliths consist of many individual olivine grains approximately 150–200 μm in diameter with low Ti, Al, and P cores. These highly incompatible elements are enriched in the outer Fe‐rich rims of the xenoliths and slightly enriched in the rims of the individual olivine grains. Highly compatible elements in olivine such as Ni exhibit a decrease in the rim surrounding the xenolith, an increase in the incompatible element depleted cores of the individual olivine grains, and a slight decrease in the “interior rims” of the individual olivine grains. Inferred melt composition, liquid lines of descent, and zoning profiles enable the reconstruction of the petrogenesis of the dunite xenoliths. Preservation of primary magmatic zoning (Ti, P, Al) and lack of textures similar to high‐pressure mineral assemblages exhibited by the Mg‐suite (Shearer et al. 2015) indicate that these xenoliths do not represent deep crustal or shallow mantle lithologies. Further, they are chemically and mineralogically distinct from Mg‐suite dunites identified from the Apollo 17 site. More likely, they represent olivine cumulates that crystallized from a low‐Ti mare basalt at intermediate to shallow crustal levels. The parent basalt to the dunite xenolith lithology was more primitive than low‐Ti basalts thus far returned from the Moon. Furthermore, this parental magma and its more evolved daughter magmas are not represented in the basalt sample suite returned from the Taurus‐Littrow Valley by the Apollo 17 mission. The dunite xenolith records several episodes of crystallization and re‐equilibration. During the last episode of re‐equilibration, the dunite cumulate was sampled by the 74275 high‐Ti basalt and transported over a period of 30–70 days to the lunar surface.  相似文献   

12.
The concentrations of major and trace elements have been determined in igneous rocks from Apollo 15. All materials analyzed have typical depletions of Eu except for minerals separated from sample 15085. Four samples have concentrations of trace elements that are similar to those of KREEP. The samples of mare basalt from Apollo 15 have higher concentrations of FeO, MgO, Mn, and Cr and lower concentrations of CaO, Na2O, K2O, and rare-earth elements (REE) as compared to the samples of mare basalt from Apollos 11, 12, and 14. The samples can be divided into two groups on the basis of their normative compositions. One group is quartz normative and has low concentrations of FeO while the other is olivine normative and has high concentrations of FeO. The trace element data indicate that the samples of olivine normative basalt could be from different portions of a single lava flow. At least two and possible three parent magmas can be identified from the samples of the quartz normative group on the basis of their concentration ratios of Sm to Eu. Within each group, the compositions of the samples appear to be related by crystallization of olivine or pyroxene. Significant variations of the ratio of concentration of Sm to Eu cannot be produced without plagioclase-liquid equilibrium. The source material of mare basalt may be depleted in Eu. Alternatively, the magmas may have assimilated a small volume of material similar to KREEP.Paper dedicated to Prof. Harold C. Urey on the occasion of his 80th birthday on 29 April 1973.  相似文献   

13.
Abstract— We present new compositional data for 30 lunar stones representing about 19 meteorites. Most have iron concentrations intermediate to those of the numerous feldspathic lunar meteorites (3–7% FeO) and the basaltic lunar meteorites (17–23% FeO). All but one are polymict breccias. Some, as implied by their intermediate composition, are mainly mixtures of brecciated anorthosite and mare basalt, with low concentrations of incompatible elements such as Sm (1–3 μg/g). These breccias likely originate from points on the Moon where mare basalt has mixed with material of the FHT (Feldspathic Highlands Terrane). Others, however, are not anorthosite‐basalt mixtures. Three (17–75 μ/g Sm) consist mainly of nonmare mafic material from the nearside PKT (Procellarum KREEP Terrane) and a few are ternary mixtures of material from the FHT, PKT, and maria. Some contain mafic, nonmare lithologies like anorthositic norites, norites, gabbronorites, and troctolite. These breccias are largely unlike breccias of the Apollo collection in that they are poor in Sm as well as highly feldspathic anorthosite such as that common at the Apollo 16 site. Several have high Th/Sm compared to Apollo breccias. Dhofar 961, which is olivine gabbronoritic and moderately rich in Sm, has lower Eu/Sm than Apollo samples of similar Sm concentration. This difference indicates that the carrier of rare earth elements is not KREEP, as known from the Apollo missions. On the basis of our present knowledge from remote sensing, among lunar meteorites Dhofar 961 is the one most likely to have originated from South Pole‐Aitken basin on the lunar far side.  相似文献   

