首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The atmospheric infrared sounder (AIRS) instrument onboard Aqua Satellite is a high spectral resolution infrared sounder. In recent years, AIRS has gradually become the primary method of atmospheric vertical observations. To examine the validation of AIRS retrieval products (V3.0) over China, the AIRS surface air temperature retrievals were compared with the ground observations obtained from 540 meteorological stations in July 2004 and January 2005, respectively. The sources of errors were considerably discussed. Based on the error analysis, the AIRS retrieved surface air temperature products were systemically corrected. Moreover, the AIRS temperature and humidity profile retrievals were compared with T213 numerical forecasting products. Because T213 forecasting products are not the actual atmospheric states,to further verify the validation, the AIRS temperature and humidity profile products were assimilated into the MM5 model through the analysis nudging. In this paper, the case on February 14, 2005 in North China was simulated in detail. Then, we investigated the effects of AIRS retrievals on snowfall, humidity field,vertical velocity field, divergence field, and cloud microphysical processes. The major results are: (1) the errors of AIRS retrieved surface air temperature products are largely systematic deviations, for which the influences of terrain altitude and surface types are the major reasons; (2) the differences between the AIRS atmospheric profile retrievals and T213 numerical prediction products in temperature are generally less than 2 K, the differences in relative humidity are generally less than 25%; and (3) the AIRS temperature and humidity retrieval products can adjust the model initial field, and thus can improve the capacity of snowfall simulation to some extent.  相似文献   

2.
利用中国540个地面气象观测站点资料,对1和7月大气红外探测器(AIRS)的反演中国区域地面气温精度做了详细评估,分析了产生误差的原因。同时把AIRS的反演温、湿度廓线产品与T213数值预报产品进行比较,分析了它们之间的差异。为进一步考察AIRS温、湿度产品的有效性,我们把经过订正的AIRS地面气温以及温、湿度廓线产品分析同化到中尺度模式MM5中,用于华北降雪天气过程的对比模拟试验,分析AIRS反演产品对降雪量、水汽场、垂直速度场、散度场以及云物理过程等的影响。  相似文献   

3.
The physical retrieval algorithm of atmospheric temperature and moisture distribution from the Atmospheric InfraRed Sounder (AIRS) radiances is presented. The retrieval algorithm is applied to AIRS clear-sky radiance measurements. The algorithm employs a statistical retrieval followed by a subsequent nonlinear physical retrieval. The regression coefficients for the statistical retrieval are derived from a dataset of global radiosonde observations (RAOBs) comprising atmospheric temperature, moisture, and ozone profiles. Evaluation of the retrieved profiles is performed by a comparison with RAOBs from the Atmospheric Radiation Measurement (ARM) Program Cloud And Radiation Testbed (CART) in Oklahoma, U. S. A.. Comparisons show that the physically-based AIRS retrievals agree with the RAOBs from the ARM CART site with a Root Mean Square Error (RMSE) of 1K on average for temperature profiles above 850 hPa, and approximately 10% on average for relative humidity profiles. With its improved spectral resolution, AIRS depicts more detailed structure than the current Geostationary Operational Environmental Satellite (GOES) sounder when comparing AIRS sounding retrievals with the operational GOES sounding products.  相似文献   

4.
Li Jun 《大气科学进展》1995,12(2):255-258
TheCapabilityofAtmosphericProfileRetrievalfromSatelliteHighResolutionInfraredSounderRadiancesLiJun(李俊)(Cooperativeinstitutefo...  相似文献   

5.
李俊  曾庆存 《大气科学》1997,21(3):341-347
我们已经研究了晴空情况下的大气红外遥感及其反演问题。本文对有云情况下的大气红外遥感及其反演问题进行了研究,首先指出国际上通用的处理有云反演的晴空订正法存在误差放大问题,然后提出了3×3相邻视场同步反演法,在该方法中,假定3×3相邻视场具有共同的大气温度廓线和大气水汽廓线,从而使求解方程数增加到9倍,而反演参数只增加有限的几个,大大提高了有云情况下反演的稳定性。  相似文献   

6.
This study investigates the use of dynamic a priori error information according to atmospheric moistness and the use of quality controls in temperature and water vapor profile retrievals from hyperspectral infrared (IR) sounders. Temperature and water vapor profiles are retrieved from Atmospheric InfraRed Sounder (AIRS) radiance measurements by applying a physical iterative method using regression retrieval as the first guess. Based on the dependency of first-guess errors on the degree of atmospheric moistness, the a priori first-guess errors classified by total precipitable water (TPW) are applied in the AIRS physical retrieval procedure. Compared to the retrieval results from a fixed a priori error, boundary layer moisture retrievals appear to be improved via TPW classification of a priori first-guess errors. Six quality control (QC) tests, which check non-converged or bad retrievals, large residuals, high terrain and desert areas, and large temperature and moisture deviations from the first guess regression retrieval, are also applied in the AIRS physical retrievals. Significantly large errors are found for the retrievals rejected by these six QCs, and the retrieval errors are substantially reduced via QC over land, which suggest the usefulness and high impact of the QCs, especially over land. In conclusion, the use of dynamic a priori error information according to atmospheric moistness, and the use of appropriate QCs dealing with the geographical information and the deviation from the first-guess as well as the conventional inverse performance are suggested to improve temperature and moisture retrievals and their applications.  相似文献   

