首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In this study, we established a rapid acid digestion for determining Hf–Sr–Nd isotopic ratios of geological samples by using MC-ICP-MS. Conditions of 1600 °C for 1 min and 1400 °C for 1 min were adopted for fusing intrusive rocks and extrusive rocks, respectively. The rapid acid digestion technique is superior in digestion time compared with high-pressure PTFE bomb method. The procedural blanks of the method were also lower than that flux fusion. Replicate analyses of international certified reference materials (CRMs) indicate that isotopic ratios of 176Hf/177Hf, 87Sr/86Sr and 143Nd/144Nd agree well with previously published data. The external reproducibility (2SD, n = 5) of ten CRMs are ±0.000030 for 87Sr/86Sr, ±0.000030 for 143Nd/144Nd, and ±0.000018 for 176Hf/177Hf.  相似文献   

2.
The Nd and Sr isotopic ratios on a suite of continental alkali basalts from Marie Byrd Land, West Antarctica, define a change in the source over the range of K/Ar dates between 1 and 28 m.y. ago. The 87Sr/86Sr isotopic ratios (0.7026 to 0.7031) are unusually low for continental alkali basalts, although the corresponding 143Nd/144Nd ratios (0.51283 to 0.51299) are similar to previously reported values. On a 87Sr/86Sr vs. 143Nd/144Nd diagram, they define a trend on the low 87Sr/86Sr side of the “mantle array”, which has a slope steeper than the mantle array. An explanation for the light rare earth elements (LREE) enrichment of the alkali basalts, with high 143Nd/144Nd ratios and low 87Sr/86Sr ratios, is suggested by a model which modifies the source region with a mantle-derived, CO2-enriched metasomatic fluid.  相似文献   

3.
We present the first report of geochemical data for submarine basalts collected by a manned submersible from Rurutu, Tubuai, and Raivavae in the Austral Islands in the South Pacific, where subaerial basalts exhibit HIMU isotopic signatures with highly radiogenic Pb isotopic compositions. With the exception of one sample from Tubuai, the 40Ar/39Ar ages of the submarine basalts show no significant age gaps between the submarine and subaerial basalts, and the major element compositions are indistinguishable at each island. However, the variations in Pb, Sr, Nd, and Hf isotopic compositions in the submarine basalts are much larger than those previously reported in subaerial basalts. The submarine basalts with less-radiogenic Pb and radiogenic Nd and Hf isotopic compositions show systematically lower concentrations in highly incompatible elements than the typical HIMU basalts. These geochemical variations are best explained by a two-component mixing process in which the depleted asthenospheric mantle was entrained by the mantle plume from the HIMU reservoir during its upwelling, and the melts from the HIMU reservoir and depleted asthenospheric mantle were then mixed in various proportions. The present and compiled data demonstrate that the HIMU reservoir has a uniquely low 176Hf/177Hf decoupled from 143Nd/144Nd, suggesting that it was derived from an ancient subducted slab. Moreover, the Nd/Hf ratios of the HIMU basalts and curvilinear Nd–Hf isotopic mixing trend require higher Nd/Hf ratios for the melt from the HIMU reservoir than that from the depleted mantle component. Such elevated Nd/Hf ratios could reflect source enrichment by a subducted slab during reservoir formation.  相似文献   