14.
Twenty-seven samples of matrix and clast materials from Boulder 1 at Station 2, Apollo 17 have been analyzed for major and trace elements as part of the study of this boulder by Consortium Indomitabile. Both unusual and common types of material have been characterized. Gray and black competent breccia (GCBx and BCBx) and anorthositic breccia (AnBx) have compositions which are common at the Apollo 17 site and were common at the site of boulder formation. Light friable breccias (LFBx) have compositions which are not found at the Apollo 17 site other than in the boulder. Pigeonite basalt is a new type of lunar rock and has characteristics that would be expected of a highland volcanic rock. It is associated with LFBx material, and like LFBx material it is exotic to the Apollo 17 site. Coarse norite is an old primitive rock which is no longer (if ever) found as millimeter fragments at the Apollo 17 site. It was, however, present as millimeter fragments associated with GCBx and BCBx materials at the site and time of boulder formation. Therefore the boulder-forming process combined materials from at least two different localities or vertical strata; at least one of these (LFBx) has not been previously sampled and analyzed.  相似文献   

15.
Abstract— Through analysis by instrumental neutron activation (INAA) of 789 individual lithic fragments from the 2 mm–4 mm grain-size fractions of five Apollo 17 soil samples (72443, 72503, 73243, 76283, and 76503) and petrographic examination of a subset, we have determined the diversity and proportions of rock types recorded within soils from the highland massifs. The distribution of rock types at the site, as recorded by lithic fragments in the soils, is an alternative to the distribution inferred from the limited number of large rock samples. The compositions and proportions of 2 mm–4 mm fragments provide a bridge between compositions of <1 mm fines, and types and proportions of rocks observed in large collected breccias and their clasts. The 2 mm–4 mm fraction of soil from South Massif, represented by an unbiased set of lithic fragments from station-2 samples 72443 and 72503, consists of 71% noritic impact-melt breccia, 7% incompatible-trace-element-(ITE)-poor highland rock types (mainly granulitic breccias), 19% agglutinates and regolith breccias, 1% high-Ti mare basalt, and 2% others (very-low-Ti (VLT) basalt, monzogabbro breccia, and metal). In contrast, the 2 mm–4 mm fraction of a soil from the North Massif, represented by an unbiased set of lithic fragments from station-6 sample 76503, has a greater proportion of ITE-poor highland rock types and mare-basalt fragments: it consists of 29% ITE-poor highland rock types (mainly granulitic breccias and troctolitic anorthosite), 25% impact-melt breccia, 13% high-Ti mare basalt, 31% agglutinates and regolith breccias, 1% orange glass and related breccia, and 1% others. Based on a comparison of mass-weighted mean compositions of the lithic fragments with compositions of soil fines from all Apollo 17 highland stations, differences between the station-2 and station-6 samples are representative of differences between available samples from the two massifs. From the distribution of different rock types and their compositions, we conclude the following: (1) North-Massif and South-Massif soil samples differ significantly in types and proportions of ITE-poor highland components and ITE-rich impact-melt-breccia components. These differences reflect crudely layered massifs and known local geology. The greater percentage of impact-melt breccia in the South-Massif light-mantle soil stems from derivation of the light mantle from the top of the massif, which apparently is richer in noritic impact-melt breccia than are lower parts of the massifs. (2) At station 2, the 2 mm–4 mm grain-size fraction is enriched in impact-melt breccias compared to the <1 mm fraction, suggesting that the <1 mm fraction within the light mantle has a greater proportion of lithologies such as granulitic breccias which are more prevalent lower in the massifs and which we infer to be older (pre-basin) highland components. (3) Soil from station 6, North Massif, contains magnesian troctolitic anorthosite, which is a component that is rare in station-2 South-Massif soils. (4) Compositional differences between poikilitic impact-melt breccias from the two massifs suggest broad-scale heterogeneity in impact-melt breccia interpreted by most investigators to be ejecta from the Serenitatis basin. We have found rock types not previously recognized or uncommon at the Apollo 17 site. These include (1) ITE-rich impact-melt breccias that are compositionally distinct from previously recognized “aphanitic” and “poikilitic” groups at Apollo 17; (2) regolith breccias that are free of mare components and poor in impact melt of the types associated with the main melt-breccia groups, and that, if those groups derive from the Serenitatis impact, may represent the pre-Serenitatis surface; (3) several VLT basalts, including an unusual very-high-K basaltic breccia; (4) orange-glass regolith breccias; (5) aphanitic-matrix melt breccias at station 6; (6) fragments of alkali-rich composition, including alkali anorthosite, and monzogabbro; (7) one fragment of 72275-type KREEP basalt from station 3; (8) seven lithic fragments of ferroan-anorthositic-suite rocks; and (9) a fragment of metal, possibly from an L chondrite. Some of these lithologies have been found only as lithic fragments in the soils and not among the large rock samples. In contrast, we have not found among the 2 mm–4 mm lithic fragments individual samples of certain lithologies that have been recognized as clasts in breccias (e.g., dunite and spinel troctolite). The diversity of lithologic information contained in the lithic fragments of these soils nearly equals that found among large rock samples, and most information bearing on petrographic relationships is maintained, even in such small samples. Given a small number of large samples for “petrologic ground truth,” small lithic fragments contained in soil “scoop” samples can provide the basis for interpreting the diversity of rock types and their proportions in remotely sensed geologic units. They should be considered essential targets for future automated sample-analysis and sample-return missions.  相似文献   

