首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Lawsonite is an important hydrous mineral that is stable at low‐temperature (LT) and high‐ to ultrahigh‐pressure (HP–UHP) conditions in subducted slabs. The occurrence/absence of lawsonite in eclogite is a significant constraint for the construction of the metamorphic, tectonic and fluid/melt evolution histories of an HP–UHP terrane. However, lawsonite is very rarely preserved in natural eclogites, and accurate judgment of its former existence is a significant challenge for petrologists. At present, whether lawsonite has ever existed in lawsonite‐absent eclogite is mainly judged by (i) pseudomorphs after lawsonite, and (ii) phase equilibria modelling. In this study, major element and trace‐element distributions in multistage minerals were examined in the Ganghe lawsonite‐absent UHP eclogite in the Dabie UHP terrane, eastern China. This work demonstrates that the whole‐rock Sr and light rare earth elements (LREEs) are mainly dominated by epidote; other minerals (garnet, omphacite, quartz, kyanite, barroisite, phengite and accessory minerals) play a very limited role in the Sr and LREEs budgets. Two stages of epidote, which have noticeably different Sr and LREEs contents, were recognized in the eclogite: (i) Epidote porphyroblasts (Ep‐P core), which are suspected to be the pseudomorphic mineral after lawsonite, contain significantly high Sr (7200–10 300 ppm) and LREEs (160–1300 ppm for La). (ii) An earlier stage epidote (Ep‐In core) occurs as inclusions in matrix omphacite, or in omphacite inclusions in the suspected pseudomorphic minerals after lawsonite (SPMAL); this early epidote has significantly lower Sr (990–1890 ppm, average 1495 ppm, n = 17) and LREEs contents (60–110 ppm for La, average 91 ppm, n = 17). All of the existing early‐stage minerals predating the SPMAL have very low contents of Sr and LREEs, and the total amounts of these elements in the early‐stage minerals do not balance those in the SPMAL. This indicates that a missing Ca‐, Al‐, Sr‐ and LREE‐rich mineral, which was previously in equilibrium with the early‐stage minerals, likely existed in the Ganghe eclogite. On the basis of the mineral geochemistry and phase equilibria modelling, we confirm that the missing mineral cannot be anything but lawsonite. This study indicates that examining the mass (im)balance of Sr and LREEs between multistage HP–UHP epidote can be used as a potential method to confirm the previous existence of lawsonite in lawsonite‐absent eclogite.  相似文献   

2.
Minor granulites (believed to be pre-Triassic), surrounded by abundant amphibolite-facies orthogneiss, occur in the same region as the well-documented Triassic high- and ultrahigh-pressure (HP and UHP) eclogites in the Dabie–Sulu terranes, eastern China. Moreover, some eclogites and garnet clinopyroxenites have been metamorphosed at granulite- to amphibolite-facies conditions during exhumation. Granulitized HP eclogites/garnet clinopyroxenites at Huangweihe and Baizhangyan record estimated eclogite-facies metamorphic conditions of 775–805 °C and ≥15 kbar, followed by granulite- to amphibolite-facies overprint of ca. 750–800 °C and 6–11 kbar. The presence of (Na, Ca, Ba, Sr)-feldspars in garnet and omphacite corresponds to amphibolite-facies conditions. Metamorphic mineral assemblages and PT estimates for felsic granulite at Huangtuling and mafic granulite at Huilanshan indicate peak conditions of 850 °C and 12 kbar for the granulite-facies metamorphism and 700 °C and 6 kbar for amphibolite-facies retrograde metamorphism. Cordierite–orthopyroxene and ferropargasite–plagioclase coronas and symplectites around garnet record a strong, rapid decompression, possibly contemporaneous with the uplift of neighbouring HP/UHP eclogites.

