首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
There is some evidence of rapid changes in the global atmosphere and hydrological cycle caused by the influence of climate variability. In West Africa, such changes impact directly on water resources leading to incessant extreme hydro‐meteorological conditions. This study examines the association of three global climate teleconnections—El‐Niño Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), and Atlantic Multi‐decadal Oscillation (AMO) with changes in terrestrial water storage (TWS) derived from both Modern‐Era Retrospective Analysis for Research and Applications (MERRA, 1980–2015) and Gravity Recovery and Climate Experiment (GRACE, 2002–2014). In the Sahel region, positive phase of AMO coincided with above‐normal rainfall (wet conditions) and the negative phase with drought conditions and confirms the observed statistically significant association (r = 0.62) between AMO and the temporal evolutions of standardised precipitation index. This relationship corroborates the observed presence of AMO‐driven TWS in much of the Sahel region (though considerably weak in some areas). Although ENSO appears to be more associated with GRACE‐derived TWS over the Volta basin (r =?0.40), this study also shows a strong presence of AMO‐ and ENSO‐induced TWS derived from MERRA reanalysis data in the coastal West African countries and most of the regions below latitude 10°N. The observed presence of ENSO‐ and AMO‐driven TWS is noticeable in tropical areas with relatively high annual/bimodal rainfall and strong inter‐annual variations in surface water. The AMO has a wider footprint and sphere of influence on the region's TWS and suggests the important role of North Atlantic Ocean. IOD‐related TWS also exists in West Africa and its influence on the region's hydrology maybe secondary and somewhat complementary. Nonetheless, presumptive evidence from the study indicates that ENSO and AMO are the two major climatic indices more likely to impact on West Africa's TWS.  相似文献   

2.
An intermediate ocean-atmosphere coupled model is developed to simulate and predict the tropical interannual variability. Originating from the basic physical framework of the Zebiak-Cane(ZC) model, this tropical intermediate couple model(TICM) extends to the entire global tropics, with a surface heat flux parameterization and a surface wind bias correction added to improve model performance and inter-basin connections. The model well reproduces the variabilities in the tropical Pacific and Indian basins. The simulated El Ni?o-Southern Oscillation(ENSO) shows a period of 3–4 years and an amplitude of about 2°C, similar to those observed. The variabilities in the Indian Ocean, including the Indian Ocean basin mode(IOBM) and the Indian Ocean Dipole(IOD), are also reasonably captured with a realistic relationship to the Pacific. However, the tropical Atlantic variability in the TICM has a westward bias and is overly influenced by the tropical Pacific. A 47-year hindcast experiment using the TICM for the period of 1970–2016 indicates that ENSO is the most predictable mode in the tropics. Skillful predictions of ENSO can be made one year ahead, similar to the skill of the latest version of the ZC model, while a "spring predictability barrier" still exists as in other models. In the tropical Indian Ocean, the predictability seems much higher in the west than in the east. The correlation skill of IOD prediction reaches 0.5 at a 5-month lead, which is comparable to that of the state-of-the-art coupled general circulation models. The prediction of IOD shows a significant "winter-spring predictability barrier", implying combined influences from the tropical Pacific and the local sea-air interaction in the eastern Indian Ocean. The TICM has little predictive skill in the equatorial Atlantic for lead times longer than 3 months, which is a common problem of current climate models badly in need of further investigation.  相似文献   

3.
ENSO and the natural variability in the flow of tropical rivers   总被引:1,自引:0,他引:1  
This paper examines the relationship between the annual discharges of the Amazon, Congo, Paran á, and Nile rivers and the sea surface temperature (SST) anomalies of the eastern and central equatorial Pacific Ocean, an index of El Niño-Southern Oscillation (ENSO). Since river systems are comprehensive integrators of rainfall over large areas, accurate characterization of the flow regimes in major rivers will increase our understanding of large-scale global atmospheric dynamics. Results of this study reveal that the annual discharges of two large equatorial tropical rivers, the Amazon and the Congo, are weakly and negatively correlated with the equatorial Pacific SST anomalies with 10% of the variance in annual discharge explained by ENSO. Two smaller subtropical rivers, the Nile and the Paraná, show a correlation that is stronger by about a factor of 2. The Nile discharge is negatively correlated with the SST anomaly, whereas the Paraná river discharge shows a positive relation. The tendency for reduced rainfall/discharge over large tropical convection zones in the ENSO warm phase is attributed to global scale subsidence associated with major upwelling in the eastern Pacific Ocean.  相似文献   

