首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
在北极东北航道东西伯利亚海和楚科奇海交汇的关键区域,利用四景2012年北极夏季Radarsat-2 SAR海冰图像,通过图像分类提取了海冰密集度;同时采用NASA TEAM算法,基于海洋二号(HY-2)卫星扫描微波辐射计亮温数据反演了对应区域的海冰密集度;并引入美国冰雪数据中心(NSIDC)发布的SSMIS海冰密集度产品进行了对比研究。通过不同来源海冰密集度数据的分析发现HY-2、SAR和SSMIS的结果在4个研究区域上的分布趋势基本吻合;但在海冰边缘区,由SAR图像分类得到的海冰密集度高于HY-2和SSMIS的反演结果,说明了高分辨率的SAR图像在监测边缘区小尺寸浮冰上有优势。三种数据中,原始分辨率相同(25 km)的HY-2与SSMIS的结果最为相近,而HY-2同SAR的相关性与SAR同SSMIS的相关性一致。在冰边缘,HY-2的反演值偏低于SAR和SSMIS的结果,这是受该处较高水汽含量影响的结果,也是未来发展HY-2微波辐射计反演算法需要重点改进的地方。  相似文献   

2.
北极快速升温为北极通航窗口期延长提供了重大机遇,为北极航运和极区科考船只的空间信息提供服务,海冰边缘区浮冰遥感信息产品的可靠性非常关键.对比和分析了9种海冰密集度数据产品,并采用高分雷达数据开展面向海冰边缘区精度评估.结果表明,北极地区的9种海冰密集度产品相对其平均值的最大日偏差出现在夏季6—8月航道窗口期,其中采用被...  相似文献   

3.
张辛  鄂栋臣 《极地研究》2008,20(4):346-354
本文利用中分辨率成像光谱仪(Moderate Resolution Imaging Spectroradiometer,即MODIS)的海冰数据,监测中山站附近区域海冰的季节性(尤其是夏季)的消融与冻结情况及海冰表面温度的变化。文中先对MODIS的海冰数据进行影像分层、数据合成,分时间段计算海冰范围,然后提取海冰表面温度信息,最后对获取的数据进行分析。研究结果表明,中山站附近区域在每年10月至翌年2月中上旬为海冰消融期;2月中下旬至4月为海冰冻结非密封期;5月至9月为海冰冻结密封期。海冰范围2月份最小;海冰表面温度1月份最低,8月份最高。  相似文献   

4.
2010年夏季北极海冰数值预报试验   总被引:4,自引:0,他引:4       下载免费PDF全文
为保障我国第四次北极科学考察的顺利开展,于2010年6~8月开展了北极海冰预报预测服务。预报试验基于MITgcm (麻省理工学院通用环流模式),以NCEP GFS(美国国家环境预测中心全球预报系统)资料为大气强迫,初始化分别使用美国冰雪中心SSM/I(专用微波成像仪)或德国不莱梅大学AMSR-E(地球观测系统先进微波扫描辐射计)北极海冰密集度卫星资料。对2010年6~8月预报结果的初步评估表明,预报结果同卫星观测资料比较一致。在发生快速海冰变化的太平洋扇区,预报结果优于惯性预报,表明模式具有较好的局地海冰数值预报能力。  相似文献   

5.
海冰厚度作为海冰的重要变量之一,相较于海冰密集度、海冰漂移速度、海冰范围等,数据时空完整性仍然不足。当前获取北极海冰厚度的主要手段为卫星遥感,除之前的CryoSat-2、SMOS等卫星,2018年11月又新增了ICESat-2卫星。目前,针对北极多源卫星海冰厚度的时空变化差异性对比以及数据精度评估的工作较少,因此,本研究通过选取最近的完整两年(2019—2020年)内的ICESat-2、CryoSat-2以及CS2SMOS(CryoSat-2和SMOS融合产品)海冰厚度数据进行对比分析,量化其时空差异。结果显示,整体上CryoSat-2卫星数据的平均海冰厚度最大, ICESat-2其次, CS2SMOS最小。三种卫星数据间的差异具有明显的时空变化特征,在海冰厚度高值区ICESat-2数据的厚度最大, CryoSat-2与CS2SMOS数据的厚度相近,而在海冰边缘区CryoSat-2数据的厚度最大, CS2SMOS最小。从区域来看,不同卫星数据反演的海冰厚度在东西伯利亚海和波弗特海区域差异较小,在巴伦支海区域差异较大。在此基础上,利用研究时段内的“冰桥行动”实地观测数据对多源卫星数据进行...  相似文献   

