首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
This study reported the mass mortality events (MMEs) of Pinna nobilis based on diving surveys in Turkey. Data were collected across 12 sites in the Aegean Sea, and one site in the Sea of Marmara, within the period of June-September 2019. The results showed that a low mortality rate of 10% was found in the Sea of Marmara, and a MME was not detected for this area. In contrast, 97% mortality was recorded for the P. nobilis population distributed in the Turkish Aegean Sea. This discrepancy might be related to the seawater temperature and salinity values of these two seas. The waters of the Sea of Marmara were colder and less salty than the Aegean Sea. The findings highlighted the importance of protecting the healthy population of critically endangered fan mussels in the Sea of Marmara. It was recommended that sound management plans comprising of monitoring, enforcement and public awareness activities could be implemented in order to achieve this.  相似文献   

2.
In October 2005 spatial distribution of live and dead Acartia clausi and Acartia tonsa was studied in the Black and Marmara Seas and near the Marmara Sea inlet of the Bosphorus, in order to understand their fate upon transportation between two seas. The morphometric characteristics in both species from all studied areas, and the decreased abundance of A. clausi and A. tonsa from the Black Sea towards the Marmara Sea indicate that the Marmara Sea Acartia populations are formed by recruitment from the Black Sea. We observed mass mortality of A. clausi in the Marmara Sea near the Prince Islands. The majority of carcasses (66% of total A. clausi numbers in the Marmara Sea) were found in the salinity gradient layer.  相似文献   

3.
The current study broadens the biodiversity information available for the Black Sea and neighbouring regions and improves our knowledge about the polychaete biogeographic patterns to be discerned in them. There appears to be a well-defined zoogeocline from the Marmara Sea and Bosphorus Strait to the inner parts of the region (Azov Sea), depicted both as a multivariate pattern and in terms of species (or taxa) numbers. The emergent multivariate pattern complies, to a certain extent, with Jakubova’s (1935) views: three main sectors can be defined in the basin: (a) Prebosphoric, (b) the Black Sea and, (c) the Azov Sea, whereas the Bosphorus Strait and Marmara Sea show less faunal affinities with the afore-mentioned sectors. Patterns derived both from the cosmopolitan and Atlanto-Mediterranean species closely follow the one coming from the polychaete species and genera inventories. As a general trend, species numbers decrease along with the decrease in salinity towards the inner parts of the region. The trend is homologous to that seen in the benthic invertebrate inventories of all the major European semi-enclosed regional seas. Salinity and food availability appear to be the dominant abiotic factors correlated, though weakly, with the various patterns deriving from the taxonomic/zoogeographic categories. With the exception of the Anatolia, polychaete inventories from all sectors appear to be random samples of the total inventory of the region, in terms of taxonomic distinctness values. Therefore, these sectoral inventories can be used for future biodiversity/environmental impact assessment studies. A massive invasion of Mediterranean species after the opening of the Black Sea, in the lower Quaternary period, appears to be the likely biogeographic mechanism through which the old Sarmatic fauna was almost completely replaced by species of marine origin.  相似文献   