4.
A theoretical investigation of the tropical Indo-Pacific tripole mode   总被引:2,自引:0,他引:2  
The El Ni o-Southern Oscillation(ENSO)phenomenon in the tropical Pacific has been a focus of ocean and climate studies in the last few decades.Recently,the short-term climate variability in the tropical Indian Ocean has attracted increasingly more attention,especially with the proposition of the Indian Ocean Dipole(IOD)mode.However,these phenomena are often studied separately without much consideration of their interaction.Observations reveal a striking out-of-phase relationship between zonal gradients of sea surface height anomaly(SSHA)and sea surface temperature anomaly(SSTA)in the tropical Indian and Pacific Oceans.Since the two oceans share the ascending branch of the Walker cells over the warm pool,the variation within one of them will affect the other.The accompanied zonal surface wind anomalies are always opposite over the two basins,thus producing a tripole structure with opposite zonal gradients of SSHA/SSTA in the two oceans.This mode of variability has been referred to as Indo-Pacific Tripole(IPT).Based on observational data analyses and a simple ocean-atmosphere coupled model,this study tries to identify the characteristics and physical mechanism of IPT with a particular emphasis on the relationships among ENSO,IOD,and IPT.The model includes the basic oceanic and atmospheric variables and the feedbacks between them,and takes into account the inter-basin connection through an atmospheric bridge,thus providing a valuable framework for further research on the short-term tropical climate variability.  相似文献   

5.
南印度洋副热带偶极模在ENSO事件中的作用   总被引:8,自引:0,他引:8       下载免费PDF全文
晏红明  李崇银  周文 《地球物理学报》2009,52(10):2436-2449
南印度洋副热带偶极模(Subtropical Dipole Pattern,SDP)是印度洋存在的另一种很明显的偶极型海温差异现象,在年际和年代际尺度上均有十分明显的表现.而目前有关印度洋海气相互作用的研究主要集中在赤道印度洋地区,针对南印度洋地区的工作还比较少,特别是有关南印度洋海温与ENSO(El NiDo-Southern Oscillation)事件关系的研究.本文初步探讨了年际尺度上南印度洋副热带偶极型海温变化差异与ENSO事件的关系,发现SDP与ENSO事件有密切的联系,SDP事件就像连接正负ENSO位相转换的一个中间环节,SDP事件前后期ENSO的位相刚好完全相反.进一步,本文通过分析SDP事件前后期海温、高低层风、低层辐合辐散、高空云量和辐射等的变化特征研究了南印度洋偶极型海温异常在ENSO事件中的作用,结果表明:SDP在ENSO事件中的作用不仅涉及海气相互作用的正负反馈过程,还与热带和副热带大气环流之间的相互作用有关,特别是与东南印度洋海温变化所引起的异常纬向风由赤道印度洋向赤道太平洋传播的过程等有十分直接的关系;同时,SDP对ENSO事件的影响在很大程度上还依赖于大尺度平均气流随季节的变换.  相似文献   

6.
This paper aims to provide a comprehensive review of previous studies and concepts concerning the North Atlantic Oscillation. The North Atlantic Oscillation (NAO) and its recent homologue, the Arctic Oscillation/Northern Hemisphere annular mode (AO/NAM), are the most prominent modes of variability in the Northern Hemisphere winter climate. The NAO teleconnection is characterised by a meridional displacement of atmospheric mass over the North Atlantic area. Its state is usually expressed by the standardised air pressure difference between the Azores High and the Iceland Low. ThisNAO index is a measure of the strength of the westerly flow (positive with strong westerlies, and vice versa). Together with the El Niño/Southern Oscillation (ENSO) phenomenon, the NAO is a major source of seasonal to interdecadal variability in the global atmosphere. On interannual and shorter time scales, the NAO dynamics can be explained as a purely internal mode of variability of the atmospheric circulation. Interdecadal variability maybe influenced, however, by ocean and sea-ice processes.  相似文献   