4.
The Transcaucasian intermountain area is part of the Caucasus segment of the Alpine-Mediterranean mountain belt. The continental intraplate basalts of the study area range in age from 6.10 ± 0.20 to 6.40 ± 0.20 Ma. The basalt erupted from monogenetic volcanoes are formed by lava flows and their pyroclastic equivalents. They are generally characterized by low volumes, are predominantly subalkalic with minor alkaline composition. The ultramafic xenoliths have not been identified in the basalts. The basalts may be subdivided into porphyritic and oligophyric groups. Fractional crystallization plays an important role in the petrogenesis of basalts. Almost all the studied samples showed different degrees of fractionation of olivine ± plagioclase ± clinopyroxene. No significant contamination of basalts with upper continental crustal material was confirmed by Rb/Sr and Rb/Ba ratios or by Sr, Nd isotopic and geochemical composition (87Sr/ 86Sr = 0.703683-0.704531±2; 143Nd/144Nd = 0.512788-0.512848 ±10; 147Sm/144Nd = 0.1036-0.1144 ±2-3). The studied basalts display, compared to heavy rare earth elements (HREE), highly fractionated light rare earth elements (LREE) with La/Yb=9.25-24.00. This makes them similar to ocean island basalts (OIB), which is also evidenced by Ce/Pb, La/Nb, Zr/Nb, Zr/Y ratios. The Dy/Yb-La/Yb and Yb-La/Yb and 87Sr/86Sr-143Nd/144Nd ratios indicating a “mixed” evolution of basalt-forming magmas. The basalt feeding magma chambers of the Transcaucasian intermountain area seem to be formed from a mixture of partial melting of Normal-MORB (Mid-Ocean Ridge Basalt) type upper mantle (garnet and spinel lherzolite) and EMII type components with strong ocean island basalts (OIB)-like signature.  相似文献   

5.
Elemental and Li–Sr–Nd isotopic data of minerals in spinel peridotites hosted by Cenozoic basalts allow us to refine the existing models for Li isotopic fractionation in mantle peridotites and constrain the melt/fluid-peridotite interaction in the lithospheric mantle beneath the North China Craton. Highly elevated Li concentrations in cpx (up to 24 ppm) relative to coexisting opx and olivine (<4 ppm) indicate that the peridotites experienced metasomatism by mafic silicate melts and/or fluids. The mineral δ7Li vary greatly, with olivine (+0.7 to +5.4‰) being isotopically heavier than coexisting opx (−4.4 to −25.9‰) and cpx (−3.3 to −21.4‰) in most samples. The δ7Li in pyroxenes are considerably lower than the normal mantle values and show negative correlation with their Li abundances, likely due to recent Li ingress attended by diffusive fractionation of Li isotopes. Two exceptional samples have olivine δ7Li of −3.0 and −7.9‰, indicating the existence of low δ7Li domains in the mantle, which could be transient and generated by meter-scale diffusion of Li during melt/fluid-peridotite interaction. The 143Nd/144Nd (0.5123–0.5139) and 87Sr/86Sr (0.7018–0.7062) in the pyroxenes also show a large variation, in which the cpx are apparently lower in 87Sr/86Sr and slightly higher in 143Nd/144Nd than coexisting opx, implying an intermineral Sr–Nd isotopic disequilibrium. This is observed more apparently in peridotites having low 87Sr/86Sr and high 143Nd/144Nd ratios than in those with high 87Sr/86Sr and low 143Nd/144Nd, suggesting that a relatively recent interaction existed between an ancient metasomatized lithospheric mantle and asthenospheric melt, which transformed the refractory peridotites with highly radiogenic Sr and unradiogenic Nd isotopic compositions to the fertile lherzolites with unradiogenic Sr and radiogenic Nd isotopic compositions. Therefore, we argue that the lithospheric mantle represented by the peridotites has been heterogeneously refertilized by multistage melt/fluid-peridotite interactions.  相似文献   

6.
Metamorphic units of the Khavyven Highland that crop out in the northern portion of the Khavyven Uplift of the basement structures of the Central Kamchatka Trough are formed by rocks of the Khavyven Formation, which are metamorphosed in the green-schist facies. The formation comprises two strata: the lower part that consists of amphibole-micaceous ± garnet, epidote-micaceous ± garnet crystalline schists, and micaceous ± garnet quartzite schists has a total thickness of some 500 m, and the upper part, which is formed by epidote-amphibole and phengite-amphibole green schists and overlying epidote-amphibole-micaceous quartzites, with a visible thickness of some 750 m. The isotopic ratios of Sr, Nd, and Pb were determined in the examined rocks of the Khavyven Formation for the first time. The high 87Sr/86Sr and low 143Nd/144Nd ratios and the high K/La, Ba/Th, Th/Ta, and La/Nb ratios in combination with a deep Ta-Nb minimum indicate that the original volcanites of the crystalline schists of the lower rock mass had a subduction nature. The green schist of the upper rock mass, whose composition corresponds to that of spilitic basalts, have elevated 87Sr/86Sr and 143Nd/144Nd ratios, thus combining indications of depleted melts of the N-MORB and E-MORB types and those of subduction melts, which explains the deep Ta-Nb minimum and the low (La/Yb) N ratios. The isotopic signatures of lead in rocks of the lower and the upper strata are similar. The composition points of the crystalline schists and the green schists are located near the trend of isotopic evolution of lead in the depleted mantle, which indicates that the rocks are closely related to this mantle source.  相似文献   

