首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integrated Assessment Models (IAMs) are an important tool to compare the costs and benefits of different climate policies. Recently, attention has been given to the effect of different discounting methods and damage estimates on the results of IAMs. One aspect to which little attention has been paid is how the representation of the climate system may affect the estimated benefits of mitigation action. In that respect, we analyse several well-known IAMs, including the newest versions of FUND, DICE and PAGE. Given the role of IAMs in integrating information from different disciplines, they should ideally represent both best estimates and the ranges of anticipated climate system and carbon cycle behaviour (as e.g. synthesised in the IPCC Assessment reports). We show that in the longer term, beyond 2100, most IAM parameterisations of the carbon cycle imply lower CO2 concentrations compared to a model that captures IPCC AR4 knowledge more closely, e.g. the carbon-cycle climate model MAGICC6. With regard to the climate component, some IAMs lead to much lower benefits of mitigation than MAGICC6. The most important reason for the underestimation of the benefits of mitigation is the failure in capturing climate dynamics correctly, which implies this could be a potential development area to focus on.  相似文献   

2.
Multi-gas Emissions Pathways to Meet Climate Targets   总被引:1,自引:1,他引:1  
So far, climate change mitigation pathways focus mostly on CO2 and a limited number of climate targets. Comprehensive studies of emission implications have been hindered by the absence of a flexible method to generate multi-gas emissions pathways, user-definable in shape and the climate target. The presented method ‘Equal Quantile Walk’ (EQW) is intended to fill this gap, building upon and complementing existing multi-gas emission scenarios. The EQW method generates new mitigation pathways by ‘walking along equal quantile paths’ of the emission distributions derived from existing multi-gas IPCC baseline and stabilization scenarios. Considered emissions include those of CO2 and all other major radiative forcing agents (greenhouse gases, ozone precursors and sulphur aerosols). Sample EQW pathways are derived for stabilization at 350 ppm to 750 ppm CO2 concentrations and compared to WRE profiles. Furthermore, the ability of the method to analyze emission implications in a probabilistic multi-gas framework is demonstrated. The probability of overshooting a 2 C climate target is derived by using different sets of EQW radiative forcing peaking pathways. If the probability shall not be increased above 30%, it seems necessary to peak CO2 equivalence concentrations around 475 ppm and return to lower levels after peaking (below 400 ppm). EQW emissions pathways can be applied in studies relating to Article 2 of the UNFCCC, for the analysis of climate impacts, adaptation and emission control implications associated with certain climate targets. See for EQW-software and data.  相似文献   

3.
This paper examines different concepts of a ‘warming commitment’ which is often used in various ways to describe or imply that a certain level of warming is irrevocably committed to over time frames such as the next 50 to 100 years, or longer. We review and quantify four different concepts, namely (1) a ‘constant emission warming commitment’, (2) a ‘present forcing warming commitment’, (3) a‘zero emission (geophysical) warming commitment’ and (4) a ‘feasible scenario warming commitment’. While a ‘feasible scenario warming commitment’ is probably the most relevant one for policy making, it depends centrally on key assumptions as to the technical, economic and political feasibility of future greenhouse gas emission reductions. This issue is of direct policy relevance when one considers that the 2002 global mean temperatures were 0.8± 0.2 °C above the pre-industrial (1861–1890) mean and the European Union has a stated goal of limiting warming to 2 °C above the pre-industrial mean: What is the risk that we are committed to overshoot 2 °C? Using a simple climate model (MAGICC) for probabilistic computations based on the conventional IPCC uncertainty range for climate sensitivity (1.5 to 4.5 °C), we found that (1) a constant emission scenario is virtually certain to overshoot 2 °C with a central estimate of 2.0 °C by 2100 (4.2 °C by 2400). (2) For the present radiative forcing levels it seems unlikely that 2 °C are overshoot. (central warming estimate 1.1 °C by 2100 and 1.2 °C by 2400 with ~10% probability of overshooting 2 °C). However, the risk of overshooting is increasing rapidly if radiative forcing is stabilized much above 400 ppm CO2 equivalence (1.95 W/m2) in the long-term. (3) From a geophysical point of view, if all human-induced emissions were ceased tomorrow, it seems ‘exceptionally unlikely’ that 2 °C will be overshoot (central estimate: 0.7 °C by 2100; 0.4 °C by 2400). (4) Assuming future emissions according to the lower end of published mitigation scenarios (350 ppm CO2eq to 450 ppm CO2eq) provides the central temperature projections are 1.5 to 2.1 °C by 2100 (1.5 to 2.0 °C by 2400) with a risk of overshooting 2 °C between 10 and 50% by 2100 and 1–32% in equilibrium. Furthermore, we quantify the ‘avoidable warming’ to be 0.16–0.26 °C for every 100 GtC of avoided CO2 emissions – based on a range of published mitigation scenarios.  相似文献   

