首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The variations in the form of the cosmic-ray fluctuation power spectrum as an interplanetary shock wave approaches the Earth have been calculated for different values of cosmic ray anisotropy. The relevant experimental estimates of the power spectra are inferred from the data of cosmic ray detection with the ground-based neutron monitors at cosmic-ray stations. A comparison between the theoretical and experimental estimates has demonstrated an important role of the cosmic ray anisotropy spectrum in the generation of the power spectrum as the latter is rearranged before the interplanetary medium disturbances.  相似文献   

2.
The propagation of galactic cosmic rays in heliospheric magnetic fields is studied. An approximate solution to the cosmic ray transport equation has been derived on the basis of a method that takes into account the small value of anisotropy of particle angular distribution. The spatial and energy distributions of the cosmic ray intensity and anisotropy have been investigated, and estimates of cosmic ray energy flux have been carried out.  相似文献   

3.
4.
We studied the cosmic ray intensity variation due to interplanetary magnetic clouds during an unusual class of low amplitude anisotropic wave train events. The low amplitude anisotropic wave train events in cosmic ray intensity have been identified using the data of ground based Deep River neutron monitor and studied during the period 1981–1994. Even though the occurrence of low amplitude anisotropic wave trains does not depend on the onset of interplanetary magnetic clouds, but the possibility of occurrence of these events cannot be overlooked during the periods of the interplanetary magnetic cloud events. It is observed that the solar wind velocity remains higher (> 300) than normal and the interplanetary magnetic field B remains lower than normal on the onset of the interplanetary magnetic cloud during the passage of low amplitude wave trains. It is also noted that the proton density remains significantly low during high solar wind velocity, which is expected. The north south component of interplanetary magnetic field Bz turns southward to one day before the arrival of cloud and remains in the southward direction after the arrival of a cloud. During these events the cosmic ray intensity is found to increase with increase of solar wind velocity. The superposed epoch analysis of cosmic ray intensity for these events during the onset of interplanetary magnetic clouds reveals that the decrease in cosmic ray intensity starts not at the onset of the cloud but after a few days. The cosmic ray intensity increases on arrival of the magnetic cloud and decreases gradually after the passage of the magnetic cloud.  相似文献   

5.
We discuss the effects of certain dynamic features of space environment in the heliosphere, the geo-magnetosphere, and the earth’s atmosphere. In particular, transient perturbations in solar wind plasma, interplanetary magnetic field, and energetic charged particle (cosmic ray) fluxes near 1 AU in the heliosphere have been discussed. Transient variations in magnetic activity in geo-magnetosphere and solar modulation effects in the heliosphere have also been studied. Emphasis is on certain features of transient perturbations related to space weather effects. Relationships between geomagnetic storms and transient modulations in cosmic ray intensity (Forbush decreases), especially those caused by shock-associated interplanetary disturbances, have been studied in detail. We have analysed the cosmic ray, geomagnetic and interplanetary plasma/field data to understand the physical mechanisms of two phenomena namely, Forbush decrease and geomagnetic storms, and to search for precursors to Forbush decrease (and geomagnetic storms) that can be used as a signature to forecast space weather. It is shown that the use of cosmic ray records has practical application for space weather predictions. Enhanced diurnal anisotropy and intensity deficit of cosmic rays have been identified as precursors to Forbush decreases in cosmic ray intensity. It is found that precursor to smaller (less than 5%) amplitude Forbush decrease due to weaker interplanetary shock is enhanced diurnal anisotropy. However, larger amplitude (greater than 5%) Forbush decrease due to stronger interplanetary shock shows loss cone type intensity deficit as precursor in ground based intensity record. These precursors can be used as inputs for space weather forecast.  相似文献   