4.
《Marine Geology》1999,153(1-4):275-302
Detailed interpretation of single-channel air-gun and deep-tow boomer profiles demonstrates that the Marmara Sea, Turkey, experienced small-amplitude (∼70 m) fluctuations in sea level during the later Quaternary, limited in magnitude by the sill depth of the Strait of Dardanelles. Moderate subsidence along the southern shelf and Quaternary glacio-eustatic sea-level variations created several stacked deltaic successions, separated by major shelf-crossing unconformities, which developed during the transitions from global glacial to interglacial periods. Near the Strait of Dardanelles, a series of sand-prone deposits are identified beneath an uppermost (Holocene) transparent mud drape. The sandy deposits thicken into mounds with the morphology and cross-sectional geometries of barrier islands, sand waves, and current-generated marine bars. All cross-stratification indicates unidirectional flow towards the Dardanelles prior to the deposition of the transparent drape which began ∼7000 years BP, in strong support of the notion that the Marmara Sea flowed westwards into the Aegean Sea through the Dardanelles at times of deglaciation in northern Europe. The global sea-level curve shows that, at ∼11,000 and ∼9500 years BP, sea level rose to the sill depths of the Straits of Dardanelles and Bosphorus, respectively. The effect from ∼11,000 to ∼9500 years BP was seawater incursion into the Marmara Sea, drowning and formation of algal-serpulid bioherms atop lowstand barrier islands, and transgression of shelves and lowstand deltas. At ∼9500 years BP, glacial meltwater temporarily stored in the Black Sea lake, developed into a vigorous southward flow toward the Aegean Sea, forming west-directed sandy bedforms in the western Marmara Sea and initiating deposition of sapropel S1 in the Aegean Sea. This strong outflow persisted until ∼7000 years BP, after which a mud drape began to accumulate in the Marmara Sea and euryhaline Mediterranean mollusks successfully migrated into a progressively more saline Black Sea where sapropel deposition began. Most eastern Mediterranean sapropels from S1 to S11 appear to correlate with periods of rising sea level and breaching, or near-breaching, of the Bosphorus sill. These events are believed to coincide with times of vigorous outflow of low-salinity (?fresh) surface waters transiting the Black Sea–Marmara Sea corridor, and ultimately derived from melting of northern European ice sheets.  相似文献   

5.
In their discussion of our 2011 paper dealing with possible waterways between the Marmara Sea and the Black Sea in the ??late?? Quaternary, based on data from ostracod and foraminifer assemblages in lakes ?znik and Sapanca, Turkey, Yalt?rak et al. (Geo-Mar Lett 32:267?C274, 2012) essentially reject the idea of any links whatsoever, be they between the Marmara Sea and the lakes ?znik and Sapanca, or further to the Black Sea via the valley of the Sakarya River. The evidence they provide in support of their view, however, is essentially circumstantial, in part conjectural, and also inconclusive considering the findings in favour of linkage between the Marmara Sea and the lakes at the very least, while the proposed connection with the Sakarya River valley remains speculative because of the lack of unambiguous data. On the other hand, Yalt?rak et al. (Geo-Mar Lett 32:267?C274, 2012) do raise valid points of concern which deserve careful future investigation, the most important being the possibility of sample contamination from dumped marine sediment used for construction purposes along some parts of the shore of Lake ?znik. We agree that a concerted multidisciplinary effort is required to address the many unresolved issues in connection with the potential waterways proposed by us and others before us.  相似文献   

6.
The North Anatolian Fault crosses the Sea of Marmara from east to west. Tectonic features of the Sea of Marmara were studied using multi-channel deep seismic reflection data. The northern branch of the North Anatolian Fault is active as a right lateral strike-slip fault zone and indicates both negative and positive flower structures. The North Anatolian Fault splays into two faults at the Sea of Marmara as a northern branch and north segment of the southern branch. The northern branch named the Main Marmara Fault extends in a complicated manner from the north of the Kapıdağı Peninsula to westward in the Sea of Marmara. The north segment of southern branch extends between the Gemlik and Bandırma gulfs in the south of the Sea of Marmara. In addition, uplift areas arose by compression and a push-up style in between the Kapıdağı Peninsula and the Main Marmara Fault. The North Anatolian Fault is characterized by a negative flower structure in basins and push-up style in uplift areas in the Sea of Marmara. An uplift area arose between the north segment of the southern branch and the northern branch of the North Anatolian Fault. The north segment of the southern branch of the North Anatolian Fault is a strike-slip fault and displays a pull-apart style in the seismic reflection data.  相似文献   

7.
Active faults aligning in NW–SE direction and forming flower structures of strike-slip faults were observed in shallow seismic data from the shelf offshore of Avcılar in the northern Marmara Sea. By following the parallel drainage pattern and scarps, these faults were traced as NW–SE-directed lineaments in the morphology of the northern onshore sector of the Marmara Sea (eastern Thrace Peninsula). Right-lateral displacements in two watersheds of drainage and on the coast of the Marmara Sea and Black Sea are associated with these lineaments. This right-lateral displacement along the course of these faults suggests a new, active strike-slip fault zone located at the NW extension of the northern boundary fault of the ?ınarcık Basin in the Marmara Sea. This new fault zone is interpreted as the NW extension of the northern branch of the North Anatolian Fault Zone (NAFZ), extending from the ?ınarcık Basin of the Marmara Sea to the Black Sea coast of the Thrace Peninsula, and passing through B üy ük ?ekmece and K ü ? ük ?ekmece lagoons. These data suggest that the rupture of the 17 August 1999 earthquake in the NAFZ may have extended through Avcılar. Indeed, Avcılar and İzmit, both located on the Marmara Sea coast along the rupture route, were strongly struck by the earthquake whereas the settlements between Avcılar and İzmit were much less affected. Therefore, this interpretation can explain the extraordinary damage in Avcılar, based on the newly discovered rupture of the NAFZ in the Marmara Sea. However, this suggestion needs to be confirmed by further seismological studies.  相似文献   

