首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 895 毫秒
1.
Taking limestone soil and yellow soil, the two major soil types in karst areas as examples, analyzing stable carbon isotope composition (δ13C value) of soil organic matter (SOM) in bulk soils and particle-size fractions of four soil profiles under three vegetable forms, the following results are reached: in the limestone soil profile, soil organic carbon contents are all above 1.0%, the highest value is 7.1% in the surface soil; however, they are between 0.3% and 4.6% in the three yellow soil profiles. From the surface to the bottom of the soil profiles, the variation of δ13C value of soil organic carbon for limestone soil profile is only between −24.1‰ and −23.0‰, however, it’s between −24.8‰ and −21.1‰ for yellow soil profiles. The variation range of δ13C value of soil organic carbon associated with particle-size separates is slight for limestone soil but is considerable for yellow soil. The contrast research indicates that the changes between the contents and the δ13C value of soil organic carbon with depth are complex. The vertical patterns of stable carbon isotope in soil organic matter have a distinct regional characteristic in karst areas.  相似文献   

2.
The relation of two well-known ancient carbonate deposits to hydrocarbon seepage was confirmed by this study. Archaea are found to be associated with the formation of Oxfordian seep carbonates from Beauvoisin and with a Miocene limestone from Marmorito ("tube-worm limestone"). Carbonates formed due to a mediation by archaea exhibit extremely positive or extremely negative δ13Ccarbonate values, respectively. Highly positive values (+15‰) reflect the use of 13C-enriched CO2 produced by methanogenesis. Low δ13C values of the Marmorito carbonates (–30‰) indicate the oxidation of seepage-derived hydrocarbons. Likewise, the δ13C content of specific tail-to-tail linked isoprenoids, biomarkers for archaea, was found to be strikingly depleted in these samples (as low as –115‰). The isotopic signatures corroborate that archaea were involved in the cycling of seepage-derived organic carbon at the ancient localities. Another Miocene limestone ("Marmorito limestone") shows a strong imprint of methanotrophic bacteria as indicated by δ13C values of carbonate as low as –40‰ and biomarker evidence. Epifluorescence microscopy and field-emission scanning electron microscopy revealed that bacterial biofilms were involved in carbonate aggregation. In addition to lucinid bivalves previously reported from both localities, we infer that sponges from Beauvoisin and tube worms from Marmorito depended on chemosynthesis as well. Low δ13C values of nodules related to sponge taphonomy (–27‰) indicate that sponges might have been linked to an enhanced hydrocarbon oxidation. Tube worm fossils from Marmorito closely resemble chemosynthetic pogonophoran tube worms from Recent cold seeps and are embedded in isotopically light carbonate (δ13C –30‰). Received: 13 October 1998 / Accepted: 5 February 1999  相似文献   

3.
Study on Modern Plant C-13 in Western China and Its Significance   总被引:2,自引:0,他引:2  
Organic carbon isotopic composition(δ^13C) is one of the important proxies in paleoenvironment studies.In this paper modern plant δ^13C in the arid areas of China and Tibetan Plateau is studied.It is found that most terrestrial plant species in western China are C3 plants with δ^13C values ranging from -32.6‰ to -23.2‰ and only few species are C4 plants with δ^13C values from -16.8‰ to -13.3‰.The δ^13C is closely related to precipitation (or humidity),i.e., light δ^13C is related to high precipitation(or humid climate),while heavy δ^13C to low precipitation (or dry climate),but there is almost no relation between plant δ^13C and temperature.Submerged plants have δ^13C values ranging from -22.0‰ to -12.7‰,like C4 plants,while merged plants have δ^13C values ranging from -28.1‰ to -24.5‰,like C3 C4 plants,while marged plants have δ^13C values ranging from -28.1‰ to -24.5‰,like C3 plants.It can then be concluded that organic δ^13C variations in terrestrial sediments such as loeas and soil in western China can indicate precipitation changes,but those in lake sediments can reflect organic sources and the productivity of different types of aquatic plants.  相似文献   