7.
东昆仑东段希望沟-哈陇休玛一带有多处镁铁-超镁铁质岩的出露,针对希望沟地区中二叠世辉长岩3块样品进行的全岩Sr-Nd同位素及锆石Lu-Hf同位素测试,结果表明:希望沟辉长岩87Sr/86Sr为0.707 445~0.707 676,(87Sr/86Sr)i值为0.707 045~0.707 297,高于现代深海拉斑玄武岩(0.702 0~0.703 5),143 Nd/144 Nd的初始计算值为0.512 476~0.512 543,εNd(t)值为-2.65^-1.34,Nd(t)值受蚀变影响较小,基本反映了其源区洋岛玄武岩的同位素特征;176 Lu/177 Hf在0.000 592~0.001 860间,εHf(t)在2.27~5.46间,一阶段Hf模式年龄为691Ma^816Ma,平均为758Ma,表明岩浆源区主要来源于亏损地幔并有少量壳源物质(如洋壳沉积物)的加入。结合区域构造演化特征,认为希望沟辉长岩源区主要为洋岛玄武岩,是东昆仑地区阿尼玛卿古特提斯洋向北俯冲的结果。  相似文献   

8.
A selected suite of fresh volcanic rocks from the New Britain island arc has been analyzed for 143Nd/144Nd, 87Sr/86Sr, major and trace elements to investigate relationships between isotopes, trace elements and petrology, and depth to the underlying Benioff zone. From these relationships inferences about magma generation are made utilizing Nd and Sr isotope systematics in possible source materials. Lavas ranging in composition from basalt to rhyolite show minimal variation of 143Nd/144Nd. Small variations in 87Sr/86Sr do not correlate with depth to the Benioff zone, but are related to magma type. Nd-Sr isotopes suggest that island arc lavas in general are derived from a mixture of suboceanic mantle and hydrothermally altered mid-ocean ridge-type basalt, but the New Britain magma source appears homogeneous with little indication of either the involvement of oceanic crust or mantle inhomogeneity. Trace element patterns in New Britain lavas are not consistent with Nd isotope data for currently accepted petrologic and trace element models of magma genesis. Mafic lavas from New Britain and other island arcs have anomalously high Sr/Nd, possibly due to components derived from subducted oceanic crust.  相似文献   

9.
西藏东部玉龙铜矿带,包括玉龙、扎拉尕、莽总、多霞松多和马拉松多含矿斑岩,马牧普钾质碱性斑岩和总郭碱性火山岩等Sr、Nd、Pb同位素组成比较一致,其数据点均分布在地幔演化区,接近EMI地幔端元,暗示其物质来源于交代地幔源区。  相似文献   