7.
Monthly precipitation data from meteorological stations in Nigeria are analysed from 1950 to 1992, in relation to sea surface temperatures (SSTs) in the tropical Pacific and Atlantic Oceans. The analyses have shed some light on understanding the variability of rainfall anomalies observed in Nigeria for this period. The correlation values between rainfall anomaly indices (RAI) and different meteorological indices are not all significant. Thus, the analyses show some indication that rainfall in Nigeria is associated with El Niño-related circulation and rainfall anomalies. The low correlations between RAI and SST in the Pacific confirm low correlations between rainfall and southern oscillation indices (SOI). SST correlations in the tropical Atlantic suggest that warm surface water in this part of the Atlantic moves the Inter Tropical Convergence Zone (ITCZ) southward and away from the SouthEast of Nigeria, indicating less rainfall, while, in SouthWest of Nigeria, the warm surface waters in this part of the Atlantic are likely to be responsible for a more northern position of the ITCZ, which produces more rainfall. The lower correlation in Northern Nigeria may be attributed to its continentality, away from the influence of the sea surface conditions in the Gulf of Guinea and the tropical Atlantic. The drought, or rainfall, cycles in Northern Nigeria are more closely connected to the land surface conditions in the nearby Sahel region.  相似文献   

8.
9.
Variability of the subsurface temperature, current, and heat content in the tropical Pacific Ocean has been extracted in association with the two dominant modes of the sea surface temperature anomaly (SSTA): the low-frequency mode and the biennial mode. In a recent paper, these two modes were identified as the major modes of El Niño-Southern Oscillation (ENSO). The low-frequency mode, which explains about 36% of the total SSTA variability, represents the dominant component of SSTA variability in the tropical Pacific, and is associated not with a fast physical evolution but with a slow stochastic undulation. The biennial mode, which is the second dominant component and explains about 12% of the total variability exhibits, on the other hand, a strong physical evolution. The space–time patterns of the subsurface variability were derived from an assimilated data set via a cyclostationary empirical orthogonal functions (CSEOF) analysis and the regression of the resulting principal component (PC) time series on the target PC time series of the surface modes. Extracted space–time patterns describe the detailed evolution of the physical changes in the upper ocean of the tropical Pacific that are associated with the corresponding surface modes. Specifically, they clearly show the surface and subsurface connection of the physical changes during ENSO events, and the role of equatorial waves in the manifestation of physical changes at the surface. The derived patterns of heat content, subsurface temperature, and zonal current anomalies realistically depict the detailed temporal changes of those variables and are consistent with our understanding of the physics in the tropical Pacific Ocean. The biennial mode appears to depict faithfully the phase progression of El Niño and La Niña. The propagation of equatorial Kelvin waves along the thermocline is clearly visible during El Niño and La Niña events in the cyclostationary representation of the physical modes in the tropical Pacific Ocean. Although the low-frequency mode explains three times more SSTA variability than the biennial mode, the former does not induce strong equatorial wave activity. This observation is significant considering that both El Niño or La Niña are often viewed simply in terms of a significant SST change in the tropical Pacific. The results of the present study indicate: (1) that the two ENSO modes represent significantly different physical evolutions; (2) that the amount of SST warming or cooling does not dictate the physical evolution of ENSO; and (3) that the two modes play essentially different dynamical roles including the generation of equatorial waves.Responsible Editor: John Wilkin  相似文献   