4.
Petrography and stable isotopes (carbon and oxygen) geochemistry of limestones from the El Abra Formation, Actopan, were studied to identify their digenetic environments. The major petrographic types identified are mudstone, wackestone, grainstone, and boundstone. Most of the studied samples show positive δ13C values, except two samples (2 and 28), which are slightly negative values (−0.27‰ and −0.02‰). The organic remains identified in foraminiferal wackestone type can be responsible for the negative δ13C values. The δ18O values range from −12.41‰ to −4.02‰ and indicate meteoric diagenesis.  相似文献   

5.
Natural and anthropogenic impacts on karst ground water, Zunyi, Southwest China, are discussed using the stable isotope composition of dissolved inorganic carbon and particulate organic carbon, together with carbon species contents and water chemistry. The waters can be mainly characterized as HCO3–Ca type, HCO3 · SO4–Ca type, or HCO3 · SO4–Ca · Mg type, according to mass balance considerations. It is found that the average δ13CDIC values of ground waters are higher in winter (low-flow season) than in summer (high-flow season). Lower contents of dissolved inorganic carbon (DIC) and lower values of δ13CDIC in summer than in winter, indicate that local rain events in summer and a longer residence time of water in winter play an important role in the evolution of ground water carbon in karst flow systems; therefore, soil CO2 makes a larger contribution to the DIC in summer than in winter. The range of δ13CDIC values indicate that dissolved inorganic carbon is mainly controlled by the rate of carbonate dissolution. The concentrations of dissolved organic carbon and particulate organic carbon in most ground water samples are lower than 2.0 mg C L−1 and 0.5 mg C L−1, respectively, but some waters have slightly higher contents of organic carbon. The waters with high organic carbon contents are generally located in the urban area where lower δ13CDIC values suggest that urbanization has had an effect on the ground water biogeochemistry and might threaten the water quality.  相似文献   

6.
On the basis of different photosynthetic pathways.there is an obvious difference in δ^13C values between C3 and C4 plants,In terms of this characteristic,we analyzed the organic carbon content (forestlands:1.81%-16.00%;farmland:0.45%-2.22%) and δ^13C values(forestlands:-23.86‰--27.12‰;farmland:-19.66‰--23.26‰)of three profile-soil samples either in farmland or in forestland near the Maolan Karst virgin forest,where there were developed plant C3 plants previously and now are C4 plants.Results showed that the deforestation has accelerated the decomposition rate of soil organic matter and reduced the proportion of active components in soil organic matter and thus soil fertility.  相似文献   

7.
The forest ecosystem in the Maolan karst forest, southwest China is the only concentrated, intact, and relatively stable karst forest ecosystem which has survived in the area at the same latitude in the world, and is a valuable karst forest plant resource as well. Groundwater samples from Maolan karst forest were collected from wells and springs during summer; and concentrations of major ions and dissolved inorganic carbon (DIC) isotopic compositions were measured. The pH values range from 7.2 to 8.3 results from the dissolution of carbonate, HCO3 is the dominant species of DIC in groundwater. Calcium and HCO3 , followed by Mg2+ and SO4 2− dominate the chemical composition of major ions in the groundwaters. Groundwater samples have δ13C values in the range from −8.1‰ to −16.6‰, which are lower than that of the other karst city groundwaters in the southwest China. Combining δ13CDIC ratios with measurements of HCO3 and pH clearly distinguishes the principal processes underlying the geochemical evolution of groundwater in Carboniferous carbonate aquifers, where processes can be both degradation of organic matters in the soil and the carbonate dissolution.  相似文献   