7.
OptimalUseofHighResolutionInfraredSounderChannelsinAtmosphericProfileRetrieval¥LiJun(李俊)andHuangHung-Lung(黄鸿荣)(Permanentaffil...  相似文献   

8.
A physical retrieval approach based on the one-dimensional variational(1 D-Var) algorithm is applied in this paper to simultaneously retrieve atmospheric temperature and humidity profiles under both clear-sky and partly cloudy conditions from FY-4 A GIIRS(geostationary interferometric infrared sounder) observations. Radiosonde observations from upper-air stations in China and level-2 operational products from the Chinese National Satellite Meteorological Center(NSMC)during the periods from December 2019 to January 2020(winter) and from July 2020 to August 2020(summer) are used to validate the accuracies of the retrieved temperature and humidity profiles. Comparing the 1 D-Var-retrieved profiles to radiosonde data, the accuracy of the temperature retrievals at each vertical level of the troposphere is characterized by a root mean square error(RMSE) within 2 K, except for at the bottom level of the atmosphere under clear conditions. The RMSE increases slightly for the higher atmospheric layers, owing to the lack of temperature sounding channels there.Under partly cloudy conditions, the temperature at each vertical level can be obtained, while the level-2 operational products obtain values only at altitudes above the cloud top. In addition, the accuracy of the retrieved temperature profiles is greatly improved compared with the accuracies of the operational products. For the humidity retrievals, the mean RMSEs in the troposphere in winter and summer are both within 2 g kg–1. Moreover, the retrievals performed better compared with the ERA5 reanalysis data between 800 h Pa and 300 h Pa both in summer and winter in terms of RMSE.  相似文献   

9.
红外高光谱资料模拟大气廓线反演对云的敏感性   总被引:3,自引:1,他引:2  
用不同云顶高度和不同有效云量时的星载红外高光谱观测值,模拟大气温湿垂直廓线反演对云参数的敏感性。用特征向量统计反演法按照云顶高度和有效云量分类反演了大气温湿廓线,统计了不同云高(200,300,500,700和850hPa)及云高有50hPa误差时温度、水汽混合比反演的均方根误差随有效云量的变化。结果表明,随着有效云量的增大,云顶以下各高度层上的温度、水汽混合比反演误差都明显增大。云高有50hPa误差较准确已知而言,温度和水汽混合比的反演误差增大,但温度反演对云高误差的敏感性比水汽反演要高。  相似文献   

10.
ZHANG Jie  Zhenglong  LI  Jun  LI  Jinglong  LI 《大气科学进展》2014,31(3):559-569
ABSTRACT Satellite-based observations provide great opportunities for improving weather forecasting. Physical retrieval of atmo spheric profiles from satellite observations is sensitive to the uncertainty of the first guess and other factors. In order to improve the accuracy of the physical retrieval, an ensemble methodology was developed with an emphasis on perturbing the first guess. In the methodology, a normal probability density function (PDF) is used to select the optimal profile from the ensemble retrievals. The ensemble retrieval algorithm contains four steps: (1) regression retrieval for original first guess; (2) perturbation of the original first guess to generate new first guesses (ensemble first guesses); (3) using the ensemble first guesses and nonlinear iterative physical retrieval to generate ensemble physical results; and (4) the final optimal profile is selected from the ensemble physical results by using PDE Temperature eigenvectors (EVs) were used to generate the pertur- bation and generate the ensemble first guess. Compared with the regular temperature profile retrievals from the Atmospheric InfraRed Sounder (AIRS), the ensemble retrievals RMSE of temperature profiles selected by the PDF was reduced between 150 and 320 hPa and below 400 hPa, with a maximum improvement of 0.3 K at 400 hPa. The bias was also reduced in many layers, with a maximum improvement of 0.69 K at 460 hPa. The combined optimal (CombOpt) profile and a mean optimal (MeanOpt) profile of all ensemble physical results were improved below 150 hPa. The MeanOpt profile was better than the CombOpt profile, and was regarded as the final optimal (FinOpt) profile. This study lays the foundation for improving temperature retrievals from hyper-spectral infrared radiance measurements.  相似文献   