4.
Climate policies must consider radiative forcing from Kyoto greenhouse gases, as well as other forcing constituents, such as aerosols and tropospheric ozone that result from air pollutants. Non-Kyoto forcing constituents contribute negative, as well as positive forcing, and overall increases in total forcing result in increases in global average temperature. Non-Kyoto forcing modeling is a relatively new component of climate management scenarios. This paper describes and assesses current non-Kyoto radiative forcing modeling within five integrated assessment models. The study finds negative forcing from aerosols masking (offsetting) approximately 25 % of positive forcing in the near-term in reference non-climate policy projections. However, masking is projected to decline rapidly to 5–10 % by 2100 with increasing Kyoto emissions and assumed reductions in air pollution—with the later declining to as much as 50 % and 80 % below today’s levels by 2050 and 2100 respectively. Together they imply declining importance of non-Kyoto forcing over time. There are however significant uncertainties and large differences across models in projected non-Kyoto emissions and forcing. A look into the modeling reveals differences in base conditions, relationships between Kyoto and non-Kyoto emissions, pollution control assumptions, and other fundamental modeling. In addition, under climate policy scenarios, we find air pollution and resulting non-Kyoto forcing reduced to levels below those produced by air pollution policies alone—e.g., China sulfur emissions fall an additional 45–85 % by 2050. None of the models actively manage non-Kyoto forcing for climate implications. Nonetheless, non-Kyoto forcing may be influencing mitigation results, including allowable carbon dioxide emissions, and further evaluation is merited.  相似文献   

5.
Today's climate policy is based on the assumption that the location of emissions reductions has no impact on the overall climate effect. However, this may not be the case since reductions of greenhouse gases generally will lead to changes in emissions of short-lived gases and aerosols. Abatement measures may be primarily targeted at reducing CO2, but may also simultaneously reduce emissions of NOx, CO, CH4 and SO2 and aerosols. Emissions of these species may cause significant additional radiative forcing. We have used a global 3-D chemical transport model and a radiative transfer model to study the impact on climate in terms of radiative forcing for a realistic change in location of the emissions from large-scale sources. Based on an assumed 10% reduction in CO2 emissions, reductions in the emissions of other species have been estimated. Climate impact for the SRES A1B scenario is compared to two reduction cases, with the main focus on a case with emission reductions between 2010 and 2030, but also a case with sustained emission reductions. The emission reductions are applied to four different regions (Europe, China, South Asia, and South America). In terms of integrated radiative forcing (over 100 yr), the total effect (including only the direct effect of aerosols) is always smaller than for CO2 alone. Large variations between the regions are found (53–86% of the CO2 effect). Inclusion of the indirect effects of sulphate aerosols reduces the net effect of measures towards zero. The global temperature responses, calculated with a simple energy balance model, show an initial additional warming of different magnitude between the regions followed by a more uniform reduction in the warming later. A major part of the regional differences can be attributed to differences related to aerosols, while ozone and changes in methane lifetime make relatively small contributions. Emission reductions in a different sector (e.g. transportation instead of large-scale sources) might change this conclusion since the NOx to SO2 ratio in the emissions is significantly higher for transportation than for large-scale sources. The total climate effect of abatement measures thus depends on (i) which gases and aerosols are affected by the measure, (ii) the lifetime of the measure implemented, (iii) time horizon over which the effects are considered, and (iv) the chemical, physical and meteorological conditions in the region. There are important policy implications of the results. Equal effects of a measure cannot be assumed if the measure is implemented in a different region and if several gases are affected. Thus, the design of emission reduction measures should be considered thoroughly before implementation.  相似文献   