8.
In this study, two sediment cores (~70 cm) were collected from separate mangrove forests straddling the Ba Lat Estuary, Red River of northern Vietnam, to examine the origins of sedimentary organic carbon (SOC) and reconstruct the paleoenvironment. In addition, mangrove leaves and particulate organic matter were collected and measured for δ13C to trace the origins of SOC. The cores were analyzed by high-resolution sections for δ13C, TOC, C/N ratios, sediment grain size, water content, and porosity, with values of δ13C, TOC, and C/N ratios ranging from −28.19 to −22.5‰, 2.14–30.94 mg/g, and 10.29–18.32, respectively. The δ13C and TOC relationship indicated that there were some small residual effects of diagenetic processes on TOC and δ13C values in mangrove sediments. However, the shifts of δ13C and C/N ratios from the bottom to the surface sediment of the cores explained the change in organic matter sources, with values of C/N > 12 and δ13C < −25‰, and C/N < 12 and δ13C > −25‰ indicated terrestrial (e.g., mangrove litter) and marine phytoplankton sources, respectively. The covarying δ13C, C/N ratios, and sediment grain sizes during the past 100 years in sediment cores showed that the paleoenvironment may be reconstructed into three environments (subtidal, tidal flat, and intertidal mangrove). General trends in δ13C and C/N followed a gradual increase in the C/N ratio and a concomitant decrease in δ13C from the subtidal, through to tidal flat, and to the intertidal mangrove. δ13C and C/N ratios are therefore effective in measuring the continuum of environmental change in mangrove ecosystem.  相似文献   

9.
Characteristics and distributions of humic acid (HA) and soil organic matter (SOM) in a yellow soil profile and a limestone soil profile of the southwest China Karst area were systematically investigated to reveal their evolutions in different soils of the study area. The results showed that characteristics and distribution of SOM along the two soil profiles were notably different. Total organic carbon (TOC) contents of soil samples decreased just slightly along the limestone soil profile but sharply along the yellow soil profile. TOCs of the limestone soils were significantly higher than those of the corresponding yellow soils, and C/N ratios of SOMs showed a similar variation trend to that of TOCs, indicating that SOM can be better conserved in the limestone soil than in the yellow soil. The soil humic acids were exhaustively extracted and further fractionated according to their apparent molecular weights using ultrafiltration techniques to explore underlying conservation mechanisms. The result showed that C/N ratios of HAs from different limestone soil layers were relatively stable and that large molecular HA fractions predominated the bulk HA of the top soil, indicating that HA in the limestone profile was protected while bio and chemical degradations were retarded. Combined with organic elements contents and mineral contents of two soils, we concluded that high calcium contents in limestone soils may play a key role in SOM conservation by forming complexation compounds with HAs or/and enclosing SOMs with hypergene CaCO3 precipitation.  相似文献   

10.
In order to investigate the distribution characteristics of stable carbon isotope ratios (δ 13C) in the desert plant Reaumuria soongorica, the δ 13C values of leaves were measured in 407 individuals of 21 populations. Soil physicochemical properties including soil water content, soil total dissolved solids, soil total nitrogen, soil total phosphorus and soil organic content were also analyzed in order to survey the major factors influencing δ 13C values on spatial variation. Leaves and soil samples were simultaneously collected from the ten major distribution areas in Northwest China at altitudes from 394 m to 1 987 m above sea level, at latitudes from 36°10′N to 44°33′N, and at longitudes from 81°43′E to 106°37′E. These ten areas include Shihezi, Baicheng, Yiwu areas in Xinjiang Uygur Autonomous Region; Anxi, Zhangye, Baiyin, Lanzhou areas in Gansu Province; Shapotou, Yinchuan areas in Ningxia Hui Autonomous Region; and Alashan County in Inner Mongolia Autonomous Region. The results show that the δ 13C value of R. soongorica ranges from −22.77‰ to −29.85‰ with an average of −26.52‰. Foliar d13C values in R. soongorica are not significantly correlated with altitude, latitude or longitude, and a spatial distribution trend of d13C values of R. soongorica is not obvious on a large scale. However, when d13C values of two R. soongorica populations under the same climate conditions are compared, δ 13C values increase obviously from east to west and from north to south. As none of the soil total dissolved solids, soil total nitrogen, soil total phosphorus, and soil organic content shows a uniform trend from east to west and from north to south, we suppose that the small-scaled spatial distribution pattern of δ 13C values of R. soongorica is mainly controlled by the soil water content. Translated from Quaternary Sciences, 2006, 26(6): 947–954 [译自: 第四纪研究]  相似文献   