11.
利用经济省时的降维投影四维变分同化方法(DRP-4DVar),在2009年7月22~23日江淮流域的一次大暴雨过程中同化晴空条件下高光谱大气红外探测仪(AIRS)反演温度、湿度廓线,改进此次强降水过程的模拟。试验结果分析显示,同化AIRS反演的温度及湿度场后,基于四维变分同化系统的模式约束,能够改进湿度场、高度场、高低层散度场。从累积降水量偏差图及同化试验增量图可以看到,正降水量偏差对应于正湿度增量、负位势高度增量及低层负散度高层正散度增量,负降水量偏差则与之相反。同化试验较参照试验可更好地模拟出暴雨的天气形势、对暴雨的落区及强度有更好的反映。此外,从单次同化与连续同化的试验对比结果看出,连续同化试验结果较单次同化结果有进一步的改进,说明不断加入新的观测资料可以更好地模拟强降水过程。  相似文献   

12.
利用AIRS卫星资料反演大气廓线Ⅰ.特征向量统计反演法   总被引:2,自引:0,他引:2  
引进美国威斯康星大学的IMAPP(International MODIS/AIRS Preprocessing Package)软件包,介绍了利用高光谱分辨率大气红外探测器AIRS(Atmospheric Infrared Sounder)观测辐射值,用特征向量统计法反演大气温度、湿度等垂直廓线的算法,采用亮度温度分类和扫描角分类回归后,减小了反演误差。并将其应用到中国地区,通过与无线电探空值及欧洲中期天气预报中心ECMWF(European Center of Medium-range Weather Forecasts)客观分析场的比较,结果表明:该方法所获得的温度、水汽反演结果与探空观测及ECMWF大气廓线分布一致,且AIRS因其高光谱分辨率(即高垂直空间分辨率)显示了精细的大气结构。  相似文献   

13.
A Study on Retrieving Atmospheric Profiles from EOS/AIRS Observations   总被引:5,自引:0,他引:5  
1. IntroductionThe development of global climate and weathermodels requires accurate monitoring of atmospherictemperature and moisture profiles, as well as the con-tents of trace gases and aerosols. It is quite difficultto monitor continuously these parameters on a globalscale.Until recently. AIRS (Atmospheric InfraredSounder) offers a new opportunity to improve globalmonitoring of temperature, moisture, and ozone distri-butions and changes therein. The high spectral resolu-tion (v/Δv ? 12…  相似文献   

14.
The Infrared Atmospheric Sounding Interferometer (IASI) is a new-generation ultraspectral atmospheric sounding instrument mounted on the MetOp-A, the first operational polar-orbiting satellite developed by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). It is an ultrahigh spectral-resolution atmospheric detector which can detect atmospheric chemical composition, temperature, and humidity profiles with high accuracy and resolution. In the present study, through comparative analyses of the similarities and differences between the IASI and the radiosonde observation (RAOB) water vapor data, and between the IASI and the Aqua-AIRS water vapor retrievals, a detailed and systematic assessment of the credibility of the IASI water vapor retrievals over the plateau region was made. A comparison of the IASI retrievals with the AIRS retrievals and the RAOB measurements over the Tibetan Plateau revealed that the IASI retrieval data are reliable and can be used for conducting further studies.  相似文献   

15.
Satellite hyperspectral infrared sounder measurements have better horizontal resolution than other sounding techniques as it boasts the stratospheric gravity wave (GW) analysis. To accurately and efficiently derive the three- dimensional structure of the stratospheric GWs from the single-field-of-view (SFOV) Atmospheric InfraRed Sounder (AIRS) observations, this paper firstly focuses on the retrieval of the atmospheric temperature profiles in the altitude range of 20-60 km with an artificial neural network approach (ANN). The simulation experiments show that the retrieval bias is less than 0.5 K, and the root mean square error (RMSE) ranges from 1.8 to 4 K. Moreover, the retrieval results from 20 granules of the AIRS observations with the trained neural network (AIRS_SFOV) and the corresponding operational AIRS products (AIRS_L2) as well as the dual-regression results from the Cooperative Institute for Meteorological Satellite Studies (CIMSS) (AIRS_DR) are compared respectively with ECMWF T799 data. The comparison indicates that the standard deviation of the ANN retrieval errors is significantly less than that of the AIRS_DR. Furthermore, the analysis of the typical GW events induced by the mountain Andes and the typhoon "Soulik" using different data indicates that the AIRS_SFOV results capture more details of the stratospheric gravity waves in the perturbation amplitude and pattern than the operational AIRS products do.  相似文献   