6.
Climate is simulated for reference and mitigation emissions scenarios from Integrated Assessment Models using the Bern2.5CC carbon cycle–climate model. Mitigation options encompass all major radiative forcing agents. Temperature change is attributed to forcings using an impulse–response substitute of Bern2.5CC. The contribution of CO2 to global warming increases over the century in all scenarios. Non-CO2 mitigation measures add to the abatement of global warming. The share of mitigation carried by CO2, however, increases when radiative forcing targets are lowered, and increases after 2000 in all mitigation scenarios. Thus, non-CO2 mitigation is limited and net CO2 emissions must eventually subside. Mitigation rapidly reduces the sulfate aerosol loading and associated cooling, partly masking Greenhouse Gas mitigation over the coming decades. A profound effect of mitigation on CO2 concentration, radiative forcing, temperatures and the rate of climate change emerges in the second half of the century.  相似文献   

7.
 Impulse-response-function (IRF) models are designed for applications requiring a large number of climate change simulations, such as multi-scenario climate impact studies or cost-benefit integrated-assessment studies. The models apply linear response theory to reproduce the characteristics of the climate response to external forcing computed with sophisticated state-of-the-art climate models like general circulation models of the physical ocean-atmosphere system and three-dimensional oceanic-plus-terrestrial carbon cycle models. Although highly computer efficient, IRF models are nonetheless capable of reproducing the full set of climate-change information generated by the complex models against which they are calibrated. While limited in principle to the linear response regime (less than about 3 C global-mean temperature change), the applicability of the IRF model presented has been extended into the nonlinear domain through explicit treatment of the climate system's dominant nonlinearities: CO2 chemistry in ocean water, CO2 fertilization of land biota, and sublinear radiative forcing. The resultant nonlinear impulse-response model of the coupled carbon cycle-climate system (NICCS) computes the temporal evolution of spatial patterns of climate change for four climate variables of particular relevance for climate impact studies: near-surface temperature, cloud cover, precipitation, and sea level. The space-time response characteristics of the model are derived from an EOF analysis of a transient 850-year greenhouse warming simulation with the Hamburg atmosphere-ocean general circulation model ECHAM3-LSG and a similar response experiment with the Hamburg carbon cycle model HAMOCC. The model is applied to two long-term CO2 emission scenarios, demonstrating that the use of all currently estimated fossil fuel resources would carry the Earth's climate far beyond the range of climate change for which reliable quantitative predictions are possible today, and that even a freezing of emissions to present-day levels would cause a major global warming in the long term. Received: 28 January 2000 / Accepted: 9 March 2001  相似文献   

8.
The RCP2.6 emission and concentration pathway is representative of the literature on mitigation scenarios aiming to limit the increase of global mean temperature to 2°C. These scenarios form the low end of the scenario literature in terms of emissions and radiative forcing. They often show negative emissions from energy use in the second half of the 21st century. The RCP2.6 scenario is shown to be technically feasible in the IMAGE integrated assessment modeling framework from a medium emission baseline scenario, assuming full participation of all countries. Cumulative emissions of greenhouse gases from 2010 to 2100 need to be reduced by 70% compared to a baseline scenario, requiring substantial changes in energy use and emissions of non-CO2 gases. These measures (specifically the use of bio-energy and reforestation measures) also have clear consequences for global land use. Based on the RCP2.6 scenario, recommendations for further research on low emission scenarios have been formulated. These include the response of the climate system to a radiative forcing peak, the ability of society to achieve the required emission reduction rates given political and social inertia and the possibilities to further reduce emissions of non-CO2 gases.  相似文献   