11.
Early carbonate cements in the Yanchang Formation sandstones are composed mainly of calcite with relatively heavier carbon isotope (their δ^18O values range from -0.3‰- -0.1‰) and lighter oxygen isotope (their δ^18O values range from -22.1‰- -19.5‰). Generally, they are closely related to the direct precipitation of oversaturated calcium carbonate from alkaline lake water. This kind of cementation plays an important role in enhancing the anti-compaction ability of sandstones, preserving intragranular volume and providing the mass basis for later disso- lution caused by acidic fluid flow to produce secondary porosity. Ferriferous calcites are characterized by relatively light carbon isotope with δ^13C values ranging from -8.02‰ to -3.23‰, and lighter oxygen isotope with δ^18O values ranging from -22.9‰ to -19.7‰, which is obviously related to the decarboxylation of organic matter during the late period of early diagenesis to the early period of late diagenesis. As the mid-late diagenetic products, ferriferous cal- cites in the study area are considered as the characteristic authigenic minerals for indicating large-scaled hydrocarbon influx and migration within the clastic reservoir. The late ankerite is relatively heavy in carbon isotope with δ^13C values ranging from -1.92‰ to -0.84‰, and shows a wide range of variations in oxygen isotopic composition, with δ^18O values ranging from -20.5‰ to -12.6‰. They are believed to have nothing to do with decarboxylation, but the previously formed marine carbonate rock fragments may serve as the chief carbon source for their precipitation, and the alkaline diagenetic environment at the mid-late stage would promote this process.  相似文献   

12.
A series of samples, including vegetation, soil organic matter, soil waters, spring, bedrock, pool water, drip waters (upper-drip waters and ground-drip waters) and their corresponding speleothems were collected at Liangfeng Cave (LFC) system of Guizhou Province, southwest of China, respectively, from 2003 to 2004 year, then their stable carbon isotopes were measured and analyzed. Results reveal that vegetation is C3 type in LFC system; cave overlying δ 13C signals, including values and variations, could be transmitted to drip water (speleothem); speleothem δ 13C mainly shows a biogenic δ 13C value character (soil CO2 from plant respiration and decay); and there are remarkable seasonal variations of δ 13C values for drip water TDIC (speleothem), which are lighter at least 2.0‰ in the rainy seasons than in the dry ones. So, it could be feasible to reconstruct high-resolution changes of paleoecology and paleoclimate by using speleothem δ 13C values.  相似文献   

13.
The Kaoping (Taiwan) and Kapuas (Indonesia) Rivers differ in hydrological cycle, topography and landscape. These differences strengthen the use of 14C dating, lignin-derived phenols, δ13C values and C/N ratios to determine the sources and diagenesis of surface sedimentary organic carbon (OC) in both rivers. The Kapuas River is surrounded by forest, resulting in sedimentary OC with a 14C age between 600 and 740 years, Λ (total lignin expressed as mg/100 mg OC) values from 0.94 to 3.70, δ13C values from −27.87 to −30.00‰, C/N ratios from 6.7 to 30.8, %OC from 0.63 to 9.24% and vanillic acid to vanillin ratio, (Ad/Al)v, values from 0.73 to 2.09, all of which indicate the presence of recent plant-derived organic matter. The tributaries and three locations upstream of the Kaoping River are also surrounded by forests, resulting in Λ values (0.51–4.80), δ13C values (−23.85 to −27.08‰), C/N ratios (14.1–28.7), %OC (1.01–7.86%) and (Ad/Al)v values (0.86–1.88), which are indicative of a terrestrial signal. No lignin oxidation products were detected in the mainstream of the Kaoping River or its coastal zone, hence the surface sediments OC with a 14C age between 4,915 and 15,870 years, enriched δ13C values (−23.30 and −26.54‰), lower C/N ratios (6.0–17.5) and lower %OC (0.15–2.24%) likely represent old rock and soil material. Massive floods during typhoons most probably cause plant materials from the Kaoping River and its coastal zone to be transported into the deep sea.  相似文献   