10.
This study reports new geochemical and Sr and Nd isotope data for 11 samples of hynormative late Miocene (~6.5 Ma) basalt, basaltic andesite, and rhyolitic volcanic rocks from Meseta Rio San Juan, located in the states of Hidalgo and Queretaro, Mexico, in the north-central part of the Mexican Volcanic Belt (MVB). The in situ growth-corrected initial isotopic ratios of these rocks are as follows: 87Sr/86Sr 0.703400-0.709431 and 143Nd/144Nd 0.512524-0.512835. For comparison, the isotopic ratios of basaltic rocks from this area show very narrow ranges as follows: 87Sr/86Sr 0.703400-0.703540 and 143Nd/144Nd 0.512794-0.512835. The available geological, geochemical, and isotopic evidence does not support the generation of the basic and intermediate magmas by direct (slab melting), nor by indirect (fluid transport to the mantle) participation of the subducted Cocos plate. The basaltic magmas instead could have been generated by partial melting of the upper mantle. The evolved basaltic andesite magmas could have originated from such basaltic magmas through assimilation coupled with fractional crystallization. Rhyolitic magmas might represent partial melting of different parts of the underlying heterogeneous crust. Their formation and eruption probably was facilitated by extensional tectonics and upwelling of the underlying mantle. The different petrogenetic processes proposed here for basaltic and basaltic andesite magmas on one hand and rhyolitic magmas on the other might explain the bimodal nature of Meseta Rio San Juan volcanism. Finally, predictions by the author about the behavior of Sr and Nd isotopic compositions for subduction-related magmas is confirmed by published data for the Central American Volcanic Arc (CAVA).  相似文献   

11.
Late Cenozoic intraplate basaltic rocks in northeastern China have been interpreted as being derived from a mantle source composed of DMM and EM1 components. To constrain the origin of the enriched mantle component, we have now determined the geochemical compositions of basaltic rocks from the active Baekdusan volcano on the border of China and North Korea. The samples show LREE-enriched patterns, with positive Eu and negative Ce anomalies. On a trace element distribution diagram, they show typical oceanic island basalt (OIB)-like LILE enrichments without significant Nb or Ta depletions. However, compared with OIB, they show enrichments in Ba, Rb, K, Pb, Sr, and P. The Nb/U ratios are generally within the range of OIB, but the Ce/Pb ratios are lower than those of OIB. Olivine phenocrysts are characterized by low Ca and high Ni contents. The radiogenic isotopic characteristics (87Sr/86Sr = 0.70449 to 0.70554; εNd = −2.0 to +1.8; εHf = −1.7 to +6.1; 206Pb/204Pb = 17.26 to 18.12) suggest derivation from an EM1-like source together with an Indian MORB-like depleted mantle. The Mg isotopic compositions (δ26Mg = −0.39 ± 0.17‰) are generally lower than the average upper mantle, indicating carbonates in the source. The 87Sr/86Sr ratios decrease with decreasing δ26Mg values whereas the 143Nd/144Nd and (Nb/La)N ratios increase. These observations suggest the mantle source of the Baekdusan basalts contained at least two components that resided in the mantle transition zone (MTZ): (1) recycled subducted ancient (∼2.2–1.6 Ga) terrigenous silicate sediments, possessing EM1-like Sr–Nd–Pb–Hf isotopic signatures and relatively high values of δ26Mg; and (2) carbonated eclogites with relatively MORB-like radiogenic isotopic compositions and low values of δ26Mg. These components might have acted as metasomatizing agents in refertilizing the asthenosphere, eventually influencing the composition of the MTZ-derived plume that produced the Baekdusan volcanism.  相似文献   