9.
Abstract

A central issue in tackling climate change is to understand to what extent different short-term mitigation strategies are consistent with long-term stabilization targets. The present article aims at cross-comparing emission paths derived by plausible short-term policies against those implied by long-term climate targets, comparing, for example, differences in peak periods. Short-term policies considered are, for instance, Kyoto-type targets with or without participation by the USA and/or by developing countries. Long-term targets focus instead on stabilization of CO2 concentrations, radiative forcing and the increase in atmospheric temperature relative to pre-industrial levels. In order to account for the uncertainty surrounding the climate cycle, for each long-term goal multiple paths of emission—the most probable, the optimistic and the pessimistic projections—are considered in the comparison exercise. Comparative analysis is performed using the FEEM-RICE model, a regional economy—climate model. The results suggest that some early policy action should take place for short-term emissions to be compatible with long-term targets. In particular, the Kyoto-type regimes appear to be on a compatible emission path, at least up to the second commitment period. However, this is no longer the case when assuming a pessimistic realization of the uncertain climate parameters.  相似文献   

10.
The increase of atmospheric CO2 concentrations due to anthropogenic activities is substantially damped by the ocean, whose CO2 uptake is determined by the state of the ocean, which in turn is influenced by climate change. We investigate the mechanisms of the ocean’s carbon uptake within the feedback loop of atmospheric CO2 concentration, climate change and atmosphere/ocean CO2 flux. We evaluate two transient simulations from 1860 until 2100, performed with a version of the Max Planck Institute Earth System Model (MPI-ESM) with the carbon cycle included. In both experiments observed anthropogenic CO2 emissions were prescribed until 2000, followed by the emissions according to the IPCC Scenario A2. In one simulation the radiative forcing of changing atmospheric CO2 is taken into account (coupled), in the other it is suppressed (uncoupled). In both simulations, the oceanic carbon uptake increases from 1 GT C/year in 1960 to 4.5 GT C/year in 2070. Afterwards, this trend weakens in the coupled simulation, leading to a reduced uptake rate of 10% in 2100 compared to the uncoupled simulation. This includes a partial offset due to higher atmospheric CO2 concentrations in the coupled simulation owing to reduced carbon uptake by the terrestrial biosphere. The difference of the oceanic carbon uptake between both simulations is primarily due to partial pressure difference and secondary to solubility changes. These contributions are widely offset by changes of gas transfer velocity due to sea ice melting and wind changes. The major differences appear in the Southern Ocean (?45%) and in the North Atlantic (?30%), related to reduced vertical mixing and North Atlantic meridional overturning circulation, respectively. In the polar areas, sea ice melting induces additional CO2 uptake (+20%).  相似文献   