14.
Natural gases of shallow reservoirs with the carbon isotopic compositions of methane ranging from -50‰ to -60‰ (PDB) were considered as mixed gases of biogenic and thermogenic origins previously and some of them were considered as low-mature (or low temperature thermogenic) gases lately. In this paper natural gases with the carbon isotopic compositions of methane in the above range were identified using the molecular and stable carbon isotopic compositions of methane, ethane and propane. The mixed gases of biogenic and mature thermogenic origins display the characteristics of δ 13 C1 ranging from -50‰to -60‰,δ13C2 > -35‰,Δvalues (δ13C3 -δ13C2) < 5‰ and C1/∑C2 ratios < 40. Immature to low-mature gases display the characteristics of δ 13 C1 ranging from - 50‰ to - 60‰, δ13 C2 <- 40‰,Δ values (δ13C3 -δ13C2) >7‰, and C1/∑C 2 ratios >60.  相似文献   

15.
To characterize the isotopic composition of organisms at the base of the food web and the controls on their variability, the concentration and δ13C isotopic composition of dissolved inorganic carbon (DIC) and plankton δ13C, δ15N, and δ34S were measured. The measurements were made during periods of high and low river flow in Apalachicola Bay, Florida, United States, over 3 yr. DIC concentration and δ13C values were related to salinity, indicating that conservative mixing of riverine and marine waters was responsible for the overall distributions. The usefulness of DIC δ13C data for characterizing the trophic processes within the estuary was dependent upon the residence time of water within the season. Plankton δ13C values varied from −22‰ to −30‰ and were directly related to estuarine DIC δ13C, offset by a factor of roughly −20‰. This offset factor varied with salinity. Values of δ34S in estuarine plankton (station means ranged from 11.4‰ to 13.1‰) were depleted relative to marine plankton (17.7±0.4‰) possibly due to the admixture of34S-depleted sedimentary sulfide with estuarine samples. Values of δ34S in plankton were not related to δ13C values of plankton and were only weakly correlated to the salinity of the water from which the plankton were collected, indicating that marine sulfate was the primary source of planktonic sulfur. Values of δ15N in plankton varied from 5.5‰ to 10.7‰ and appeared related to dominance of the sample by phytoplankton or zooplankton. Estuarine plankton was15N enriched relative to offshore plankton and estuarine sediment.  相似文献   

16.
1 IntroductionThe compositional characteristics of natural gasesand their carbon isotopic composition are controlledmainly by the type of organic matter and the degree ofits thermal evolution in the source rocks (Song Yan,1995; Xu Yongchang et al., 1994; …  相似文献   

17.
The source of metasomatic fluids in iron-oxide–copper–gold districts is contentious with models for magmatic and other fluid sources having been proposed. For this study, δ 18O and δ 13C ratios were measured from carbonate mineral separates in the Proterozoic eastern Mt Isa Block of Northwest Queensland, Australia. Isotopic analyses are supported by petrography, mineral chemistry and cathodoluminescence imagery. Marine meta-carbonate rocks (ca. 20.5‰ δ 18O and 0.5‰ δ 13C calcite) and graphitic meta-sedimentary rocks (ca. 14‰ δ 18O and −18‰ δ 13C calcite) are the main supracrustal reservoirs of carbon and oxygen in the district. The isotopic ratios for calcite from the cores of Na–(Ca) alteration systems strongly cluster around 11‰ δ 18O and −7‰ δ 13C, with shifts towards higher δ 18O values and higher and lower δ 13C values, reflecting interaction with different hostrocks. Na–(Ca)-rich assemblages are out of isotopic equilibrium with their metamorphic hostrocks, and isotopic values are consistent with fluids derived from or equilibrated with igneous rocks. However, igneous rocks in the eastern Mt Isa Block contain negligible carbon and are incapable of buffering the δ 13C signatures of CO2-rich metasomatic fluids associated with Na–(Ca) alteration. In contrast, plutons in the eastern Mt Isa Block have been documented as having exsolved saline CO2-rich fluids and represent the most probable fluid source for Na–(Ca) alteration. Intrusion-proximal, skarn-like Cu–Au orebodies that lack significant K and Fe enrichment (e.g. Mt Elliott) display isotopic ratios that cluster around values of 11‰ δ 18O and −7‰ δ 13C (calcite), indicating an isotopically similar fluid source as for Na–(Ca) alteration and that significant fluid–wallrock interaction was not required in the genesis of these deposits. In contrast, K- and Fe-rich, intrusion-distal deposits (e.g. Ernest Henry) record significant shifts in δ 18O and δ 13C towards values characteristic of the broader hostrocks to the deposits, reflecting fluid–wallrock equilibration before mineralisation. Low temperature, low salinity, low δ 18O (<10‰ calcite) and CO2-poor fluids are documented in retrograde metasomatic assemblages, but these fluids are paragenetically late and have not contributed significantly to the mass budgets of Cu–Au mineralisation.  相似文献   

