首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 560 毫秒
1.
Pesticide sorption on to the soil has a significant role in deciding the fate and behavior of pesticides in soil and aquatic environment. The present study investigates the adsorption of monocrotophos (MCP) and dichlorvos (DDVP) on the three soils of Malwa region of Punjab, India under different conditions. Batch adsorption experiments were preformed in replicates using 2 g of air‐dried soil and varying concentrations of pesticides and 20 mL of 0.01 M CaCl2 as background electrolyte. The results revealed high adsorption of MCP and DDVP in soil B with kf‐values 0.1261 and 0.0498 and n‐values 2.7345 and 1.831, respectively. The adsorption isotherms obtained were analyzed and the data was subjected to classical Langmuir, Freundlich, and Temkin models. The experimental data best fitted to the logarithm form of Freundlich and Temkin model. Kinetics analyses were performed using pseudo‐first order, pseudo‐second order, and intraparticle diffusion models. The regression results showed that the experimental data fitted very well with the pseudo‐second order kinetic model as correlation coefficient value is very closer to 1 and also followed the intraparticle diffusion model, whereas, diffusion is not only the rate controlling step. The percentages desorption with tap and distilled water is 32–64% for MCP and 25–48% for DDVP.  相似文献   

2.
The use of rice husk as a low cost adsorbent for the removal of copper from wastewater has been explored in a laboratory scale experiment. The rice husk used for the study was treated with alkali to increase the sorption properties. The influence of metal ion concentration, weight of biosorbent, stirring rates, temperature and pH were also evaluated, and the results are fitted using adsorption isotherm models. From the experimental results it was observed that almost 90–98% of the copper could be removed using treated rice husk. The Langmuir adsorption isotherm, Freundlich isotherm and Tempkin isotherm models were used to describe the distribution of copper between the liquid and solid phases in batch studies, and it was observed that the Langmuir isotherm better represented the adsorption phenomenon. The experimental rate constant, activation energy, Gibbs free energy, enthalpy and entropy of the reaction were calculated in order to determine the mechanism of the sorption process.  相似文献   

3.
Adsorption is of significant importance for effluent treatment, especially for the treatment of colored effluent generated from the dyeing and bleaching industries. Low cost adsorbents have gained attention over the decades as a means of achieving very high removal efficiencies to meet effluent discharge standards. The present article reports on batch investigations for color removal from aqueous solutions of Methylene Blue (MB) and Congo Red (CR) using Rice Husk Ash (RHA) as an alternative low cost adsorbent. The performance analysis was carried out as a function of various operating parameters, such as initial concentration of dye, adsorbent dose, contact time, shaker speed, interruption of shaking and ionic concentration. Performance studies revealed that a very high percentage removal of color was achievable for both dyes. The maximum percentage removal of MB was 99.939%, while 98.835% removal was observed for CR. These percentage removals were better than existing systems. Detailed data analysis indicated that adsorption of MB followed the Temkin isotherm, while CR followed the Freundlich isotherm. These isotherms were feasible within the framework of experimentation. Batch kinetic data, on the other hand, indicated that pseudo second order kinetics governed adsorption in both cases. Sensitivity analysis further indicated that the effects of initial dye concentration, shaker speed, pH and ionic strength had no noticeable effect on the percentage dye removal at equilibrium. Batch desorption studies revealed that 50% acetone solution was optimum for CR, while desorption of MB varied directly with acetone concentration.  相似文献   

4.
Laboratory‐scale batch experiments were conducted to investigate the adsorption behavior of eight fluoroquinolones (FQs) on aerobic, anoxic, and anaerobic sludge, under different adsorpiton time, pH, and temperature conditions. Results indicated that adsorption of FQs onto all sludge was a physical sorption process. The relationship of the partitioning coefficient (Kd) and the octanol/water partition coefficient (Kow) for each FQ was established. The adsorbed fraction of FQs on sludge could then be predicted with the Kd. It was calculated that about 50–72% of the FQs were adsorbed on the sludge. Therefore, the adsorption effect must be considered when studying the fate and occurrence of FQs in wastewater treatment systems.  相似文献   

5.
Reactivation and chemical modification were used to obtain modified activated carbons with different pore structure and surface chemical properties. The samples were characterized by nitrogen absorption–desorption, Fourier transform infrared spectroscopy and the Bothem method. Using mercury chloride as the target pollutant, the Hg2+ adsorption ability of samples was investigated. The results show that the Hg2+ adsorption capacity of samples increased significantly with increases in micropores and acidic functional groups and that the adsorption process was exothermic. Different models and thermodynamic parameters were evaluated to establish the mechanisms. It was concluded that the adsorption occurred through a monolayer mechanism by a two-speed process involving both rapid adsorption and slow adsorption. The adsorption rate was determined by chemical reaction.  相似文献   