12.
Basaltic lavas from the AMAR Valley and the Narrowgate region of the FAMOUS Valley on the Mid-Atlantic Ridge (36° to 37°?N) range in texture from aphyric to highly plagioclase phyric (>25% large plagioclase phenocrysts). Based on 87Sr/86Sr and 143Nd/144Nd ratios, most of these lavas can be subdivided into two distinct, isotopically homogeneous, groups: Group I has lower 87Sr/86Sr (0.70288±1) and higher 143Nd/144Nd (0.51312±1) ratios; Group II has higher 87Sr/86Sr (0.70296±1) and lower 143Nd/144Nd (0.51309±2) ratios. Most Group II lavas are aphyric, whereas Group I lavas are primarily plagioclase phyric. Lavas from both groups show a wide range in incompatible element abundance ratios (e.g., Zr/Nb =6–29; (La/Sm)n=0.6–1.7). Aphyric lavas have relatively constant Sc (40±1.5?ppm) abundances and CaO/Al2O3 ratios (0.80±0.02). Group I lavas are confined primarily to the AMAR rift valley floor whereas Group II lavas are found along the east and west marginal highs. We interpret the isotopic differences between the two groups as reflecting a temporal change in the upwelling mantle beneath this region of the Mid-Atlantic Ridge which is south of the Azore Islands. For each group, a petrogenetic model consistent with the geochemical data is multi-stage decompression melting of an initially enriched, homogeneous, mantle source region. If the early derived, incompatible-element enriched, melt increments are not always pooled with subsequent increments, the erupted magma batches may have the major element characteristics of melts derived by 10 to 20% melting, but with incompatible element abundance ratios reflecting the change from an enriched to depleted source during the incremental melting process. In this process an initially homogeneous source can generate primary magmas with the required range in incompatible element abundance ratios shown by each group. The nearly constant CaO/Al2O3 ratios and Sc contents of the aphyric lavas with decreasing Mg?? reflects subsequent polybaric fractionation of clinopyroxene, plagioclase and olivine over the pressure interval 8–6?kbar (24–18?km), followed by rapid transport to the surface and eruption. There is no geochemical evidence for a crustal magma chamber beneath this section of the Mid-Atlantic Ridge.  相似文献   

13.
A total of 17 alkali basalts (alkali olivine basalt, limburgite, olivine nephelinite) and quartz tholeiites, and of 10 peridotite xenoliths (or their clinopyroxenes) were analyzed for Nd and Sr isotopes. 143Nd/144Nd ratios and 87Sr/86Sr ratios of all basalts and of the majority of ultramafic xenoliths plot below the mantle array with a large variation in Nd isotopes and a smaller variation in Sr isotopes. The tholeiites were less radiogenic in Nd than the alkali basalts. Volcanics from the Eifel and Massif Central regions contain Nd and Sr, which is more radiogenic than that of the basalts from the Hessian Depression. Nd and Sr isotopic compositions of all rocks from the latter area, with the exception of one tholeiite and one peridotite plot in the same field of isotope ratios as the Ronda ultramafic tectonite (SW Spain), which ranges in composition from garnet to plagioclase peridotite. The alkali basaltic rocks are products of smaller degrees of partial melting of depleted peridotite, which has undergone a larger metasomatic alteration compared with the source rock of tholeiitic magmas. For the peridotite xenoliths such metasomatic alteration is indicated by the correlation of their K contents and isotopic compositions. We assume that the upper mantle locally can acquire isotopic signatures low in radiogenic Nd and Sr from the introduction of delaminated crust. Such granulites low in radiogenic Nd and Sr are products of early REE fractionation and granite (Rb) separation.  相似文献   