6.
HY-2是中国自主研发的海洋卫星。 本文研究了利用HY-2卫星扫描微波辐射计亮温数据反演北极海冰密集度的方法。参考NASA TEAM方法,我们对典型海区光谱梯度率和极化梯度率进行了统计分析,确定了计算海冰密集度所需的亮温特征值;利用天气滤波器有效去除了开阔海域由于大气中水蒸气、云中液态水、降雨等现象引起的海冰密集度计算错误。本文计算了2012年全年的北极海冰密集度产品并对产品精度进行了初步验证,验证结果表明:三个海冰类型已知区域的海冰密集度结果与理想值比较接近,多年冰密集度的反演精度需要进一步提高;本文结果与美国冰雪数据中心和德国不来梅大学提供的两种业务化海冰密集度产品一致。本研究为利用HY-2卫星监测极区海冰密集度变化,发布实时产品奠定了基础。  相似文献   

7.
2009年春夏季北极海冰运动及其变化监测   总被引:2,自引:0,他引:2       下载免费PDF全文
邓娟  柯长青  雷瑞波  孙波 《极地研究》2013,25(1):96-104
极地海冰对全球气候变化具有指示作用,北极海冰监测对全球气候环境变化研究意义重大。利用中国第3次北极科学考察(CHINARE-2008)长期冰站获取的海冰物质平衡浮标数据和MODIS影像对北极海冰运动及其变化进行监测。结果表明MODIS影像分类得到的海冰密集度效果较好,海冰与海水之间界线清晰。4月16日至30日长期冰站在自西北向东南的漂移过程中,海冰逐渐分裂,密集度下降,速度总体上不断减小。4月30日至5月19日期间海冰密集度变化比较大,尤其是5月8日,海冰密集度突然升高。结合对漂移轨迹的分析发现,这可能是受大风、洋流等因素影响,海冰产生回旋运动导致的。5月19日至7月6日海冰密集度上升,在格陵兰岛附近海冰运动受地形影响产生聚集现象,因此在该区域海冰密集度呈现上升趋势。  相似文献   

8.
利用美国科考船Sikuliaq在2015年10月至11月初在北极波弗特海区域获得的512处船测海冰数据,分别对三种不同雪厚参数的MODIS (Moderate-resolution Imaging Spectroradiometer)热力学反演冰厚模型、德国汉堡大学和不莱梅大学发布的SMOS (Soil Moisture and Ocean Salinity mission)海冰厚度产品进行精度验证。结果表明,将船测雪厚作为反演模型中的雪厚参数,得到薄冰厚度与船测薄冰厚度的平均偏差为0.02m,均方根误差为0.12 m,两者均为三种模型中最低而被认为是最优模型。不考虑雪厚的裸冰冰厚模型得到的薄冰厚度与船测薄冰厚度的相关系数为0.72,相关性最高但只适用于冰上无雪盖的情况。以经验雪厚关系推算出的雪厚参数加入反演模型中,得到的冰厚结果在研究验证中精度最不理想。另外,两种SMOS产品与船测冰厚的相关性与均方根误差结果优于MODIS反演结果,且不莱梅大学的SMOS冰厚产品精度更优。因此研究认为现有的MODIS薄冰厚度反演算法的反演精度有待提高,暂不适合作为评定其他薄冰厚度产品精度的标准,只能作为比较数据。  相似文献   

9.
积雪深度是估算海冰厚度重要的参数之一,目前对不同积雪深度产品精度及其可适用范围的评估研究较少,也缺乏系统性的认知。本研究选取了11种北极积雪深度产品,根据产品的不同时间范围,分为2013—2018年和2018—2019年2个评估时间段。根据上述时间段,对比分析了各产品之间的差异性,然后将这些产品与“冰桥行动”和海冰质量平衡浮标的现场观测结果进行了评估。所有产品都显示格陵兰岛和加拿大北极群岛的北部积雪深度较厚,而在东西伯利亚海、拉普捷夫海、喀拉海、巴伦支海沿线区域的积雪深度较薄,不过,部分产品在时空变化上仍存在较大差异。与“冰桥行动”的观测数据对比发现,大部分产品数据雪深都较厚, AMSR2B和IS2/CS2分别在2013—2018年和2018—2019年的评估时间段内差异较小,拟合度较好。与海冰质量平衡浮标的对比结果显示,绝大部分产品数据雪深都较薄,并且差异性较大,其中NESOSIM在整个时期拟合度较好。利用不同产品的积雪深度反演海冰厚度的结果差异显著,与“冰桥行动”观测的海冰厚度对比发现, FY3B/MWRI和IS2/CS2分别在2013—2018年和2018—2019年的评估时间段...  相似文献   