16.
In the context of sample evidence alone, the high-alumina (HA) basalts appear to be an unique, and rare variety of mare basalt. In addition to their distinct chemistry, radiometric dating reveals these basalts to be among the oldest sampled mare basalts. Yet, HA basalts were sampled by four missions spanning a lateral range of ∼2400 km, with ages demonstrating that aluminous volcanism lasted at least 1 billion years. This evidence suggests that HA basalts may be a widespread phenomenon on the Moon. Knowing the distribution of HA mare basalts on the lunar surface has significance for models of the origin and the evolution of the Lunar Magma Ocean. Surface exposures of HA basalts can be detected with compositional remote sensing data from Lunar Prospector Gamma Ray Spectrometer and Clementine. We searched the lunar surface for regions of interest (ROIs) that correspond to the intersection of three compositional constraints taken from values of sampled HA basalts: 12-18 wt% FeO, 1.5-5 wt% TiO2, and 0-4 ppm Th. We then determined the “true” (unobscured by regolith) composition of basalt units by analyzing the rims and proximal ejecta of small impacts (0.4-4 km in diameter) into the mare surface of these ROIs. This paper focuses on two ROIs that are the best candidates for sources of sampled HA basalts: Mare Fecunditatis, the landing site of Luna 16; and northern Mare Imbrium, hypothesized origin of the Apollo 14 HA basalts. We demonstrate our technique's ability for delineating discrete basalt units and determining which is the best compositional match to the HA basalts sampled by each mission. We identified two units in Mare Fecunditatis that spectrally resemble HA basalts, although only one unit (Iltm) is consistent with the compositional and relative age of the Luna 16 HA samples. Northern Mare Imbrium also reveals two units that are within the compositional constraints of HA basalts, with one (Iltm) best matching the composition of the basalts sampled by Apollo 14.  相似文献   

17.
Clast 100 in regolith breccia 15295 could be a key to resolving the relationship(s) between mare basalts and lunar picritic glasses. The clast is basaltic, with texture, mineralogy, mineral compositions, and calculated bulk composition suggesting that it crystallized in a thick lava flow or shallow intrusive body from a very‐low‐titanium (VLT) basaltic magma. The estimated bulk composition of clast 15295,100 is primitive (i.e., magnesian) compared to those of known VLT basalts, and is very close to those of VLT picritic green glasses, especially the Apollo 14 A green glass. From these similarities, we infer that clast 15295,100 is a crystalline product of a picritic magma similar to the Apollo 14 A glass. Clementine and M3 remotely sensed data of the lunar surface were used to find areas that have chemical compositions consistent with those of clast 15295,100, not only near the Apollo 15 site, but in a broad region surrounding the site. Two regions are consistent with clast's 15295,100 compositional data. The larger region is in southern Mare Imbrium, and a smaller region is in the eastern half of Sinus Aestuum. These locations should be considered as candidates for future missions focusing on sample science.  相似文献   