8.
Active faults aligning in NW–SE direction and forming flower structures of strike-slip faults were observed in shallow seismic data from the shelf offshore of Avc?lar in the northern Marmara Sea. By following the parallel drainage pattern and scarps, these faults were traced as NW–SE-directed lineaments in the morphology of the northern onshore sector of the Marmara Sea (eastern Thrace Peninsula). Right-lateral displacements in two watersheds of drainage and on the coast of the Marmara Sea and Black Sea are associated with these lineaments. This right-lateral displacement along the course of these faults suggests a new, active strike-slip fault zone located at the NW extension of the northern boundary fault of the Ç?narc?k Basin in the Marmara Sea. This new fault zone is interpreted as the NW extension of the northern branch of the North Anatolian Fault Zone (NAFZ), extending from the Ç?narc?k Basin of the Marmara Sea to the Black Sea coast of the Thrace Peninsula, and passing through B üy ük çekmece and K ü ç ük çekmece lagoons. These data suggest that the rupture of the 17 August 1999 earthquake in the NAFZ may have extended through Avc?lar. Indeed, Avc?lar and ?zmit, both located on the Marmara Sea coast along the rupture route, were strongly struck by the earthquake whereas the settlements between Avc?lar and ?zmit were much less affected. Therefore, this interpretation can explain the extraordinary damage in Avc?lar, based on the newly discovered rupture of the NAFZ in the Marmara Sea. However, this suggestion needs to be confirmed by further seismological studies.  相似文献   

9.
The early Holocene marine flooding of the Black Sea has been the subject of intense scientific debate since the “Noah’s Flood” hypothesis was proposed in the late 1990s. The chronology of the flooding is not straightforward because the connection between the Black Sea and the Mediterranean Sea involves the intermediate Marmara Sea Basin via two sills (Dardanelles and Bosphorus). This study explores the chronology of late Pleistocene–Holocene flooding by examining sedimentary facies and molluscs from 24 gravity cores spanning shelf to slope settings in the southern Marmara Sea Basin. A late Pleistocene Ponto-Caspian (Neoeuxinian) mollusc association is found in 12 of the cores, comprising 14 mollusc species and dominated by brackish (oligohaline–lower mesohaline) endemic taxa (dreissenids, hydrobiids). The Neoeuxinian association is replaced by a TurritellaCorbula association at the onset of the Holocene. The latter is dominated by marine species, several of which are known to thrive under dysoxic conditions in muddy bottoms. This association is common in early Holocene intervals as well as sapropel intervals in younger Holocene strata. It is an indicator of low-salinity outflows from the Black Sea into the Marmara Sea that drive stratification. A marine Mediterranean association (87 species) represents both soft bottom and hard substrate faunas that lived in well-ventilated conditions and upper mesohaline–polyhaline salinities (ca. 25 psu). Shallower areas were occupied by hard substrate taxa and phytopdetritic communities, whereas deeper areas had soft bottom faunas. The middle shelf part of the northern Gemlik Gulf has intervals with irregular and discontinuous sedimentary structures admixed with worn Neoeuxinian and euryhaline Mediterranean faunas. These intervals represent reworking events (slumping) likely related to seismic activity rooted in the North Anatolian Fault system. The core data and faunas indicate an oscillating postglacial sea-level rise and phases of increased/decreased ventilation in the Marmara Sea during the Holocene, as well as palaeobiogeographic reorganisations of Ponto-Caspian and Mediterranean water bodies since the latest Pleistocene (<30 ka). The findings contribute to arguments against a single catastrophic flooding of the Black Sea at about 7.5 ka (Noah’s Flood).  相似文献   