6.
The adsorption of cobalt ions was evaluated using sediment samples from water bodies to investigate the adsorption properties of sediment and the behavior of these natural materials in the presence of nuclear and industrial waste.The two sediments(S1 and S2)were treated to eliminate humic and fulvic acids and then they were characterized by several techniques.The minerals found in both the sediments(X-ray diffraction)were quartz and albite;plus,goethite and muscovite in S1,and kaolinite and montmorillonite in S2.Point of zero charge(PZC)of S1 and S2 was 6.00 and 5.22,respectively.The specific area of S1(63.3 m2/g)is higher than S2(1.5 m2/g).Adsorption kinetics data for S1 and S2 were best fitted to the pseudo second-order model.The removal efficiency of S1 for cobalt was 96%with an adsorption capacity(qe)of 0.93 mg/g,and for S2 was 45%with a qeof 0.40 mg/g.The experimental data of the adsorption isotherms were adjusted to Langmuir and Freundlich models for S1 and S2,respectively.The thermodynamic parameters(enthalpy,entropy,and Gibb’s free energy)indicated that the adsorption processes were endothermic,spontaneous,and chemisorption mechanism.The results show that the adsorption capacities of the sediments depend on their composition.These water sediments have important adsorption properties for cobalt,and they can be used in the treatment of nuclear and industrial aqueous wastes.  相似文献   

7.
Adsorption by nanoporous media is critically involved in many fundamental geological and geochemical processes including chemical weathering,element migration and enrichment,environmental pollution,etc.Yet,the adsorption behavior of metal ions on nanoporous materials has not been systematically investigated.In this study,MCM-41 material with a monodisperse pore size(4.4 nm)and a large BET specific surface area(839 m^2/g)was hydrothermally prepared and used as a model silica adsorbent to study the adsorption characteristics of Cu^2+as a representative metal ion.The Cu^2+adsorption capacity was found to increase with increasing suspension pH in the range from 3 to 5 and to decrease in the presence of NaNO3.At 25℃,pH=5,and a solid-to-liquid ratio of 5 g/L,the adsorption capacity was determined to be 0.29 mg/g,which can be converted to a dimensionless partition coefficient of 45,indicating a strong enriching effect of nanoporous silica.The adsorption isotherm and kinetic data were fitted to several commonly used thermodynamic,kinetic,and diffusion models.The adsorption mechanism was also studied by Fourier transform infrared spectroscopy,X-ray photoelectron spectroscopy and synchrotron-based X-ray absorption spectroscopy.The results suggest that Cu2+ion adsorption is an entropy-driven endothermal process,possibly involving both outer-sphere and inner-sphere complexes.  相似文献   

8.
9.
Contamination of water due to bromate is a severe health hazard. The aim of the present study was to remove bromate from water using a crosslinked polystyrene based strongly basic anion exchange resin De‐Acidite FF‐IP. Batch experiments were performed to study the influence of various experimental parameters such as effect of pH, contact time, temperature, and effect of competing anions on bromate removal by De‐Acidite FF‐IP resin. At optimum parameters, the removal rate of bromate was very fast and 90% removal took place in 5 min and equilibrium was established within 10 min. The presence of competitive anions reduced the bromate adsorption in the order of Cl? > F? > CO > SO > NO > PO. The practical utility of this resin has been demonstrated by removing bromate in some of the commercial bottled water from Saudi Arabia. The level of bromate was determined using a very sensitive, precise and rapid method based on ultra‐performance liquid chromatography‐tendem mass spectrometry (UPLC‐MS/MS).  相似文献   

10.
11.
The adsorptive separation of 1, 2‐dichloroethane from model wastewater by different Slovak natural and octadecylammonium‐modified clinoptilolites has been studied. It was found that the 1, 2‐dichloroethane will be adsorbed by natural as well as by surfactant‐modified clinoptilolites; all clinoptilolites have a similar adsorption loading. There was also no remarkable difference between the natural and surfactant‐modified clinoptilolites in respect to the adsorption kinetics.  相似文献   

12.
13.
This paper presents a new environmental approach for reducing environmental impacts of two local Palestinian industries: It implements the principle of “treating waste by waste.” The technical feasibility of chromium removal from wastewater in leather making by its treatment with solid waste from stone cutting industry is demonstrated experimentally, and found to be an efficient approach. Nearly full removal of chromium is obtained at optimum operating conditions using sufficient mass of solid waste (limestone) and allowing enough contact time between the two wastes. This study investigated effects of various parameters on the percentage relative decrease in concentration by using ultra violet (UV)/Vis spectrophotometry. Kinetic curves showed that percentage relative decrease in concentration increased with time until approaching a plateau (adsorption capacity). The adsorption capacity increased with increasing limestone to liquid ratio (solid content), until nearly full removal of chromium was obtained when the solid content was 5 g/100 mL or higher. This was accomplished within few days when the particles were settled. The adsorption capacity was pH dependent; adsorption at pH < 5 was obtained, as a finding which was not reported by previous investigators for Cr(III) adsorption using other particles. The percentage removal was nearly doubled at higher pH values (>5). Further research work is proposed to distinguish between the contributions of the two removal mechanisms of precipitation and adsorption.  相似文献   