18.
J.L. Whitford-Stark 《Icarus》1981,48(3):393-427
Nectaris is an 820-km-diameter, multiring impact basin located on the near side of the Moon. The transient cavity is estimated to have been less than 90 km in depth and materials were excavated from a depth of less than 30 km. About 2 km thickness of impact melt is believed to line the cavity center. The impact event probably took place at about 3.98 ± 0.03 × 109 years ago. Nectaris ejecta forms a substantial proportion of the surface materials at the Apollo 16 site. Inter-ring plains deposits were deposited after the formation of the Nectaris basin. The most persuasive origin for the smooth plains is one of extrusives overlain by a thin veneer of ejecta. Basaltic fragments within Apollo 16 samples are believed to have been largely derived from Nectaris. A titanium-rich Apollo 16 mare basalt fragment has an age of 3.79 ± 0.05 × 109 years but, although some relatively titanium-enriched basalts occur in southern Nectaris, titanium-rich basalts are nowhere seen at the surface of the mare. The earliest recognized eruptives appear to be low-titanium (perhaps VLT) basalts found as pyroclastic materials on Daguerre and in the Gaudibert region. The majority of the surface basalts are of intermediate composition (possibly similar to Apollo 12 basalts) and have an age of approximately 3.6 × 109 years. The basalt fill is estimated to have a minimum thickness of 3 km. Flood-style eruptions appear to have been the main form of extrusion. Mare ridges exhibit a strong north-south preferential alignment and appear to postdate basalt emplacement. The lack of basin-related graben in Nectaris is consistent with a thick lithosphere. The basin ring structure is best preserved in the southwest and least preserved in the northeast. This is believed to result from horizontal variations in the crust and lithosphere thicknesses and from the influence of the preexisting Fecunditatis and Tranquillitatis basins; the ring structure is best preserved where the lithosphere was thickest. Floor-fractured craters within Nectaris are intimately associated with the basalt fill both in terms of age and location. Theophilus ejecta, small craters, and Tycho rays, combined with subsidence and mare ridge development, were the only modifying influences on Nectaris since the termination of basalt eruptions.  相似文献   

19.
Abstract— Mineralogy, major element compositions of minerals, and elemental and oxygen isotopic compositions of the whole rock attest to a lunar origin of the meteorite Northwest Africa (NWA) 032, an unbrecciated basalt found in October 1999. The rock consists predominantly of olivine, pyroxene and chromite phenocrysts, set in a crystalline groundmass of feldspar, pyroxene, ilmenite, troilite and trace metal. Whole‐rock shock veins comprise a minor, but ubiquitous portion of the rock. Undulatory to mosaic extinction in olivine and pyroxene phenocrysts and micro‐faults in groundmass and phenocrysts also are attributed to shock. Several geochemical signatures taken together indicate unambiguously that NWA 032 originated from the Moon. The most diagnostic criteria include whole‐rock oxygen isotopic composition and ratios of Fe/Mn in the whole rock, olivine, and pyroxene. A lunar origin is documented further by the presence of Fe‐metal, troilite, and ilmenite; zoning to extremely Fe‐rich compositions in pyroxene; the ferrous oxidation state of all Fe in pyroxene; and the rare earth element (REE) pattern with a well‐defined negative europium anomaly. This rock is similar in major element chemistry to basalts from Apollo 12 and 15, but is enriched in light REE and has an unusually high Th/Sm ratio. Some Apollo 14 basalts yield a closer match to NWA 032 in REE patterns, but have higher concentrations of Al2O3. Ar‐Ar step release results are complex, but yield a whole‐rock age of ?2.8 Ga, suggesting that NWA 032 was extruded at 2.8 Ga or earlier. This rock may be the youngest sample of mare basalt collected to date. Noble gas concentrations combined with previously collected radionuclide data indicate that the meteorite exposure history is distinct from currently recognized lunar meteorites. In short, the geochemical and petrographic features of NWA 032 are not matched by Apollo or Luna samples, nor by previously identified lunar meteorites, indicating that it originates from a previously unsampled mare deposit. Detailed assessment of petrographic features, olivine zoning, and thermodynamic modelling indicate a relatively simple cooling and crystallization history for NWA 032. Chromite‐spinel, olivine, and pyroxene crystallized as phenocrysts while the magma cooled no faster than 2 °C/h based on the polyhedral morphology of olivine. Comparison of olivine size with crystal growth rates and preserved Fe‐Mg diffusion profiles in olivine phenocrysts suggest that olivine was immersed in the melt for no more than 40 days. Plumose textures in groundmass pyroxene, feldspar, and ilmenite, and Fe‐rich rims on the phenocrysts formed during rapid crystallization (cooling rates ?20 to 60 °C/h) after eruption.  相似文献   

20.
Approximately 180 glasses in each of three Apollo 15 soils have been analyzed for nine elements. Cluster analysis techniques allow the recognition of preferred glass compositions that are equated with parent rock compositions Green glass rich in Fe and Mg, poor in Al and Ti may be derived from deep seated pyroxenitic material now present at the Apennine Front. Fra Mauro basalt (KREEP) is most abundant in the LM soil and is tentatively identified as ray material from the Aristillus-Autolycus area. Highland basalt (anorthositic gabbro), believed to be derived from the lunar highlands, has the same composition as at other landing sites, but is less abundant. The Apennine Front is probably not true highland material but may contain a substantial amount of material with the composition of Fra Mauro basalt, but lacking the high-K content. Glasses with mare basalt compositions are present in the soils and four subgroups are recognized, one of which is compositionally equivalent to the large Apollo 15 basalt samples  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号