14.
Lavas from Heard Island, located on the Kerguelen Plateau inthe southern Indian Ocean, exhibit the largest range (e.g.,87Sr/86Sr=0.7047–0.7079) of isotopic compositions yetobserved on a single oceanic island. Isotopic compositions arewell correlated and are accompanied by systematic changes inincompatible trace element ratios, particularly those involvingNb. These variations are interpreted as resulting from mixingbetween two components. One is characterized by high 87Sr/86Sr,low 206Pb/204Pb and 143Nd/144Nd ratios, and negative Nb andEu anomalies, and is derived ultimately from the upper continentalcrust. The other has lower 87Sr/86Sr, and higher 206Pb/204Pband 143Nd/144Nd ratios, and lacks the depletions in Nb and Eu.Two possible compositions are considered for the low-87Sr/86Srcomponent of the source. The first is at the low-87Sr/86Sr endof the Heard Island data array, represented most closely bylavas from the Laurens Peninsula. However, trace element variationssuggest that these lavas might not be representive of the Heardplume. The second is close to the low-87Sr/86Sr end of the isotopicarray for lavas from the main volcano. In this case a lithosphericmantle origin is suggested for the Laurens Peninsula lavas.The relationships between isotopic data, major element compositions,and incompatible trace element ratios indicate that the continent-derivedmaterial is probably present in the mantle source, where itmakes a maximum contribution of <4 wt.% for all but one HeardIsland sample. However, if the Kerguelen Plateau is a submergedcontinental block, shallow-level contamination cannot be ruledout. The binary mixing model developed to explain the Heard Islandgeochemical variations is extended to include other Indian Oceanoceanic island and mid-ocean ridge basalts (OIB and MORB). Weshow that isotopic compositions of Indian Ocean OIB are consistentwith sampling of a regional reservoir in which the same twocomponents exist in variable proportions (generally 1–5wt.% of the continent-derived component). The distinctive isotopiccompositions of Indian Ocean MORB are consistent with mixingof a similar component into an Atlantic-or Pacific-like MORBmantle source. The relatively unradiogenic 206Pb/204Pb isotopiccompositions of these ‘enriched’ Indian Ocean mantlecomponents are unlike any present-day marine sediments and indicatethat their source has had 238U/204Pb ratios (µ) much lowerthan typical upper continental crust for > 1 Ga. These agespre-date the formation of Gondwana (600-130 Ma) and thereforedo not support sediment subduction beneath Gondwana as the causeof enrichment in the sub-Indian Ocean mantle. We propose thatthe enrichment of Indian Ocean OIB sources was due to subductionof upper-crustal material beneath a Proterozoic precursor ofGondwana at 1–2 Ga. The enrichment of the Indian OceanMORB sources could have had a similar origin, or could havebeen derived from sub-continental lithospheric mantle returnedto the asthenospheric mantle, perhaps during the break-up ofGondwana (200–130 Ma).  相似文献   

15.
We have developed an idealized mathematical model to understand the isotopic variability of the mantle and its relation to the observed variations in isotopic ratios 143Nd/144Nd, 87Sr/86Sr, 176Hf/177Hf, 208Pb/204Pb, 206Pb/204Pb, and 207Pb/204Pb measured on mid-ocean ridge basalt (MORB). We consider a simple box model of mantle processes. A single melt region produces a melt fraction F of melt, and the average time since a given parcel of mantle material last visited this region is given by the time scale τmelt. The melt region fractionates the parent/daughter ratios. Over time this leads to variations in the mantle isotopic ratios as the parent decays to the daughter. Key assumptions are that the half-life of the parent isotope is large compared with τmelt, that the flow is strongly stirring, and that the mantle has reached a statistical steady state. This enables us to neglect the specifics of the underlying flow. Sampling from our model mantle is dealt with by averaging over a large number N of samples to represent the mixing after melting.The model predicts a probability density for isotopic ratios in MORB which, with exception of the Pb isotopes, are consistent with measurements. Fitting the MORB data to this model gives estimates of the model parameters F, τmelt, and N. Small melt fractions with F around 0.5% are essential for a good fit, whereas τmelt and N are less well constrained. τmelt is estimated at around 1.4 to 2.4 Ga, and N is of the order of hundreds. The model predicts a larger variability for the Pb isotopes than that observed. As has been stated by many previous authors, it appears that fundamental differences exist between the dynamics of Pb isotopes and those of Nd, Sr and Hf isotopes.  相似文献   

16.
The Jurassic to Early Cretaceous magmatic arc of the Andes in northern Chile was a site of major additions of juvenile magmas from the subarc mantle to the continental crust. The combined effect of extension and a near stationary position of the Jurassic to lower Cretaceous arc favoured the emplacement and preservation of juvenile magmatic rocks on a large vertical and horizontal scale. Chemical and Sr, Nd, and Pb isotopic compositions of mainly mafic to intermediate volcanic and intrusive rock units coherently indicate the generation of the magmas in a subduction regime and the dominance of a depleted subarc mantle source over contributions of the ambient Palaeozoic crust. The isotopic composition of the Jurassic (206Pb/204Pb: ∼ 18.2; 207Pb/204Pb: ∼ 15.55; 143Nd/144Nd: ∼ 0.51277; 87Sr/86Sr: ∼ 0.703–0.704) and Present (206Pb/204Pb: ∼ 18.5; 207Pb/204Pb: ∼ 15.57; 143Nd/144Nd: ∼ 0.51288; 87Sr/86Sr: ∼ 0.703–0.704) depleted subarc mantle beneath the Central and Southern Andes (18°–40°S) was likely uniform over the entire region. Small differences of isotope ratios between Jurassic and Cenozoic to Recent of subarc mantle-derived could be explained by radiogenic growth in a still uniform mantle source.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