10.
格陵兰岛的冰盖对全球气候有着极为重要的意义,冰盖的冻融情况可直观展示北极地区的气候变化状况。利用我国FY-3气象卫星的微波成像仪(Microwave Radiation Imager,MWRI)数据,基于增加干湿雪差异性的交叉极化比率(Cross-Polarized Gradient Ratio,XPGR)算法,通过支持向量机(Support Vector Machine,SVM)的超平面进行格陵兰岛冰盖表面冻融探测,与已有的阈值方法相比,理论上精度较高。与微波辐射计(Special Sensor Microwave Image,SSM/I)(阈值为–0.025)的数据结果进行对比验证,结果表明:XPGR结合SVM的格陵兰岛冰盖表面冻融探测方法是可行的。  相似文献   

11.
海冰密度是海冰和气候模型的重要物理变量,也是利用卫星测高数据估算海冰厚度的关键参数。目前各国北极科学考察虽开展了海冰物理观测,但对近期北极海冰密度现场观测资料的综合分析和挖掘应用不足。在此背景下,收集了近15年来北极海冰密度现场观测资料,分析北极海冰密度的变化特征;对海冰密度实测数据进行克里金插值,将插值结果输入静力平衡方程模型计算海冰厚度,探讨海冰密度对海冰厚度卫星测高反演的影响。结果表明, 2000—2015年北极海冰密度变化范围为750—950 kg·m–3,1—9月海冰密度总体上随月份变化呈减小的趋势;6—9月北极海冰密度随着纬度的增加而减少(75°N—90°N);通过对比分析表明,相较于使用海冰密度固定值参与估算海冰厚度,采用经现场观测数据空间插值后的海冰密度估算海冰厚度的结果更为准确。北极海冰密度现场观测资料的整理分析可为海冰与气候变化等进一步研究提供参考。  相似文献   

12.
南北极海冰变化及其影响因素的对比分析   总被引:1,自引:0,他引:1       下载免费PDF全文
海冰是海洋-大气交互系统的重要组成部分,与全球气候系统间存在灵敏的响应和反馈机制。本文选用欧洲空间局发布的1992—2008年海冰密集度数据分析了南北极海冰在时间和空间上的变化规律与趋势,并结合由美国环境预报中心(National Centers for Environmental Prediction,NCEP)和美国大气研究中心(National Center for Atmospheric Research, NCAR)联合制作的NCEP/NCAR气温数据和ENSO指数探讨了南北极海冰变化的影响因素。结果表明,北极海冰面积呈明显的减少趋势,其中夏季海冰最小月的减少更快。北冰洋中央海盆区、巴伦支海、喀拉海、巴芬湾和拉布拉多海的减少最明显。南极海冰面积呈微弱增加趋势,罗斯海、太平洋扇区和大西洋扇区的海冰增加。北极海冰面积与气温有显著的滞后1个月的负相关关系(P0.01)。北极升温显著,北冰洋中央海盆区、喀拉海、巴伦支海、巴芬湾和楚科奇海升温趋势最大,海冰减少很明显。南极在南大西洋、南太平洋呈降温趋势,海冰增加。北极海冰减少与39个月之后ONI的下降、40个月之后SOI的上升密切相关;南极海冰增加与7个月之后ONI的下降、6个月之后SOI的上升存在很好的响应关系。南北极海冰变化与三次ENSO的强暖与强冷事件有很好的对应关系。  相似文献   