Carbonic fluid (CO2-rich) inclusions are predominant in both HP granulites and granulitized HP/UHP eclogites/garnet clinopyroxenites. They have low densities, having been reset during decompression. Minor amounts of CH4 and/or N2 as well as carbonate are present. In the granulitized HP/UHP eclogites/garnet clinopyroxenites, early fluids are high-salinity brines with minor N2, whereas low-salinity fluids formed during retrogression. Syn-granulite-facies carbonic fluid inclusions occur either in quartz rods in clinopyroxene (granulitized HP garnet clinopyxeronite) or in quartz blebs in garnet and quartz matrices (UHP eclogite). For HP granulites, a limited number of primary CO2 and mixed H2O–CO2(liquid) inclusions have also been observed in undeformed quartz inclusions within garnet, orthopyroxene, and plagioclase which contain abundant, low-density CO2±carbonate inclusions. It is suggested that the primary fluid in the HP granulites was high-density CO2, mixed with a significant quantity of water. The water was consumed by retrograde metamorphic mineral reactions and may also have been responsible for metasomatic reactions (“giant myrmekites”) occurring at quartz–feldspar boundaries. Compared with the UHP eclogites in this region, the granulites were exhumed in the presence of massive, externally derived carbonic fluids and subsequently limited low-salinity aqueous fluids, probably derived from the surrounding gneisses.  相似文献   


3.
豫南——鄂北大别山北部高压角闪石榴辉岩的研究   总被引:6,自引:0,他引:6       下载免费PDF全文
刘景波  国连杰 《地质科学》1997,32(4):409-422
一个高压角闪石榴辉岩带出现在豫南——鄂北大别山高压超高压变质单元的最北部。榴辉岩的矿物组合为石榴石+绿辉石+角闪石+绿帘石+多硅白云母+石英+金红石。采用Powell等(1994)的Thermocalc估计的温压条件:压力为1.8-2.4GPa,温度为490-592℃。这个带的榴辉岩在矿物组合,矿物成分和温压条件上明显不同于该高压变质单元中其它带的榴辉岩。  相似文献   

4.
张泽明  丁慧霞  董昕  田作林 《地球科学》2019,44(5):1602-1619
印度与亚洲大陆新生代碰撞-俯冲形成的喜马拉雅造山带核部由高压和超高压变质岩组成.超高压榴辉岩分布在喜马拉雅造山带西段,由石榴石、绿辉石、柯石英、多硅白云母、帘石、蓝晶石和金红石组成.超高压榴辉岩的峰期变质条件为2.6~2.8GPa和600~620℃,其经历了角闪岩相退变质作用和低程度熔融.超高压榴辉岩的进变质、峰期和退变质年龄分别为~50Ma、45~47Ma和35~40Ma,指示一个快速俯冲与快速折返过程.高压榴辉岩产出在喜马拉雅造山带中-东段,由石榴石、绿辉石、多硅白云母、石英和金红石组成.高压榴辉岩的峰期变质条件为>2.1GPa和>750℃,叠加了高温麻粒岩相退变质作用与强烈部分熔融.高压榴辉岩的峰期和退变质年龄可能分别是~38 Ma和14~17 Ma,很可能经历了一个缓慢俯冲与缓慢折返过程.喜马拉雅造山带两种不同类型榴辉岩的存在表明,印度与亚洲大陆约在51~53Ma碰撞后,印度大陆地壳的西北缘陡俯冲到了地幔深度,导致表壳岩石经历了超高压变质作用,而印度大陆地壳的东北缘平缓俯冲到亚洲大陆之下,导致表壳岩石经历了高压变质作用.  相似文献   