14.
A chemical-physical method for treatment of aniline containing waste water was developed. At the chemical stage aniline is polymerized by Fenton's reagent. Thus insoluble polyaniline precipitates. The best reaction conditions are: pH-value of 2–3, stepwise dosing of 60 mL H2O2 (30%) and 12 mL saturated FeSO4-solution per litre waste water. The molar ratio Fe(II): H2O2 amounts to 0.3:10. The concentration of aniline is reduced by this chemical treatment from about 20 g/L to 30–40 mg/L. By adsorption at activated charcoal the concentration of aniline can be reduced further to 0.2 mg/L. The resulting sludge can easily be dewatered in a chamber filter press.  相似文献   

15.
Adsorption analysis is a method for describing an overall isotherm of a mixture of unknown composition such as natural organic substances or chemical industries wastewater by dividing into fictive components of different adsorbability. The adsorption behaviour of the fictive components is characterized by using the Freundlich isotherm. The competitive adsorption between these components is described by the Ideal Adsorbed Solution Theory (IAST). Usually, at given Freundlich parameters K and n, the initial concentrations of the fictive components must be adjusted in order to obtain a good fit between calculated and measured isotherm data points. The results of this adjustment depend to some extent on the minimization criteria. Previously, the modeling was done with empirical or numerical methods which required a lot of computation time and sometimes caused numerical problems which made the interpretation of the results difficult. This paper describes a mathematical method for the evaluation of isotherms by adsorption analysis.  相似文献   

16.
Olive mills wastewater (OMW) is a critical environmental problem in the Mediterranean area due to its extremely high levels of COD and phenols. In this study, a group of adsorption experiments were conducted to investigate the dynamic response of the pH, COD, phenols, TSS, TDS, and TS concentrations of pretreated OMW, using different concentrations of activated carbon as adsorbent. The pretreatment included sedimentation and filtration of OMW. The pretreated OMW was then subjected to adsorption. A series of adsorption steps in stirred batch vessels were studied, namely, one stage, two‐stage countercurrent, and three‐stage countercurrent adsorption systems. A combined two‐ two‐stage countercurrent adsorption steps were also studied. Experimental results showed that such treatment protocols were promising. For example, a treatment protocol composed of a three‐stage countercurrent adsorption process using activated carbon of concentration of 24 g/L of OMW was able to reduce the COD from 60 000 mg/L down to 22 300 mg/L, while phenols were reduced from 450 to 15 mg/L.  相似文献   

17.
The adsorption of fluoxetine onto activated carbons (ACs) prepared from almond tree pruning by steam and CO2 activation under different temperature conditions (650–950°C), was studied. In both series increasing the temperature caused an increase in the BET apparent surface area, yielding ACs with SBET up to 870 and 710 m2 g?1 after steam and CO2 activation, respectively. Also, a slight widening of the porosity was found in both cases. In order to modify the functionality of the ACs, two of them were impregnated with triethylenediamine (TEDA) prior to the adsorption process, which caused a decrease in the AC apparent surface mainly due to micropore blockage. The fluoxetine adsorption isotherms at 25°C showed maximum adsorption capacities between 110 and 224 mg g?1. The adsorption isotherms were analyzed using Langmuir and Freundlich models. Although the impregnation reduced the pore volume, it did not cause a decrease in the fluoxetine maximum adsorption capacity, but a modification in the adsorption mechanism was observed.  相似文献   

18.
Sorptive removal of Ni(II) from electroplating rinse wastewaters by cation exchange resin Dueolite C 20 was investigated at the temperature of 30°C under dynamic conditions in a packed bed. The effects of sorbent bed length 0.1–0.2 m, fixed flow rate 6 dm3 min?1, and the initial rinse water concentration (C0) 53.1 mg L?1 on the sorption characteristics of Dueolite C 20 were investigated at an influent pH of 6.5. More than 94.5% of Ni(II) was removed in the column experiments. The column performance was improved with increasing bed height and decreasing the flow rate. The Thomas, Yoon–Nelson, Clark, and Wolborska models were applied to the experimental data to represent the breakthrough curves and determine the characteristic design parameters of the column. The sorption performance of the Ni(II) ions through columns could be well described by the Thomas, Yoon–Nelson, and Wolborska models at effluent‐to‐influent concentration ratios (C/C0) >0.03 and <0.99. Among the all models, the Clark model showed the least average percentage time deviation. The sorptive capacity of electroplating rinse water using Ni(II) was found to be 45.98 mg g?1.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号