10.
Increasing propulsion efficiency, safety, comfort and operability are of the great importance, especially for small ships operating on windy sites like the North Sea and the Baltic Sea. Seakeeping performance of ships and offshore structures can be analysed by different methods and the one that is becoming increasingly important is CFD RANS. The recent development of simulation techniques together with rising HPC accessibility enables performance of advanced seakeeping simulations for ships in a full scale. The paper presents CFD seakeeping analysis for a case study vessel in two variants: V-shaped bulbous bow hull form (as built) and innovative hull form (X-bow type). The study presents the influence of redesigning the ship on selected seakeeping aspects. The advanced CFD model, with the application of overset mesh technique, was described in detail. Selected numerical results were validated on the basis of experimental testing in a towing tank and showed good agreement. The approach demonstrated here of performing the CFD seakeeping simulations for the analysis of ship performance in a full scale and close to real loading conditions has direct application to the design process as well as in determination of optimal operational parameters of any ship.  相似文献   

11.
The bioacoustics of upper waters of the Black Sea, the Sea of Marmara, and the Mediterranean Sea were studied in October 1999 with an echosounder with 120 and 200 kHz dual‐beam transducers. Net tows were taken to ground‐truth the acoustic volume backscattering. A forward solution was applied to determine significant scatterers of the three seas with regard to detection limits of the frequencies and background noise measured in each sea. The noise was 4 dB higher in the Sea of Marmara than in the other two seas. 200 kHz data showed significant correlation between measured and calculated volume backscattering strength, and density (biomass and abundance) of the taxa. Large‐sized copepods and chaetognaths in the Black Sea, Aurelia, Beroe, chaetognaths and large‐sized and abundant appendicularians in the Sea of Marmara, and fish larvae in the Mediterranean Sea contributed most to the volume backscattering.  相似文献   

12.
The identification of past connection routes between the Black Sea and the Sea of Marmara, other than the traditional one through to the Bosphorus Strait, would be of considerable interest to the international scientific community. Nazik et al. (Geo-Mar Lett 31:75?C86 (2011) doi:10.1007/s00367-010-0216-9) suggest the possibility of two alternative waterway connections via lakes Sapanca and ?znik. Their Black Sea to Sea of Marmara multi-connection hypothesis, which is based on undated marine fossils collected in both lakes from surficial grab samples, conflicts with many earlier studies. In this contribution, the hypothesis and the underlying data are discussed in the light of previous tectonic, sedimentological and limnological findings showing that it is impossible to have had marine connections through lakes Sapanca and ?znik during the last 11.5?ka. Global sea-level trends and tectonic uplift rates would accommodate a connection between the Sea of Marmara and Lake ?znik in the middle Pleistocene. Uplift rates for the northern block of the North Anatolian Fault, when compared with the global sea-level curve, clearly indicate that there cannot have been a connection through the ?zmit Gulf?CLake Sapanca?CSakarya Valley for at least the past 500?ka. Moreover, borehole sediments along the western shores of Lake Sapanca, which reach down to the bedrock, do not contain any marine fossils.  相似文献   

13.
为了研究白令海(海盆及陆架)至楚科奇海陆架表层沉积物中多环芳烃(PAHs)降解菌的多样性,并获得新的PAHs降解菌资源。在GC-MS分析沉积物中PAHs种类和含量的基础上,以萘、菲和芘的混合物为唯一碳源和能源对表层沉积物样品进行富集,通过平板分离鉴定可培养菌株,并验证其降解能力;同时利用变性梯度凝胶电泳(DGGE)和Illumina高通量测序技术分析降解菌群结构。GC-MS测定结果表明,14个表层沉积物中PAHs总干质量介于32.99~276.97ng/g。富集菌群中共分离获得51株可培养细菌,平板纯培养、PCR-DGGE及Illumina测序结果均表明,菌群中优势的降解菌是γ-proteobacteria的Marinobacter,Pseudoalteromonas,Pseudomonas和Actinobacteria门的Dietzia菌。此外,Illumina测序结果还表明14个降解菌群在菌群结构组成上,可分为海盆区和陆架区两种类群;同时检测到一些低丰度的海洋专属PAHs降解菌,如Cycloclasticus,Alteromonas和Neptunomonas等。本文结果将加深对白令海及楚科奇海表层沉积物中PAHs降解菌资源与生物多样性的认识。  相似文献   