10.
Interaction between the Quasi-Biennial Oscillation in far west equatorial Pacific (QBOWP) and the El Nino/Southern Oscillation (ENSO) is studied using a new conceptual model. In this conceptual model, the QBOWP effects on ENSO are achieved through two ways: (1) the oceanic Kelvin wave along equatorial Pacific, and (2) the Atmospheric Walker Circulation anomaly, while ENSO effects on QBOWP can be accomplished by the atmospheric Walker Circulation anomaly. Diagnosis analysis of the model results shows that the Atmospheric bridge (Walker circulation) plays a more important role in interaction between the ENSO and QBOWP than the oceanic bridge (oceanic Kelvin wave along equatorial Pacific); It is found that by the interaction of the ENSO and QBOWP, a free ENSO oscillation with 3-5 years period could be substituted by a oscillation with the quasi-biennial period, and the dominant period of SST anomaly and wind anomaly in the far west equatorial Pacific tends to be prolonged with enhanced ENSO forcing. Generally, the multi-period variability in the coupled Atmosphere-Ocean System in the Tropical Pacific can be achieved through the interaction between ENSO and QBOWP.  相似文献   

11.
The relationship between El Niño Southern Oscillation (ENSO) and precipitation along the Peruvian Pacific coast is investigated over 1964–2011 on the basis of a variety of indices accounting for the different types of El Niño events and atmospheric and oceanographic manifestations of the interannual variability in the tropical Pacific. We show the existence of fluctuations in the ENSO/precipitation relationship at decadal timescales that are associated with the ENSO property changes over the recent decades. Several indices are considered in order to discriminate the influence of the two types of El Niño, namely, the eastern Pacific El Niño and the central Pacific El Niño, as well as the influence of large‐scale atmospheric variability associated to the Madden and Julian Oscillation, and of regional oceanic conditions. Three main periods are identified that correspond to the interleave periods between the main climatic transitions over 1964–2011, i.e. the shifts of the 1970s and the 2000s, over which ENSO experiences significant changes in its characteristics. We show that the relationship between ENSO and precipitation along the western coast of Peru has experienced significant decadal change. Whereas El Niño events before 2000 lead to increased precipitation, in the 2000s, ENSO is associated to drier conditions. This is due to the change in the main ENSO pattern after 2000 that is associated to cooler oceanic conditions off Peru during warm events (i.e. central Pacific El Niño). Our analysis also indicates that the two extreme El Niño events of 1982/1983 and 1997/1998 have overshadowed actual trends in the relationship between interannual variability in the tropical Pacific and precipitation along the coast of Peru. Overall, our study stresses on the complexity of the hydrological cycle on the western side of the Andes with regard to its relationship with the interannual to decadal variability in the tropical Pacific. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Interaction between the Quasi-Biennial Oscillation in far west equatorial Pacific (QBOWP) and the El Ni?o/Southern Oscillation (ENSO) is studied using a new conceptual model. In this conceptual model, the QBOWP effects on ENSO are achieved through two ways: (1) the oceanic Kelvin wave along equatorial Pacific, and (2) the Atmospheric Walker Circulation anomaly, while ENSO effects on QBOWP can be accomplished by the atmospheric Walker Circulation anomaly. Diagnosis analysis of the model results shows that the Atmospheric bridge (Walker circulation) plays a more important role in interaction between the ENSO and QBOWP than the oceanic bridge (oceanic Kelvin wave along equatorial Pacific); It is found that by the interaction of the ENSO and QBOWP, a free ENSO oscillation with 3–5 years period could be substituted by a oscillation with the quasi-biennial period, and the dominant period of SST anomaly and wind anomaly in the far west equatorial Pacific tends to be prolonged with enhanced ENSO forcing. Generally, the multi-period variability in the coupled Atmosphere-Ocean System in the Tropical Pacific can be achieved through the interaction between ENSO and QBOWP.  相似文献   

13.
The magnitude, occurrence rate and occurrence timing of floods in the Poyang Lake basin were analysed. The flood series were acquired by annual and seasonal maximum flow (AMF) sampling and peaks-over-threshold (POT) sampling. Nonstationarity and uncertainty were analysed using kernel density estimation and the bootstrap resampling methods. Using the relationships between flood indices and climate indices, i.e. El Niño/Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Indian Ocean Dipole (IOD) and Pacific Decadal Oscillation (PDO), the potential causes of flooding were investigated. The results indicate that (1) the magnitudes of annual and seasonal AMF- and POT-based sampled floods generally exhibit an increasing tendency; (2) the highest occurrence rates of floods identified were during the 1990s, when the flood-affected crop area, flood-damaged crop area and crop failure area reached the highest levels; and (3) ENSO and IOD are the major climate indices that significantly correlate with the magnitude and frequency of floods of the following year.