17.
We present here Sr, Nd, and Pb-isotopic data from harzburgite (group I) and dunite-pyroxenite (group II) suite mantle xenoliths from the island of Hierro, one of the youngest and westernmost of the Canary Islands. A progressive leaching technique has been developed and applied to the whole-rock powder samples in order to identify and remove as far as possible any recent additions (host basalt and/or sea-water). Isotopic analyses of the leached residues show significant systematic differences between these two suites. Dunite-pyroxenite suite xenoliths (olivine pyroxenites, dunites and wehrlites) exhibit a relatively small range of isotopic compositions (87Sr/86Sr from 0.70292 to 0.70315; 143Nd/144Nd from 0.51295 to 0.51302; 206Pb/204Pb from 19.18 to 19.40) compared to the harzburgite suite (87Sr/86Sr from 0.70295 to 0.70320; 143Nd/144Nd from 0.51285 to 0.51296; 206Pb/204Pb from 18.85 to 19.41). In all isotope correlation diagrams the leached dunite-pyroxenite suite xenoliths plot between the Hierro basalt field and a hypothetical depleted mantle suggesting that these xenoliths may have been strongly infiltrated by Hierro-type basalt. Progressive leaching of this suite of samples showed removal of a component with more enriched Sr (higher 87Sr/86Sr relative to depleted mantle) and Nd (lower 143Nd/144Nd) isotopic compositions that is probably host basalt glass. The leached harzburgite suite xenoliths extend to more enriched Sr and Nd isotopic compositions than Hierro-type basalt but always have more depleted Pb. This relationship can best be explained if this suite has been subject to infiltration by earlier magmas of the Canary Island suite (in particular, those from Gran Canaria show appropriate compositional ranges), although additional infiltration by Hierro basalt cannot be ruled out. The leaching experiments for this suite mostly show removal of a radiogenic Sr component only (? seawater) which supports the interpretation of early infiltration and subsequent recrystallisation and equilibration prior to the Hierro event. Isotopic data presented in this study show that complex interaction with percolating basaltic melts of varying composition was occurring in the upper mantle beneath Hierro prior to and during the volcanic event and was probably related to the generation of earlier Canary Island magmas.  相似文献   

18.
The Shiant Isles Main Sill of the British Tertiary Igneous Province is a classic example of a differentiated, alkaline basic sill. Four separate intrusions, each emplaced internally in rapid succession, form a 165-m-thick sill hosted by Lower Jurassic sedimentary rocks. Extensive Nd and Sr isotopic studies were conducted on samples from a vertical section through the sill where the relationships of samples to one another are well defined. The results illuminate patterns of modification of isotopic ratios and clarify the petrogenesis (magma sources, crustal contamination), magmatic processes (bulk mixing, interstitial liquid mixing), and post-magmatic alteration (hydrothermal effects on Sr and Nd). Overall, the whole-rock initial 87Sr/86Sr ratios range from ∼0.7037 to 0.7061 while initial 143Nd/144Nd ratios vary from ∼0.51243 to 0.51286 (ɛNd∼−0.7 to +5.7) – values that contrast markedly with those of the country rock. Acid leaching (HCl) of the whole-rock samples that removes analcime indicates that most of the scatter in the 87Sr/86Sr is caused by the ubiquitous sub-solidus, aqueous alteration during which more-radiogenic Sr was introduced into the sill, especially along the margins, and also reveals magmatic isotopic ratios. In contrast, Nd was immobile during fluid interaction so that the sill 143Nd/144Nd ratios were not affected, even <1 m from the country-rock contact. Using leached rock values, 87Sr/86Sr and 143Nd/144Nd ratios are inversely correlated from magmatic processes. Magmas with two distinct isotopic compositions were involved: a more primitive one with 143Nd/144Nd ∼0.51285 and 87Sr/86Sr ∼0.7035 that produced the first two intrusions and a more evolved one (with 0.51252 and 0.7048) that produced the third intrusion. Mixing of the two magmas was very limited, restricted to near contacts between units, and apparently occurred by interstitial melt migration. The more evolved crinanitic magma was probably produced from a batch of the more primitive picritic melt by a small degree of crustal contamination and crystal fractionation during a short crustal residence prior to ascent and emplacement. Received: 20 December 1999 / Accepted: 5 May 2000  相似文献   