11.
Article 2 of the United Nations Framework Convention on Climate Change (UNFCCC) calls for stabilization of greenhouse gas (GHG) concentrations at levels that prevent dangerous anthropogenic interference (DAI) in the climate system. However, some of the recent policy literature has focused on dangerous climatic change (DCC) rather than on DAI. DAI is a set of increases in GHGs concentrations that has a non-negligible possibility of provoking changes in climate that in turn have a non-negligible possibility of causing unacceptable harm, including harm to one or more of ecosystems, food production systems, and sustainable socio-economic systems, whereas DCC is a change of climate that has actually occurred or is assumed to occur and that has a non-negligible possibility of causing unacceptable harm. If the goal of climate policy is to prevent DAI, then the determination of allowable GHG concentrations requires three inputs: the probability distribution function (pdf) for climate sensitivity, the pdf for the temperature change at which significant harm occurs, and the allowed probability (“risk”) of incurring harm previously deemed to be unacceptable. If the goal of climate policy is to prevent DCC, then one must know what the correct climate sensitivity is (along with the harm pdf and risk tolerance) in order to determine allowable GHG concentrations. DAI from elevated atmospheric CO2 also arises through its impact on ocean chemistry as the ocean absorbs CO2. The primary chemical impact is a reduction in the degree of supersaturation of ocean water with respect to calcium carbonate, the structural building material for coral and for calcareous phytoplankton at the base of the marine food chain. Here, the probability of significant harm (in particular, impacts violating the subsidiary conditions in Article 2 of the UNFCCC) is computed as a function of the ratio of total GHG radiative forcing to the radiative forcing for a CO2 doubling, using two alternative pdfs for climate sensitivity and three alternative pdfs for the harm temperature threshold. The allowable radiative forcing ratio depends on the probability of significant harm that is tolerated, and can be translated into allowable CO2 concentrations given some assumption concerning the future change in total non-CO2 GHG radiative forcing. If future non-CO2 GHG forcing is reduced to half of the present non-CO2 GHG forcing, then the allowable CO2 concentration is 290–430 ppmv for a 10% risk tolerance (depending on the chosen pdfs) and 300–500 ppmv for a 25% risk tolerance (assuming a pre-industrial CO2 concentration of 280 ppmv). For future non-CO2 GHG forcing frozen at the present value, and for a 10% risk threshold, the allowable CO2 concentration is 257–384 ppmv. The implications of these results are that (1) emissions of GHGs need to be reduced as quickly as possible, not in order to comply with the UNFCCC, but in order to minimize the extent and duration of non-compliance; (2) we do not have the luxury of trading off reductions in emissions of non-CO2 GHGs against smaller reductions in CO2 emissions, and (3) preparations should begin soon for the creation of negative CO2 emissions through the sequestration of biomass carbon.  相似文献   

12.
The RCP greenhouse gas concentrations and their extensions from 1765 to 2300   总被引:16,自引:2,他引:14  
We present the greenhouse gas concentrations for the Representative Concentration Pathways (RCPs) and their extensions beyond 2100, the Extended Concentration Pathways (ECPs). These projections include all major anthropogenic greenhouse gases and are a result of a multi-year effort to produce new scenarios for climate change research. We combine a suite of atmospheric concentration observations and emissions estimates for greenhouse gases (GHGs) through the historical period (1750?C2005) with harmonized emissions projected by four different Integrated Assessment Models for 2005?C2100. As concentrations are somewhat dependent on the future climate itself (due to climate feedbacks in the carbon and other gas cycles), we emulate median response characteristics of models assessed in the IPCC Fourth Assessment Report using the reduced-complexity carbon cycle climate model MAGICC6. Projected ??best-estimate?? global-mean surface temperature increases (using inter alia a climate sensitivity of 3°C) range from 1.5°C by 2100 for the lowest of the four RCPs, called both RCP3-PD and RCP2.6, to 4.5°C for the highest one, RCP8.5, relative to pre-industrial levels. Beyond 2100, we present the ECPs that are simple extensions of the RCPs, based on the assumption of either smoothly stabilizing concentrations or constant emissions: For example, the lower RCP2.6 pathway represents a strong mitigation scenario and is extended by assuming constant emissions after 2100 (including net negative CO2 emissions), leading to CO2 concentrations returning to 360 ppm by 2300. We also present the GHG concentrations for one supplementary extension, which illustrates the stringent emissions implications of attempting to go back to ECP4.5 concentration levels by 2250 after emissions during the 21st century followed the higher RCP6 scenario. Corresponding radiative forcing values are presented for the RCP and ECPs.  相似文献   