5.
The main hole (MH) of the Chinese Continental Scientific Drilling Project (CCSD) in southern Sulu has penetrated into an ultrahigh-pressure (UHP) metamorphic rock slice which consists of orthogneiss, paragneiss, eclogite, ultramafic rock and minor schist. Recovered eclogites have a UHP metamorphic mineral assemblage of garnet + omphacite + rutile ± phengite ± kyanite ± coesite ± epidote. Ultramafic rocks contain garnet + olivine + clinopyroxene + orthopyroxene ± Ti-clinohumite ± phlogopite. Gneisses and schists contain an amphibolite-facies paragenesis, but their zircons have coesite, garnet, omphacite (or jadeite) and phengite inclusions, indicating that eclogites and gneisses have been subjected to in situ UHP metamorphism. Using available geothermobarometers, P–T estimates of 3.1–4.4 GPa and 678–816°C for eclogites were obtained. If surface outcrops and neighboring shallow drill holes are considered together, we suggest that a huge supracrustal rock slab (> 50 km long × 100 km wide × 5 km deep) was subducted to a depth > 100 km and then exhumed to the surface. The depth interval (0–2,050 m) of the CCSD-MH can be divided into six lithological units. Unit 1 consists of alternating layers of quartz-rich and rutile-rich eclogites, with thin interlayers of gneiss and schist. Eclogites of unit 1 are characterized by Nb, Ta, Sr and Ti depletions, low Mg number and general LREE enrichment. Unit 2 comprises rutile- and ilmenite-rich eclogite and minor “normal” eclogite and is characterized by high TiO2, total Fe, V, Co and Sr, and very low SiO2, alkali, Zr, Ba, Nb, Ta and total REE contents, and LREE-depleted REE patterns with slightly positive Eu anomalies. Unit 3 contains ultramafic rock and minor MgO-rich eclogite. Protoliths of UHP rocks from units 1, 2 and 3 represent a layered mafic to ultramafic intrusion at crustal depth. Units 4 and 6 consist of interlayered eclogite and paragneiss; the eclogites are characterized by Th, U, Nb, Ta and Ti depletion and K enrichment and LREE-enriched REE patterns. Paragneisses show Nb, Ta, Sr and Ti depletions and LREE-enriched REE patterns occasionally with slightly negative Eu anomalies, indicating that their protoliths represent metamorphic supracrustal series. Unit 5 consists mainly of orthogneisses, showing distinct Nb, Ta, Sr and Ti depletions, and LREE-enriched REE patterns with pronounced negative Eu anomalies, suggesting granitic protoliths. In conclusion it is proposed that the southern Sulu UHP belt consists of a series of meta-supracrustal rocks, a layered mafic–ultramafic complex and granites.  相似文献   

6.
1.Introduction TheQinlingDabieorogenicbeltwasformedbycollisionbetweentheNorthChinaandYangtzeblocks.Thecorepartoftheorogenicbeltconsistsofseveralmetamorphicrockgroups,includingtheDabie(Tongbai)complex,Hong’an(Susong)group,SujiahegroupandSuixian(Yao…  相似文献   

7.
A variety of eclogites from an east-west transect across the North-East Greenland eclogite province have been studied to establish the timing of high pressure (HP) and ultrahigh-pressure (UHP) metamorphism in this northern segment of the Laurentian margin. Garnet + omphacite ± amphibole + whole rock Sm-Nd isochrons from a quartz eclogite, a garnet + omphacite + rutile eclogite and a partially melted zoisite eclogite in the western HP belt are 401±2, 402±9 and 414±18 Ma, respectively. Corresponding sensitive high-resolution ion microprobe (SHRIMP) 206Pb/238U ages of metamorphic zircon in the same samples are 401±7, 414±13, and 393 ±10 Ma. Metamorphic zircon domains were identified using morphology, cathodoluminescence (CL) imaging, U, Th, Th/U and trace element contents. Zircon from the quartz eclogite and the garnet + omphacite + rutile eclogite are typical of eclogite facies zircon with rounded to subhedral shapes, patchy to homogenous CL domains, low U, and very low Th and Th/U. The partially melted eclogite contains euhedral zircons with dark, sector-zoned, higher U, Th and Th/U inherited cores. Three cores give a Paleoproterozoic 207Pb/206Pb age of 1,962±27 Ma, interpreted as the age of the leucogabbroic protolith. CL images of the bright overgrowths show faint oscillatory zoning next to homogenous areas that indicate zircon growth in the presence of a HP melt and later recrystallization. Additional evidence that zircon grew during eclogite facies conditions is the lack of a Eu anomaly in the trace element data for all the samples. These results, combined with additional less precise Sm-Nd ages and our earlier work, point to a Devonian age of HP metamorphism in the western and central portions of the eclogite province. An UHP kyanite eclogite from the eastern part of the transect contains equant metamorphic zircon with homogeneous to patchy zoning in CL and HP inclusions of garnet, omphacite and kyanite. These zircons have slightly higher U, Th and Th/U values than the HP ones, no Eu anomaly, and are thus comparable to UHP zircons in the literature. The 206Pb/238U age of these zircons is 360±5 Ma, much younger than the HP eclogites. The same sample gives a Sm-Nd age of 342±6 Ma. Unlike the HP eclogites, the Sm-Nd age of the UHP rock is ca. 20 Ma younger than the U-Pb zircon age and most likely records slow cooling through the closure temperature, since peak temperatures were in excess of 900°C. Widespread HP metamorphism of both the Laurentian and Baltica continental margins marks the culmination of this continent–continent collision in the Devonian. Carboniferous UHP conditions, though localized in the east, suggest a prolonged collisional history rather than a short-lived Scandian orogeny. The traditional Silurian Scandian orogeny should thus be extended through the Devonian.  相似文献   