18.
The carbon isotopic composition of organic matter from lake sediments has been extensively used to infer variations in productivity. In this paper, based on the study of the contents and δ13C values of organic matter in different types of lakes, it has been found that δ13C values of organic matter have different responses to lake productivity in different lakes. As to the lakes dominated by aqutic macrophytes such as Lake Caohai, organic matter becomes enriched in 13C with increasing productivity. As to the lakes dominated by aquatic algae such as Lake Chenghai, δ13C values of organic matter decrease with increasing productivity, and the degradation of aquatic algae is the main factor leading to the decrease of δ13C values of organic matter with increasing productivity. Therefore, we should be cautious to use the carbon isotopic composition of organic matter to deduce lake productivity.  相似文献   

19.
Five soil samples collected from shooting ranges in 1998 were stored under a closed condition for 5 years. In addition to SEM and XRD investigations, the total organic carbon content (TOC), inorganic carbon content (TIC), δ13C and δ18O of carbonates and δ13C of plant remains were analyzed. The concentrations of total carbon contents, the sum of TOC and TIC, remained the same within the 5 years storage, whereas the TOC and TIC contents decreased and increased, respectively. The TIC increase is associated with a decreased TOC, suggesting a conversion of organic carbon into inorganic carbon. Such a conversion is evidenced by the presence of primary lead carbonates and carbon isotopic composition of lead carbonates. It can be concluded that soil organic matters play an important role in the process of bullets weathering and controls migration of the elevated lead in the soil.  相似文献   

20.
The stable carbon isotope composition in surface soil organic matter (δ13Csoil) contains integrative information on the carbon isotope composition of the standing terrestrial plants (δ13Cleaf). In order to obtain valuable vegetation information from the δ13C of terrestrial sediment, it is necessary to understand the relationship between the δ13C value in modern surface soil and the standing vegetation. In this paper, we studied the δ13C value in modern surface soil organic matter and standing vegetation in arid areas in China, Australia and the United States. The isotopic discrepancy between δ13Csoil and δ13Cleaf of the standing dominant vegetation was examined in those different arid regions. The results show that the δ13Csoil values were consistently enriched compared to the δ13Cleaf. The δ13Cleaf values were positively correlated with δ13Csoil, which suggests that the interference of microorganisms and hydrophytes on the isotopic composition of surface soil organic matter during soil organic matter formation could be ignored in arid regions. The averaged discrepancy between δ13Csoil and δ13Cleaf is about 1.71%in Tamarix L. in the Tarim Basin in China, 1.50% in Eucalytus near Orange in Australia and 1.22% in Artemisia in Saratoga in the United States, which are different from the results of other studies. The results indicate that the discrepancies in the δ13C value between surface soil organic matter and standing vegetation were highly influenced by the differences in geophysical location and the dominant species of the studied ecosystems. We suggest that caution should be taken when organic matter δ13C in terrestrial sediment is used to extract paleovegetation information (C3/C4 vegetation composition), as the δ13C in soil organic matter is not only determined by the ratio of C3/C4 species, but also profoundly affected by climate change induced variation in the δ13C in dominant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号