13.
Uncertainties in climate stabilization   总被引:1,自引:1,他引:0  
The atmospheric composition, temperature and sea level implications out to 2300 of new reference and cost-optimized stabilization emissions scenarios produced using three different Integrated Assessment (IA) models are described and assessed. Stabilization is defined in terms of radiative forcing targets for the sum of gases potentially controlled under the Kyoto Protocol. For the most stringent stabilization case (“Level 1” with CO2 concentration stabilizing at about 450 ppm), peak CO2 emissions occur close to today, implying (in the absence of a substantial CO2 concentration overshoot) a need for immediate CO2 emissions abatement if we wish to stabilize at this level. In the extended reference case, CO2 stabilizes at about 1,000 ppm in 2200—but even to achieve this target requires large and rapid CO2 emissions reductions over the twenty-second century. Future temperature changes for the Level 1 stabilization case differ noticeably between the IA models even when a common set of climate model parameters is used (largely a result of different assumptions for non-Kyoto gases). For the Level 1 stabilization case, there is a probability of approximately 50% that warming from pre-industrial times will be less than (or more than) 2°C. For one of the IA models, warming in the Level 1 case is actually greater out to 2040 than in the reference case due to the effect of decreasing SO2 emissions that occur as a side effect of the policy-driven reduction in CO2 emissions. This effect is less noticeable for the other stabilization cases, but still leads to policies having virtually no effect on global-mean temperatures out to around 2060. Sea level rise uncertainties are very large. For example, for the Level 1 stabilization case, increases range from 8 to 120 cm for changes over 2000 to 2300.  相似文献   

14.
Carbon dioxide emissions need to be reduced well below current emissions if atmospheric concentrations are to be stabilised at a level likely to avoid dangerous climate change. We investigate how delays in reducing CO2 emissions affect stabilisation scenarios leading to overshooting of a target concentration pathway. We show that if geo-engineering alone is used to compensate for the delay in reducing CO2 emissions, such an option needs to be sustained for centuries even though the period of overshooting emissions may only last for a few decades. If geo-engineering is used for a shorter period, it has to be associated with emission reductions significantly larger than those required to stabilise CO2 without overshooting the target. In the presence of a strong climate–carbon cycle feedback the required emission reductions are even more drastic.  相似文献   

15.
The IPCC Fourth Assessment Report, Working Group III, summarises in Box 13.7 the required emission reduction ranges in Annex I and non-Annex I countries as a group, to achieve greenhouse gas concentration stabilisation levels between 450 and 650 ppm CO2-eq. The box summarises the results of the IPCC authors’ analysis of the literature on the regional allocation of the emission reductions. The box states that Annex I countries as a group would need to reduce their emissions to below 1990 levels in 2020 by 25% to 40% for 450 ppm, 10% to 30% for 550 ppm and 0% to 25% for 650 ppm CO2-eq, even if emissions in developing countries deviate substantially from baseline for the low concentration target. In this paper, the IPCC authors of Box 13.7 provide background information and analyse whether new information, obtained after completion of the IPCC report, influences these ranges. The authors concluded that there is no argument for updating the ranges in Box 13.7. The allocation studies, which were published after the writing of the IPCC report, show reductions in line with the reduction ranges in the box. From the studies analysed, this paper specifies the “substantial deviation” or “deviation from baseline” in the box: emissions of non-Annex I countries as a group have to be below the baseline roughly between 15% to 30% for 450 ppm CO2-eq, 0% to 20% for 550 ppm CO2-eq and from 10% above to 10% below the baseline for 650 ppm CO2-eq, in 2020. These ranges apply to the whole group of non-Annex I countries and may differ substantially per country. The most important factor influencing these ranges above, for non-Annex I countries, and in the box, for Annex I countries, is new information on higher baseline emissions (e.g. that of Sheehan, Climatic Change, 2008, this issue). Other factors are the assumed global emission level in 2020 and assumptions on land-use change and forestry emissions. The current, slow pace in climate policy and the steady increase in global emissions, make it almost unfeasible to reach relatively low global emission levels in 2020 needed to meet 450 ppm CO2-eq, as was first assumed feasible by some studies, 5 years ago.  相似文献   