13.
刘玥  庞小平  赵羲  苏楚钦  季青 《极地研究》2018,30(2):161-172
采用美国冰雪数据中心(NSIDC)的日尺度与月尺度海冰密集度数据,将海冰密集度为15%作为阈值确定海冰外缘线位置,提取波弗特海海域的海冰外缘线,计算波弗特海的海冰密集度、海冰范围与海冰面积,然后通过海冰范围与海冰外缘线的年际变化与季节变化来分析波弗特海海冰外缘线退缩的时空变化特征与趋势。实验结果表明,1978—2015年波弗特海的海冰密集度、海冰范围与海冰面积整体变化趋势一致,减少趋势显著。37年来,海冰密集度平均每年减少约0.3%,海冰范围平均每年减少3 235 km2,海冰面积平均每年减少5 084 km2。海冰密集度在1979—1996年无明显减少趋势,1996—2015年减少趋势明显。波弗特海海冰范围一般在9月达到最小值,在11月至次年5月维持在最大值(全冰覆盖状态);海冰面积一般在9月达到最小值,在12月或者1月达到最大值。海冰范围最小值出现时间有延迟的趋势,全冰覆盖状态具有起始时间越来越晚、终止时间越来越早、持续时间越来越短的趋势,平均持续天数为212 d。  相似文献   

14.
气候系统模式对于北极海冰模拟分析   总被引:2,自引:0,他引:2       下载免费PDF全文
利用全球耦合模式对比计划第五阶段(CMIP5)模拟试验的结果,并与观测资料对比分析,评估了CMIP5模式对北极海冰的模拟效果。结果表明:多数模式可以较好地模拟出北极海冰的空间分布以及季节变化特征。1979—2005年北极海冰迅速减少,所有模式均模拟出北极海冰减少的趋势,但减少趋势大小与观测差别较大。在全球变化的背景下,全球地表气温升高1℃,北极海冰的面积减少1.02×106km2,而在模式中减少的北极海冰面积在0.62×106—1.68×106km2之间,说明模式对于北极海冰的模拟仍然存在很多不确定性。  相似文献   

15.
为分析并评价海冰边缘区海冰密集度数据产品,选取北冰洋区域8种公开发布的产品,基于平均偏差和标准差(Standard Deviation, SD)展开分析,结果表明:Bremen/ASI(ARCTIC Sea Ice)、Bremen/BT (Bootstrap)、NSIDC(National Snow and Ice Data Center)/BT和NSIDC/CDR(Climate Data Record)四种数据全年平均偏差整体高于平均值,在夏季偏差高于冬季; Hamburger/ASI全年平均偏差低于平均值,冬春季偏差为负,夏季梢高于均值; NSIDC/NT(NASA Team)、NOAA OI SIC(National Oceanic and Atmospheric Administration Optimum Interpolation Sea Ice Concentration)和OSISAF(The Ocean and Sea Ice Satellite Application Facility)三种数据全年平均偏差为负,夏季负向增加;夏季和秋季标准差较大区域主要分布在东北航道薄冰区,东西伯利亚、拉普捷夫海和喀拉海区域标准差变化较大,从3%增加到10%~15%。围绕航道区,以MODIS(Moderate Resolution Imaging Spectroradiometer)影像作为参考,对8种数据的对比评估结果表明:在25km空间分辨率下,Bremen发布的两种数据相关性较高,均为0.80;NOAAOISIC数据相关性最低,为0.63; Bremen/BT平均偏差较小,为7.11%;基于ASI算法的Bremen/ASI数据和Hamburger/ASI数据平均偏差较大,分别为14.38%和14.99%,且在夏季和秋季偏差波动较大,对应标准差分别为12.16%和11.01%。该项研究对于提升遥感数据产品在海冰边缘或航道区的应用及进一步的算法研发具有指导意义。  相似文献   

16.
北极是全球气候和环境变化的驱动器之一,获取北极海冰的时空特征和变化规律对研究北极以及全球气候变化意义重大。格陵兰海是北极海冰剧烈变化的区域之一,采用CryoSat-2的雷达测高数据,获取了格陵兰海的海冰干舷高分布,并利用波弗特环流计划(BGEP)仰视声呐(ULS)数据进行了验证。研究结果表明,格陵兰海海冰干舷高和分布范围存在明显的季节性变化特征,具体体现在格陵兰海海冰从10月份进入冻结期开始,海冰分布范围不断扩张,海冰干舷高也逐渐增大,2月份平均干舷高达到最大(0.2 m),之后格陵兰海海冰开始消融,覆盖范围不断内缩,9月海冰干舷高降至最小(0.13 m)。  相似文献   