EDITOR A. Castellarin ASSOCIATE EDITOR T. Kjeldsen  相似文献   

14.
Based on the merged satellite altimeter data and in-situ observations,as well as a diagnosis of linear baroclinic Rossby wave solutions,this study analyzed the rapidly rise of sea level/sea surface height(SSH)in the tropical Pacific and Indian Oceans during recent two decades.Results show that the sea level rise signals in the tropical west Pacific and the southeast Indian Ocean are closely linked to each other through the pathways of oceanic waveguide within the Indonesian Seas in the form of thermocline adjustment.The sea level changes in the southeast Indian Ocean are strongly influenced by the low-frequency westward-propagating waves originated in the tropical Pacific,whereas those in the southwest Indian Ocean respond mainly to the local wind forcing.Analyses of the lead-lag correlation further reveal the different origins of interannual and interdecadal variabilities in the tropical Pacific.The interannual wave signals are dominated by the wind variability along the equatorial Pacific,which is associated with the El Ni?o-Southern Oscillation;whereas the interdecadal signals are driven mainly by the wind curl off the equatorial Pacific,which is closely related to the Pacific Decadal Oscillation.  相似文献   

15.
In the tropical Pacific region, El Ni?o/Southern Os- (COADS SST from 1945 to 1993) in the eastern cillation (ENSO) and the Quasi-Biennial Oscillation in (150°W-90°W, 5°S-5°N) and the observed SST far west equatorial Pacific (QBOWP) are two most and zonal wind in the far western equatorial Pacific prominent interannual variation phenomena. The for- (120°-140°E, 0°-10°N) (Fig.1), in the eastern Pa- mer is characterized by coupled SST-wind variability cific the period of S…  相似文献   

16.
Based on coastal tide level, satellite altimetry, and sea surface temperature (SST) data of offshore areas of China’s coast and the equatorial Pacific Ocean, the regional characteristics of the effects of the El Niño-Southern Oscillation (ENSO) on the sea level in the China Sea were investigated. Singular value decomposition results show a significant teleconnection between the sea level in the China Sea and the SST of the tropical Pacific Ocean; the correlation coefficient decreases from south to north. Data from tide gauges along China’s coast show that the seasonal sea-level variations are significantly correlated with the ENSO. In addition, China’s coast was divided into three regions based on distinctive regional characteristics. Results obtained show that the annual amplitude of sea level was low during El Niño developing years, and especially so during the El Niño year. The ENSO intensity determined the response intensity of the annual amplitude of the sea level. The response region (amplitude) was relatively large for strong ENSO intensities. Significant oscillation periods at a timescale of 4–7 years existed in the sea level of the three regions. The largest amplitude of oscillation was 1.5 cm, which was the fluctuation with the 7-year period in the South China Sea. The largest amplitude of oscillation in the East China Sea was about 1.3 cm. The amplitude of oscillation with the 6-year period in the Bohai Sea and Yellow Sea was the smallest (less than 1 cm).  相似文献   

17.
Relationships between the North Pacific Oscillation (NPO) and the typhoon as well as hurricane fre-quencies are documented. The correlation between NPO index in June-July-August-September and the annual typhoon number in the western North Pacific is 0.37 for the period of 1949―1998. The NPO is correlated with the annual hurricane number in the tropical Atlantic at -0.28 for the same period. The variability of NPO is found to be concurrent with the changes of the magnitude of vertical zonal wind shear, sea-level pressure patterns, as well as the sea surface temperature, which are physically asso- ciated with the typhoons and hurricanes genesis. The NPO associated atmospheric circulation vari- ability is analyzed to explain how NPO is linked with variability of the tropical atmospheric circulation in the western Pacific and the tropical Atlantic, via the atmospheric teleconnection.  相似文献   