19.
本文对中国东南沿海不含幔源包体的中生代玄武岩和含幔源包体的新生代玄武岩进行了微量元素和Nd-Sr-Pb同位素对比研究。中生代玄武岩呈Ta、Nb和Hf负异常,低Ce/Pb、Nb/U比值和高La/Nb比值,与岛弧火山岩和陆壳岩石的微量元素特征相类似,说明在岩浆生成和上升过程中,幔源组分受到了陆壳组分的混染。新生代玄武岩呈Ta、Nb正异常和Pb负异常,高Ce/Pb、Nb/U比值和低La/Nb比值,与海岛玄武岩(OIB)相类似,Nd-Sr同位素成分与夏威夷玄武岩类似,因而它们未受明显的陆壳混染。143Nd/144Nd与206Pb/204Pb之间的负相关关系和87Sr/86Sr与206Pb/204Pb之间的正相关关系说明本区新生代玄武岩起源于中等亏损程度的软流圈地幔,并与EMII富集地幔组分发生了混合。  相似文献   

20.
Seven hundred and twenty-five Sr, two hundred and forty-three Nd and one hundred and fifty-one Pb isotopic ratios from seven different Mexican magmatic provinces were compiled in an extensive geochemical database. Data were arranged according to the Mexican geological provinces, indicating for each province total number of analyses, range and mean of values and two times standard deviation (2σ). Data from seven provinces were included in the database: Mexican Volcanic Belt (MVB), Sierra Madre Occidental (SMO), Baja California (BC), Pacific Ocean (PacOc), Altiplano (AP), Sierra Madre del Sur (SMS), and Sierra Madre Oriental (SMOr). Isotopic values from upper mantle and lower crustal xenoliths, basement outcrops and sediments from the Cocos Plate were also compiled. In the MVB the isotopic ratios range as follows:87Sr/86Sr 0.703003-0.70841;143Nd/144Nd 0.512496-0.513098;206Pb/204Pb 18.567-19.580;207Pb/204Pb 15.466-15.647;208Pb/204Pb 38.065-38.632. The SMO shows a large variation in87Sr/86Sr ranging from ∼0.7033 to 0.71387.143Nd/144Nd ratios are relatively less variable with values from 0.51191 to 0.51286. Pb isotope ratios in the SMO are as follows:206Pb/204Pb 18.060-18.860;207Pb/204Pb 15.558-15.636;208Pb/204Pb 37.945-38.625. PacOc rocks show the most depleted Sr and Nd isotopic ratios (0.70232-0.70567 for Sr and 0.512631-0.513261 for Nd). Pb isotopes for PacOc show the following range:206Pb/204Pb 18.049-19.910;207Pb/2047Pb 15.425-15.734;208Pb/204Pb 37.449-39.404. The isotopic ratios of the AP rocks seem to be within the range of those from the PacOc. Most samples with reported Sr and Nd isotopic data are spread within and around the “mantle array”. The SMO seems to have been formed by a mixing process between mantle derived magmas and continental crust. The MVB appears to have a larger mantle component, with AFC as the dominant petrogenetic process for the evolved rocks. There is still a need for Pb isotopic data in all Mexican magmatic provinces and of Nd isotopes in BC, AP, SMS, and SMOr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号