16.
Climate projections over the next two to four decades indicate that most of Australia’s wheat-belt is likely to become warmer and drier. Here we used a shire scale, dynamic stress-index model that accounts for the impacts of rainfall and temperature on wheat yield, and a range of climate change projections from global circulation models to spatially estimate yield changes assuming no adaptation and no CO2 fertilisation effects. We modelled five scenarios, a baseline climate (climatology, 1901–2007), and two emission scenarios (“low” and “high” CO2) for two time horizons, namely 2020 and 2050. The potential benefits from CO2 fertilisation were analysed separately using a point level functional simulation model. Irrespective of the emissions scenario, the 2020 projection showed negligible changes in the modelled yield relative to baseline climate, both using the shire or functional point scale models. For the 2050-high emissions scenario, changes in modelled yield relative to the baseline ranged from ?5 % to +6 % across most of Western Australia, parts of Victoria and southern New South Wales, and from ?5 to ?30 % in northern NSW, Queensland and the drier environments of Victoria, South Australia and in-land Western Australia. Taking into account CO2 fertilisation effects across a North–south transect through eastern Australia cancelled most of the yield reductions associated with increased temperatures and reduced rainfall by 2020, and attenuated the expected yield reductions by 2050.  相似文献   

17.
This article assesses Japan's carbon budgets up to 2100 in the global efforts to achieve the 2?°C target under different effort-sharing approaches based on long-term GHG mitigation scenarios published in 13 studies. The article also presents exemplary emission trajectories for Japan to stay within the calculated budget.

The literature data allow for an in-depth analysis of four effort-sharing categories. For a 450?ppm CO2e stabilization level, the remaining carbon budgets for 2014–2100 were negative for the effort-sharing category that emphasizes historical responsibility and capability. For the other three, including the reference ‘Cost-effectiveness’ category, which showed the highest budget range among all categories, the calculated remaining budgets (20th and 80th percentile ranges) would run out in 21–29 years if the current emission levels were to continue. A 550?ppm CO2e stabilization level increases the budgets by 6–17 years-equivalent of the current emissions, depending on the effort-sharing category. Exemplary emissions trajectories staying within the calculated budgets were also analysed for ‘Equality’, ‘Staged’ and ‘Cost-effectiveness’ categories. For a 450?ppm CO2e stabilization level, Japan's GHG emissions would need to phase out sometime between 2045 and 2080, and the emission reductions in 2030 would be at least 16–29% below 1990 levels even for the most lenient ‘Cost-effectiveness’ category, and 29–36% for the ‘Equality’ category. The start year for accelerated emissions reductions and the emissions convergence level in the long term have major impact on the emissions reduction rates that need to be achieved, particularly in the case of smaller budgets.

Policy relevance

In previous climate mitigation target formulation processes for 2020 and 2030 in Japan, neither equity principles nor long-term management of cumulative GHG emissions was at the centre of discussion. This article quantitatively assesses how much more GHGs Japan can emit by 2100 to achieve the 2?°C target in light of different effort-sharing approaches, and how Japan's GHG emissions can be managed up to 2100. The long-term implications of recent energy policy developments following the Fukushima nuclear disaster for the calculated carbon budgets are also discussed.  相似文献   