18.
The Solomon Sea is a key region in the Pacific Ocean where equatorial and subtropical circulations are connected. The region exhibits the highest levels in sea level variability in the entire south tropical Pacific Ocean. Altimeter data was utilized to explore sea level and western boundary currents in this poorly understood portion of the ocean. Since the geography of the region is extremely intricate, with numerous islands and complex bathymetry, specifically reprocessed along-track data in addition to standard gridded data were utilized in this study. Sea level anomalies (SLA) in the Solomon Sea principally evolve at seasonal and interannual time scales. The annual cycle is phased by Rossby waves arriving in the Solomon Strait, whereas the interannual signature corresponds to the basin-scale ENSO mode. The highest SLA variability are concentrated in the eastern Solomon Sea, particularly at the mouth of the Solomon Strait, where they are associated with a high eddy kinetic energy signal that was particularly active during the phase transition during the 1997–1998 ENSO event. Track data appear especially helpful for documenting the fine structure of surface coastal currents. The annual variability of the boundary currents that emerged from altimetry compared quite well with the variability seen at the thermocline level, as based on numerical simulations. At interannual time scales, western boundary current transport anomalies counterbalance changes in western equatorial Pacific warm water volume, confirming the phasing of South Pacific western boundary currents to ENSO. Altimetry appears to be a valuable source of information for variability in low latitude western boundary currents and their associated transport in the South Pacific.  相似文献   

19.
The tropical Indian Ocean(TIO) displays a uniform basin-wide warming or cooling in sea surface temperature(SST) during the decay year of El Niδo-Southern Oscillation(ENSO) events. This warming or cooling is called the tropical Indian Ocean Basin Mode(IOBM). Recent studies showed that the IOBM dominates the interannual variability of the TIO SST and has impacts on the tropical climate from the TIO to the western Pacific. Analyses on a 148-year-long monthly coral δ 18 O record from the Seychelles Islands demonstrate that the Seychelles coral δ 18 O not only is associated with the local SST but also indicates the interannul variability of the basin-wide SST in the TIO. Moreover, the Seychelles coral δ 18 O shows a dominant period of 3–7 years that well represents the variability of the IOBM, which in return is modulated by the inter-decadal climate variability. The correlation between the Seychelles coral δ 18 O and the SST reveals that the coral δ 18 O lags the SST in the eastern equatorial Pacific by five months and reaches its peak in the spring following the mature phase of ENSO. The spatial pattern of the first EOF mode indicates that the Seychelles Islands are located at the crucial place of the IOBM. Thus, the Seychelles coral δ 18 O could be used as a proxy of the IOBM to investigate the ENSO teleconnection on the TIO in terms of long-time climate variability.  相似文献   

20.
Pramanik  Saikat  Sil  Sourav  Mandal  Samiran  Dey  Dipanjan  Shee  Abhijit 《Ocean Dynamics》2019,69(11):1253-1271

Role of equatorial forcing on the thermocline variability in the Bay of Bengal (BoB) during positive and negative phases of the Indian Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO) was investigated using the Regional Ocean Modeling System (ROMS) simulations during 1988 to 2015. Two numerical experiments were carried out for (i) the Indian Ocean Model (IOM) with interannual open boundary conditions and (ii) the BoB Model (BoBM) with climatological boundary conditions. The first mode of Sea Surface Height Anomalies (SSHA) variability showed a west-east dipole nature in both IOM and altimetry observations around 11°N, which was absent in the BoBM. The vertical section of temperature along the same latitude showed a sharp subsurface temperature dipole with a core at ~ 100 m depth. The positive (negative) subsurface temperature anomalies were observed over the whole northeastern BoB during NIOD (PIOD) and LN (EN) composites due to stronger (weaker) second downwelling Kelvin Waves. During the negative phases of IOD and ENSO, the cyclonic eddy on the southwestern BoB strengthened due to intensified southward coastal current along the western BoB and local wind stress. The subsurface temperature dipole was at its peak during October–December (OND) with 1-month lag from IOD and was evident from the Argo observations and other reanalysis datasets as well. A new BoB dipole index (BDI) was defined as the normalized difference of 100-m temperature anomaly and found to be closely related to the frequency of cyclones and the surface chlorophyll-a concentration in the BoB.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号