6.
We study the relationship of the 27-day variations of the galactic cosmic ray intensity with similar variations of the solar wind velocity and the interplanetary magnetic field based on observational data for the Bartels rotation period # 2379 of 23 November 2007 – 19 December 2007. We develop a three-dimensional (3-D) model of the 27-day variation of galactic cosmic ray intensity based on the heliolongitudinally dependent solar wind velocity. A consistent, divergence-free interplanetary magnetic field is derived by solving Maxwell’s equations with a heliolongitudinally dependent 27-day variation of the solar wind velocity reproducing in situ observations. We consider two types of 3-D models of the 27-day variation of galactic cosmic ray intensity, i) with a plane heliospheric neutral sheet, and ii) with the sector structure of the interplanetary magnetic field. The theoretical calculations show that the sector structure does not significantly influence the 27-day variation of galactic cosmic ray intensity, as had been shown before, based on observational data. Furthermore, good agreement is found between the time profiles of the theoretically expected and experimentally obtained first harmonic waves of the 27-day variation of the galactic cosmic ray intensity (with a correlation coefficient of 0.98±0.02). The expected 27-day variation of the galactic cosmic ray intensity is inversely correlated with the modulation parameter ζ (with a correlation coefficient of −0.91±0.05), which is proportional to the product of the solar wind velocity V and the strength of the interplanetary magnetic field B (ζ∼VB). The high anticorrelation between these quantities indicates that the predicted 27-day variation of the galactic cosmic ray intensity mainly is caused by this basic modulation effect.  相似文献   

7.
One dimensional numerical results of the non-linear interaction between cosmic rays and a magnetic field are presented. These show that cosmic ray streaming drives large amplitude Alfvénic waves. The cosmic ray streaming energy is very efficiently transfered to the perturbed magnetic field of the Alfvén waves. Thus a magnetic field of interstellar values, assumed in models of supernova remnant blast wave acceleration, would not be appropriate in the region of the shock. The increased magnetic field reduces the acceleration time and so increases the maximum cosmic ray energy, which may provide a simple and elegant resolution to the highest energy galactic cosmic ray problem were the cosmic rays themselves provide the fields necessary for their acceleration. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
In this paper we demonstrate the importance of cosmic rays for the dynamics of the interstellar medium. We present the first 3D-MHD numerical simulations of the Parker instability triggered by cosmic rays accelerated in randomly distributed supernova remnants. We show that in the presence of galactic rotation a net radial magnetic field is produced as a result of the cosmic ray injection and Coriolis force. This process provides a possibility of very efficient magnetic field amplification within the general frame of so called fast galactic dynamo proposed by Parker (1992).  相似文献   

9.
10.
The role of nearby galactic sources, the supernova remnants, in formation of observed energy spectrum and large-scale anisotropy of high-energy cosmic rays is studied. The list of these sources is made up based on radio, X-ray and gamma-ray catalogues. The distant sources are treated statistically as ensemble of sources with random positions and ages. The source spectra are defined based on the modern theory of cosmic ray acceleration in supernova remnants while the propagation of cosmic rays in the interstellar medium is described in the frameworks of galactic diffusion model. Calculations of dipole component of anisotropy are made to reproduce the experimental procedure of “two-dimensional” anisotropy measurements. The energy dependence of particle escape time in the process of acceleration in supernova remnants and the arm structure of sources defining the significant features of anisotropy are also taken into account. The essential new trait of the model is a decreasing number of core collapse SNRs being able to accelerate cosmic rays up to the given energy, that leads to steeper total cosmic ray source spectrum in comparison with the individual source spectrum. We explained simultaneously the new cosmic ray data on the fine structure of all particle spectrum around the knee and the amplitude and direction of the dipole component of anisotropy in the wide energy range 1 TeV–1 EeV. Suggested assumptions do not look exotic, and they confirm the modern understanding of cosmic ray origin.  相似文献   