18.
Tropical rainforest plays an important role in the global carbon cycle, accounting for a large part of global net primary productivity and contributing to CO2 sequestration. The objective of this work is to simulate potential changes in the rainforest biome in Central America subject to anthropogenic climate change under two emissions scenarios, RCP4.5 and RCP8.5. The use of a dynamic vegetation model and climate change scenarios is an approach to investigate, assess or anticipate how biomes respond to climate change. In this work, the Inland dynamic vegetation model was driven by the Eta regional climate model simulations. These simulations accept boundary conditions from HadGEM2-ES runs in the two emissions scenarios. The possible consequences of regional climate change on vegetation properties, such as biomass, net primary production and changes in forest extent and distribution, were investigated. The Inland model projections show reductions in tropical forest cover in both scenarios. The reduction of tropical forest cover is greater in RCP8.5. The Inland model projects biomass increases where tropical forest remains due to the CO2 fertilization effect. The future distribution of predominant vegetation shows that some areas of tropical rainforest in Central America are replaced by savannah and grassland in RCP4.5. Inland projections under both RCP4.5 and RCP8.5 show a net primary productivity reduction trend due to significant tropical forest reduction, temperature increase, precipitation reduction and dry spell increments, despite the biomass increases in some areas of Costa Rica and Panama. This study may provide guidance to adaptation studies of climate change impacts on the tropical rainforests in Central America.  相似文献   

19.
A land–sea surface warming ratio (or φ) that exceeds unity is a robust feature of both observed and modelled climate change. Interestingly, though climate models have differing values for φ, it remains almost time-invariant for a wide range of twenty-first century climate transient warming scenarios, while varying in simulations of the twentieth century. Here, we present an explanation for time-invariant land–sea warming ratio that applies if three conditions on radiative forcing are met: first, spatial variations in the climate forcing must be sufficiently small that the lower free troposphere warms evenly over land and ocean; second, the temperature response must not be large enough to change the global circulation to zeroth order; third, the temperature response must not be large enough to modify the boundary layer amplification mechanisms that contribute to making φ exceed unity. Projected temperature changes over this century are too small to breach the latter two conditions. Hence, the mechanism appears to show why both twenty-first century and time-invariant CO2 forcing lead to similar values of φ in climate models despite the presence of transient ocean heat uptake, whereas twentieth century forcing—which has a significant spatially confined anthropogenic tropospheric aerosol component that breaches the first condition—leads to modelled values of φ that vary widely amongst models and in time. Our results suggest an explanation for the behaviour of φ when climate is forced by other regionally confined forcing scenarios such as geo-engineered changes to oceanic clouds. Our results show how land–sea contrasts in surface and boundary layer characteristics act in tandem to produce the land–sea surface warming contrast.  相似文献   

20.
The concept of global warming potential was developed as a relative measure of the potential effects on climate of a greenhouse gas as compared to CO2. In this paper a series of sensitivity studies examines several uncertainties in determination of Global Warming Potentials (GWPs). For example, the original evaluation of GWPs for the Intergovernmental Panel on Climate Change (IPCC, 1990) did not attempt to account for the possible sinks of carbon dioxide (CO2) that could balance the carbon cycle and produce atmospheric concentrations of CO2 that match observations. In this study, a balanced carbon cycle model is applied in calculation of the radiative forcing from CO2. Use of the balanced model produces up to 21% enhancement of the GWPs for most trace gases compared with the IPCC (1990) values for time horizons up to 100 years, but a decreasing enhancement with longer time horizons. Uncertainty limits of the fertilization feedback parameter contribute a 20% range in GWP values. Another systematic uncertainty in GWPs is the assumption of an equilibrium atmosphere (one in which the concentration of trace gases remains constant) versus a disequilibrium atmosphere (one in which the concentration of trace gases varies with time). The latter gives GWPs that are 19 to 32% greater than the former for a 100 year time horizons, depending upon the carbon dioxide emission scenario chosen. Five scenarios are employed: constant-concentration, constant-emission past 1990 and the three IPCC (1992) emission scenarios. For the analysis of uncertainties in atmospheric lifetime (τ) the GWP changes in direct proportion toτ for short-lived gases, but to a lesser extent for gases withτ greater than the time horizontal for the GWP calculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号