14.
《Marine Geology》2003,201(4):253-267
A series of simple hydraulic calculations has been performed to examine some of the questions associated with the reconnection of the Black Sea to the Mediterranean through the Turkish Strait System during the Holocene. Ryan et al.’s catastrophic flood scenario, whereby the erosive power of the marine in-fluxes, initiated after eustatic sea level reached the sill depth, opened up the Bosphorus, allowing saline water to pour into the Black Sea and filling it on a short time scale, is examined. The calculations show that although it might be possible to fill the palaeo-Black Sea within the order of a decade, a 1–2 year filling time scale is not physically possible. A hydraulic model is also used to examine the more traditional connection hypothesis of (near-)continuous freshwater outflow from the Black Sea, with a slowly increasing saline inflow from the Mediterranean beginning around 8–9 kyr BP. The model considers two forms for the structure of the Bosphorus: a shallow sill as seen today and a deep sill associated with no sediments filling the 100 m gorge above the bedrock in the strait. Sensitivity experiments with the hydraulic model show what possible strait geometric configurations may lead to the Black Sea reaching its present-day salinity of 18 psu. Salinity transients within the Black Sea are shown as a function of time, providing for values that can be validated against estimates from cores. To consider a deep, non-sediment-filled Bosphorus (100 m deep), the entry of Mediterranean water into the Sea of Marmara after 12.0 kyr BP is examined. A rapid entry of marine water into the Sea of Marmara is only consistent with small freshwater fluxes flowing through the Turkish Strait System, smaller than those of the present day by a factor of at least 4. Such a small freshwater flux would lead to the salinification of the Black Sea being complete by an early date of 10.2–9.6 kyr BP. Thus the possibility of a deep Bosphorus sill should be discounted.  相似文献   

15.
A long-term (18 years) prognostic experiment on the formation of the Marmara Sea hydrodynamic structure driven by the exchange through straits with zero atmospheric forcing is carried out using a numerical nonlinear circulation model. The seasonal variability is taken into account by specifying the water temperature in the Bosporus. It is shown that the mutual adaptation of hydrophysical fields and their adjustment to the physical and geographical conditions of the sea are caused by rapid (tens of days) and slow (several tens of years) adjustment mechanisms. An S-shaped jet current directed from the Bosporus Strait to the Dardanelles is formed in the upper 20-m layer. A cyclonic eddy is periodically formed near the northern boundary of the Marmara Sea. An anticyclonic pattern is well defined in the central part of the sea. In deeper layers there is an abyssal jet current formed by the inflow of the high-density Aegean water to the Marmara Sea. These features of the Marmara Sea circulation are confirmed by observational data.  相似文献   

16.
Petrographic data obtained from 182 surface sediment samples together with the available bathymetric data are used to investigate the effects of the last major sea-level changes on shelf evolution in the southern Sea of Marmara. Grain-size analysis reveals the presence of at least three belts or zones which are rich in coarse-grained (sand and gravel) sediments. These coarse-grained belts which are up to 45 km long, 15 km wide, show up to 20 m of relief and are presently found at 40–80 m (average 60 m) water depths. Based on microscopic examination and residual analysis, the sediments from these belts are interpreted as indicators of high-energy shallow waters where detrital siliciclastics, with some benthic contribution, accumulated. The presence of a 62–65 m deep sill in the Çanakkale Strait and the consideration of sea-level curves would suggest that the Marmara shelves must have been subaerially exposed down to −65 m water depths for about 10,000 yrs (22,000–12,000 yrs B.P.), sufficient time to modify former shelf topographies and form such bottom relief. While difficult to date, we believe that coarse-grained belts found on the southern Marmara shelf must be relict (i.e., former shorelines, beaches) and their formation is largely related to low stands of sea-level during the Late Pleistocene regression and early Holocene transgression. However, the available high-resolution seismic profiling data suggest that the neotectonism in this seismically active Sea of Marmara plays an important role to explain the raise of these older shorelines to their present levels on the sea-floor.  相似文献   