11.
In this work an analysis of a series of complex cosmic ray events that occurred between 17 January 2005 and 23 January 2005 using solar, interplanetary and ground based cosmic ray data is being performed. The investigated period was characterized both by significant galactic cosmic ray (GCR) and solar cosmic ray (SCR) variations with highlighted cases such as the noticeable series of Forbush effects (FEs) from 17 January 2005 to 20 January 2005, the Forbush decrease (FD) on 21 January 2005 and the ground level enhancement (GLE) of the cosmic ray counter measurements on 20 January 2005. The analysis is focusing on the aforementioned FE cases, with special attention drawn on the 21 January 2005, FD event, which demonstrated several exceptional features testifying its uniqueness. Data from the ACE spacecraft, together with GOES X-ray recordings and LASCO CME coronagraph images were used in conjunction to the ground based recordings of the Worldwide Neutron Monitor Network, the interplanetary data of OMNI database and the geomagnetic activity manifestations denoted by K p and D st indices. More than that, cosmic ray characteristics as density, anisotropy and density gradients were also calculated. The results illustrate the state of the interplanetary space that cosmic rays crossed and their corresponding modulation with respect to the multiple extreme solar events of this period. In addition, the western location of the 21 January 2005 solar source indicates a new cosmic ray feature, which connects the position of the solar source to the cosmic ray anisotropy variations. In the future, this feature could serve as an indicator of the solar source and can prove to be a valuable asset, especially when satellite data are unavailable.  相似文献   

12.
In the present work, the generation of large-scale zonal flows and magnetic field by short-scale collision-less electron skin depth order drift-Alfven turbulence in the ionosphere is investigated. The self-consistent system of two model nonlinear equations, describing the dynamics of wave structures with characteristic scales till to the skin value, is obtained. Evolution equations for the shear flows and the magnetic field is obtained by means of the averaging of model equations for the fast-high-frequency and small-scale fluctuations. It is shown that the large-scale disturbances of plasma motion and magnetic field are spontaneously generated by small-scale drift-Alfven wave turbulence through the nonlinear action of the stresses of Reynolds and Maxwell. Positive feedback in the system is achieved via modulation of the skin size drift-Alfven waves by the large-scale zonal flow and/or by the excited large-scale magnetic field. As a result, the propagation of small-scale wave packets in the ionospheric medium is accompanied by low-frequency, long-wave disturbances generated by parametric instability. Two regimes of this instability, resonance kinetic and hydrodynamic ones, are studied. The increments of the corresponding instabilities are also found. The conditions for the instability development and possibility of the generation of large-scale structures are determined. The nonlinear increment of this interaction substantially depends on the wave vector of Alfven pumping and on the characteristic scale of the generated zonal structures. This means that the instability pumps the energy of primarily small-scale Alfven waves into that of the large-scale zonal structures which is typical for an inverse turbulent cascade. The increment of energy pumping into the large-scale region noticeably depends also on the width of the pumping wave spectrum and with an increase of the width of the initial wave spectrum the instability can be suppressed. It is assumed that the investigated mechanism can refer directly to the generation of mean flow in the atmosphere of the rotating planets and the magnetized plasma.  相似文献   

13.
Cosmic ray streaming instabilities at supernova shocks are discussed in the quasi-linear diffusion formalism which takes into account the feedback effect of wave growth on the cosmic ray streaming motion. In particular, the non-resonant instability that leads to magnetic field amplification in the short wavelength regime is considered. The linear growth rate is calculated using kinetic theory for a streaming distribution. We show that the non-resonant instability is actually driven by a compensating current in the background plasma. The non-resonant instability can develop into a non-linear regime generating turbulence. The saturation of the amplified magnetic fields due to particle diffusion in the turbulence is derived analytically. It is shown that the evolution of parallel and perpendicular cosmic ray pressures is predominantly determined by non-resonant diffusion. However, the saturation is determined by resonant diffusion which tends to reduce the streaming motion through pitch angle scattering. The saturated level can exceed the mean background magnetic field.  相似文献   

14.
In this paper we demonstrate the importance of cosmic rays for the dynamics of the interstellar medium. We present the first 3D-MHD numerical simulations of the Parker instability triggered by cosmic rays accelerated in supernova remnants. We show that in the presence of galactic rotation a net radial magnetic field is produced as a result of the cosmic ray injection. This process provides a very efficient magnetic field amplification within the general frame of so called fast galactic dynamo proposed by Parker (1992). This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