17.
利用4种遥感数据:AMSR-E(Advanced Microwave Scanning Radiometer-Earth Observing System)36GHz与89GHz亮温数据反演的海冰厚度以及相应波段的海冰密集度数据,结合海冰密集度和厚度两种方法提取北极冰间湖面积,分析东西伯利亚沿岸和阿拉斯加沿岸在2003—2011年期间1—4月冰间湖面积变化,并比较不同数据和算法之间的差异。结果表明:(1)1—4月份冰间湖面积变化形态相似,但数值不同,从长期看,基于AMSR-E 89 GHz亮温数据反演的海冰厚度数据计算的冰间湖面积呈上升趋势,变化率为273.33 km~2·mon~(-1),而AMSR-E 89 GHz和36 GHz波段的海冰密集度及基于AMSR-E 36 GHz亮温数据反演的海冰厚度数据计算的结果呈下降趋势,分别为-68.91km~2·mon~(-1)、-42.74 km~2·mon~(-1)和-41.91 km~2·mon~(-1);(2)数据分辨率高能够更精细分辨冰间湖,得到的面积大,反之则小;(3)由于基于海冰密集度和基于海冰厚度两种方法对冰间湖的定义不同,海冰厚度方法计算结果要大于海冰密集度结果;(4)冰间湖面积变化存在地域差别,白令海峡以西海域冰间湖统计差异较为明显,而以东海域则较弱。  相似文献   

18.
海冰与海水的交界地带是海-冰-气相互作用的重要区域,其变化会影响海洋生物栖息地的联通状态和海洋、大气的交换,确定海冰边界对于分析海冰动态变化具有重要意义[1-2]。被动微波传感器为长期监测海冰变化提供了大尺度的连续观测数据。从经典统计、随机集理论出发,应用三种由被动微波日均海冰密集度数据提取月均海冰边界的方法,分析三种月均边界的差异,以及不同月均边界提取方法对海冰长期变化分析的影响。  相似文献   

19.
基于2005年10月—2017年4月OSI-SAF逐日海冰类型和海冰密集度数据,分析了北极一年冰和多年冰变化的时空特征。结果表明每年10月至次年4月的生长期内,一年冰在10—12月增长较快,范围和面积的增加速度分别为1.87×10~6 km~2·month~(-1)和1.77×10~6 km~2·month~(-1); 1—3月增速放缓,范围和面积的增加速度为0.50×10~6 km~2·month~(-1)和0.43×10~6 km~2·month~(-1); 3—4月范围和面积变化速度为–0.38×10~6 km~2·month~(-1)和–0.24×10~6 km~2·month~(-1)。多年冰的范围和面积在不同年份的生长期内有不同变化,没有一致的季节性。8个海区的海冰范围变化特征有一定的差异,北冰洋核心区在多年冰变化中占主导作用。一年冰在生长期内逐渐向北冰洋以南生长,多年冰主要分布在格陵兰岛和加拿大群岛以北的北冰洋中心海域。每年10月、11月海冰总体范围与该月前6个月北极平均气温显著负相关。每年3月、4月一年冰范围与该月前6个月平均气温也显著负相关。多年冰范围与北极月平均气温没有显著相关性。  相似文献   

20.
海冰密集度产品在冰间湖的监测与研究中应用广泛。本文使用8种典型的被动微波遥感海冰密集度产品(NSIDC-BT-25km、NSIDC-NT2-25km、NSIDC-NT2-12.5km、NSIDC-NTBT-25km、EUMETSAT-BTBR-25km、EUMETSAT-BTBR-10km、UH-ASI-12.5km和UB-ASI-6.25km)以及5种常用的海冰密集度阈值(15%、40%、50%、60%和70%)对南极威德尔海2016—2017年出现的冰间湖进行监测,并使用形态学后处理操作对监测结果进行优化;在此基础上,对比不同阈值条件、海冰密集度反演算法以及空间分辨率差异对冰间湖面积和范围的影响,并进一步探究形态学操作对监测结果的影响。结果表明:NSIDC-NTBT-25km产品对阈值的敏感性最高,NASATeam2(NT2)算法反演的海冰密集度产品对阈值的敏感性最低,并且其监测的冰间湖面积和范围相较于Bootstrap(BT)和ARTIST Sea Ice(ASI)算法产品的监测结果整体偏小;高空间分辨率产品监测到的冰间湖开放时间更早,面积和范围更大,持续时间也更长;空间分辨率对...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号