17.
Understanding the patterns of microbial diversity and their composition in seawater is necessary to assess the impacts of microbes on marine ecosystem. Although the potential roles of microbes in the ocean have been studied, their diversity and relationship with environmental factors remain unclear. In this study, we adopted a 16S rRNA gene tag-pyrosequencing technique to investigate the bacterial communities associated with two different water masses from Tongyoung in the South Sea of Korea. Our results revealed highly diverse bacterial communities up to 900 Operational Taxonomic Units (OTUs) estimated from each seawater which was collected in the month of March and May, when the environmental conditions including temperature differed significantly: 7.2°C and 17.6°C in March and May, respectively. Altogether, 13 bacterial phyla were recovered from the seawater, of which Proteobacteria was the most dominant group. In addition, the value of the Shannon index, which measures the evenness of the distribution of individuals among OTUs, in May is higher than that in March, indicating that it displays a wider diversity of bacteria. Interestingly, the proportion of pathogenic bacteria was significantly increased in the month of May compared to March, suggesting that pathogenic bacteria were increasingly emerging in May. In particular, Pseudoalteromonas and Vibrio spp. were determined as major pathogenic bacteria from both water masses, of which Vibrio spp. were dominant.  相似文献   

18.
I. Genov 《Oceanology》2009,49(4):540-557
A model for the palaeoenvironmental evolution of the Black Sea and its adjacent basins during the past 20.000 years, in which variations in sedimentation, erosion, and hydrologic processes as a result of climatic change are taken into consideration, is developed. The data used include those from five cruises in the Black Sea with the participation of the author, seismo-acoustic data in the possession of the Institute of Oceanology in Varna, and data from the published literature. The most important result is that the water level of the Black Sea is controlled largely by that of the Marmara Sea via the Bosporus sill. The water circulation in the south part of the Bosporus channel as natural regulative mechanism of the Black Sea level during 11800–9000 yr C14 BP is produced. A succession of climatic and water conditions for the Black Sea by pollen analysis is presented. The linear ridges on the Black Sea shelf as result of the lower Holocene regression are proved by means of a stratigraphic interpretation of the seismo-acoustic profiles. The levels of the Black Sea, Marmara Sea, and Mediterranean at regarded intervals of time are presented. An attempt at explanation of maximum number of facts from the study region with this model is made.  相似文献   

19.
In an initial stage, the Sea of Marmara developed as a graben and, in due course, considerable volumes of sediments were deposited in this basin. Before 200 ka, a new fault (New Marmara Fault) cutting through the whole basin developed, which postdated large sub-marine land sliding in the western part of the basin. This mass movement created the Western Ridge. The initiation of this strike-slip fault indicates that the extensional stress regime was replaced by a new, shearing stress field. In the eastern part of the Marmara Basin, the New Marmara Fault consists of two branches. The northern one replaces the normal faulting at the bottom of the northeastern slope of the basin. As a result, this slope has been rejuvenated. The southern branch is located along the central axis of the basin, forming the major extension of the North Anatolian Fault Zone within the region. Two restraining bends were formed because of the counterclockwise rotation of that part of the Anatolian Block. This resulted the uplifting of the Eastern Ridge and the formation of the positive flower structure within the Tekirdag Basin. The establishment of the compressional regime around the Sea of Marmara also resulted in the northwest–southeast shortening of the initial Marmara Basin.  相似文献   

20.
《Oceanologica Acta》2003,26(3):243-253
Observations from hydrographic surveys are used to describe the density current flowing through the Dardanelles strait into the Marmara Sea. Aegean water plunges below the surface and flows into the Marmara Sea. This flow joins into the Marmara Sea as a negatively buoyant plume and sinks through the deeper parts. Seasonal variation in the incoming water density results in the observing mainly two different forms of the density current in this area. These two forms are boundary currents and intrusion. Boundary currents were observed as a dense bottom current during the winter when the inflowing water density attains to annual maxima and as an overflow during the autumn when the inflowing water density drops to annual minimum. Intrusion form of the density current was observed during the summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号