16.
目前云对卫星相对湿度廓线反演精度的影响研究大多是针对云量,对其他云属性的影响研究尚少,云高也是影响卫星相对湿度廓线反演精度的重要因素。利用上海宝山站L波段(1型)加密探空资料,分析了上海地区7—9月不同质量控制标识、云量和云顶高度条件下大气红外探测器AIRS/Aqua (Atmospheric Infrared Sounder) 相对湿度廓线的反演精度,以期为今后开展AIRS等卫星资料的同化研究提供科学依据。结果表明:(1)AIRS相对湿度廓线反演误差随着云量的增加而逐渐增大,并且随着气压值的升高,少云与多云时的均方根误差(Root Mean Squared Error, RMSE)之差有逐渐增大的趋势;(2)云顶高度越高,AIRS相对湿度廓线反演精度越差,云顶以上湿度廓线反演精度更高,而云顶以下高度的反演误差较大;(3)高云且多云时,AIRS相对湿度廓线的反演精度最差,850 hPa处,AIRS相对湿度反演数据与探空资料绝对误差的下限达到了[-63.51%];(4)虽然质量控制标识为0时,AIRS湿度廓线在对流层范围内的反演精度仍达不到无线电探空的水平,但是相对于质量控制标识1时,反演精度明显提高。   相似文献   

17.
I. IntroductionOzone p1ays a very 1mportant ro1e in globa1 climate change. This is particularly true inthe stratosphere, where ultra--v1olet solar radiation is strongly absorbed by ozone, leading tosubstantlal change in the earths atmospheric thermal, physical and chemical structure. Al-though the troposphere contains only about l0% of the total atmospheric ozone, the varia-tlon of tropospheric ozone may have more significant cllmatic effect than stratospheric ozoneon the earth's surface temP…  相似文献   

18.
中国新一代地球静止气象卫星风云四号A星(FY-4A)搭载的干涉式大气垂直探测仪(Geostationary Interferometric Infrared Sounder, GIIRS)以红外高光谱干涉分光方式探测三维大气温湿结构,取得了在静止轨道上探测大气的突破性进展。地基全球导航卫星系统(Global Navigation Satellite System,GNSS)是一种连续监测大气可降水量(Precipitable Water Vapor,PWV)的有效手段,基于2018年6—8月中国地基GNSS站监测的PWV和FY-4A/GIIRS水汽廓线的业务产品以及常规无线电探空资料,开展GNSS/PWV与FY-4A/GIIRS水汽廓线快速融合应用,以提高卫星资料反演大气水汽廓线的精度。结果表明:与常规无线电探空相比,FY-4A/GIIRS水汽廓线产品在大气低层均方根误差(Root Mean Square Error,RMSE)为4.5 g/kg,700 hPa为2.4 g/kg,500 hPa以上因水汽含量较低RSME小于1.5 g/kg。GNSS/PWV与FY-4A/GIIRS水汽廓线融合后,FY-4A/GIIRS水汽廓线误差整层RMSE减小20%,从近地层到600 hPa RMSE平均减小20%—25%,尤其是850—700 hPa改善最明显,极大改善了卫星水汽反演资料的可用性。对一次多系统影响的暴雨天气过程应用分析表明,GNSS/PWV和FY-4A/GIIRS融合产品可获得高时、空密度的大气水汽廓线,对强降水的临近预报有非常重要的支撑作用。   相似文献   

19.
Li Jun 《大气科学进展》1994,11(4):421-426
Linearization of Radiative Transfer Equation (RTE) is the key step in physical retrieval of atmospheric temperature and moisture profiles from InfRared (IR) sounder observations. In this paper, the successive forms of temperature and water vapor mixing ratio component weighting functions are derived by applying one term variation method to RTE with surface emissivity and solar reflectivity contained. Retrivals of temperature and water vapor mixing ratio profiles from simulated Atmospheric Infrared Sounder (AIRS) observations with surface emissivity and solar reflectivity are presented.  相似文献   

20.
In this study,we derived atmospheric profiles of temperature,moisture,and ozone,along with surface emissivity,skin temperature,and surface pressure,from infrared-sounder radiances under clear sky (cloudless) condition.Clouds were detected objectively using the Atmospheric Infrared Sounder under a relatively low spatial resolution and cloud-mask information from the Moderate Resolution Imaging Spectroradiometer under a high horizontal resolution;this detection was conducted using space matching.Newton’s nonlinear physical iterative solution technique is applied to the radiative transfer equation (RTE) to retrieve temperature profiles,relative humidity profiles,and surface variables simultaneously.This technique is carried out by using the results of an eigenvector regression retrieval as the background profile and using corresponding iterative forms for the weighting functions of temperature and water-vapor mixing ratio.The iterative forms are obtained by applying the variational principle to the RTE.We also compared the retrievals obtained with different types of observations.The results show that the retrieved atmospheric sounding profile has great superiority over other observations by accuracy and resolution.Retrieved profiles can be used to improve the initial conditions of numerical models and used in areas where conventional observations are sparse,such as plateaus,deserts,and seas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号