15.
16.
We investigate cosmic ray scattering in the direction perpendicular to a mean magnetic field. Unlike in previous articles we employ a general form of the turbulence wave spectrum with arbitrary behavior in the energy range. By employing an improved version of the nonlinear guiding center theory we compute analytically the perpendicular mean free path. As shown, the energy range spectral index, has a strong influence on the perpendicular diffusion coefficient. If this parameter is larger than one we find for some cases a perpendicular diffusion coefficient that is independent of the parallel mean free path and particle energy. Two applications are considered, namely transport of Galactic protons in the solar system and diffusive particle acceleration at highly perpendicular interplanetary shock waves.  相似文献   

17.
Concurrent observations of the solar flare of March 12, 1969 by two spacecrafts separated in solar longitude by 38° show that the accessibility at 1 AU to cosmic ray particles is not a simple function of the relative solar longitude. The cosmic ray flux, degree of anisotropy, and rise time all indicate that the favored path for cosmic ray propagation in this event was some 40° to the east of the nominal Archimedes spiral line of force from the flare location. This is interpreted as evidence for either (a) extreme stochastical wandering of the lines of force of the interplanetary magnetic field, or (b) the redistribution of the cosmic rays in coronal magnetic fields prior to escape onto the nominal Archimedes spiral lines of force.Now at CSIRO, G.P.O. Box 124, Port Melbourne, Victoria 3207, Australia.Now at Physical Research Laboratory, Ahmedabad, India.  相似文献   

18.
One of the mechanisms of Alfven turbulence generation in the foreshock region is investigated by the example of the Earth bow shock. The effect of the temperature of high-velocity beams on characteristics of generated disturbances is examined. It is shown that the beam temperature has a significant impact on transverse scales of disturbances. The higher the temperature, the greater the limitations on transverse wavelengths. The development of instability in the propagation of reflected, intermediate, and diffusion proton beams in the foreshock region of the Earth bow shock is considered. Perturbation motion dynamics in foreshock region is analyzed.  相似文献   

19.
This paper discusses solar cosmic ray phenomena and related topics from the solar physical point of view. Basic physics of the solar atmosphere and solar flare phenomena are, therefore, considered in some detail. Since solar cosmic rays are usually produced by solar flares, we must first understand the processes and mechanism of solar flares, especially the so-called proton flares, in order to understand the acceleration mechanism of solar cosmic rays and their behaviour in both the solar atmosphere and interplanetary space. For this reason, detailed discussion is given on various phenomena associated with solar flares, proton flare characteristics, and the mechanism of solar flares.Since the discovery of solar cosmic rays by Forbush, the interplanetary space has been thought of as medium in which solar cosmic rays propagate. In this paper, the propagation of solar cosmic rays in this space is, therefore, discussed briefly by referring to the observed magnetic properties of this space. Finally, some problems related to the physics of galactic cosmic rays are discussed.Astrophysics and Space Science Review Paper.  相似文献   

20.
A. Geramios 《Solar physics》1978,58(1):201-210
In order to estimate the N-S anisotropy latitude gradient, the time variation of the direction of the N-S anisotropy during the August 1972 cosmic ray storms is measured using polar (Alert-Mc Murdo) and equatorial (Athens-Potchefstroom, S. Africa) neutron monitor stations. A maximum value of (43 ± 2)%/50° and a linear correlation between the measured polar and equatorial N-S anisotropies is obtained. The correlation between N-S anisotropy and: (1) the direction of the related shock wave, (2) the heliographic latitude of the related solar flare, (3) the direction of the interplanetary magnetic field, and (4) the K p index has been checked.Presented at the 5th European Cosmic Ray Conference, Leeds, U.K.Now at Max-Planck-Institut für Kernphysik, Heidelberg, F.R.G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号