8.
The distribution and characterization of UHP rocks within the Western Gneiss Region (WGR) of the Norwegian Caledonides is reviewed. While recent studies have documented a significantly increased number of eclogite localities preserving mineralogical evidence for Scandian-aged UHP metamorphism, much uncertainty remains over the regional extent of any UHP province because of the widespread overprinting by retrograde amphibolite-facies assemblages (especially in the dominant gneisses) during exhumation of the terrain. Based on current observations, the UHP metamorphic province may be limited to a northwest region of only~4000 km2, although an enigmatic mixed zone of HP (quartz-stable) and UHP (coesite-stable) eclogites extends a minimum of 5 km farther south and east in the Outer Nordfjord area.

Quantitative P-T evaluation of key mineral reaction equilibria for eclogites sampled across the WGR indicates an overall regional trend of increased T and P to the northwest. This is consistent with Baltic plate rocks in the northwestern part of the WGR having been subducted to greatest depths during the Scandian plate collision. The distribution of garnet peridotites within the WGR and their significance to understanding the nature, location, and timing of crust-mantle interaction within a major continental-plate subduction zone also is briefly considered.  相似文献   

9.
本文通过对CCSD主孔100~1100m范围内榴辉岩中单矿物的LA-ICP-MS分析,探讨了榴辉岩中单矿物之间的微量元素分配,发现超高压变质作用中石榴石和绿辉石之间Ti和C0的分配显著受Mg控制(如DCo^Grt/Omp=3.43DMg^Grt/Omp-0.34),而REE、Sr和Y的分配则受Ca分配所控制。绿辉石中REE、Pb和Th的含量则明显受超高压副矿物磷灰石的出现与否所控制。结合岩石学特征,对角闪石和绿辉石中微量元素的研究表明角闪石主要是绿辉石退变质的产物。但退变质矿物的微量元素组成不仅受原矿物控制,而且受退变质矿物组合类型影响。绿帘石的出现会显著降低共生角闪石中LREE和Sr的含量,而多硅白云母的分解则会增加角闪石中的Rb、Ba含量。另外,退变质过程中的流体活动也会影响退变质矿物中的LREE、Sr和Pb等。结合REE在榴辉岩各主要矿物间分配系数随温度、压力的变化,我们推测部分石榴石边部MREE的富集特征可能反映榴辉岩在折返过程中经历了短时增温作用,这可能是引起苏鲁地区榴辉岩相向麻粒岩相转变叠加现象以及超高压岩石经历部分熔融作用的重要原因。此外,榴辉岩中金红石Nb和Ta组成的高度不均一性为金红石形成于超高压变质阶段富Ti磁铁矿相变作用的成因机制提供了佐证。  相似文献   

10.
The Drillhole ZK703 with a depth of 558 m is located in the Donghai area of the southern Sulu ultrahigh-pressure (UHP) metamorphic belt, eastern China, and penetrates typical UHP eclogites and various non-mafic rocks, including peridotite, gneiss, schist and quartzite. Their protoliths include ultramafic, mafic, intermediate, intermediate-acidic, acidic igneous rocks and sediments. These rocks are intimately interlayered, which are meters to millimeters thick with sharp and nontectonic contacts, suggesting in-situ metamorphism under UHP eclogite facies conditions. The following petrologic features indicate that the non-mafic rocks have experienced early-stage UHP metamorphism together with the eclogites: (1) phengite relics in gneisses and schists contain a high content of Si, up to 3.52 p.f.u. (per formula unit), while amphibolite-facies phengites have considerably low Si content (<3.26 p.f.u.); (2) jadeite relics are found in quartzite and jadeitite; (3) various types of symplectitic coronas and pseud  相似文献   

11.
Qiu and Wijbrans [Qiu H.-N. and Wijbrans J. R. (2006) Paleozoic ages and excess 40Ar in garnets from the Bixiling eclogite in Dabieshan, China: new insights from 40Ar/39Ar dating by stepwise crushing. Geochim. Cosmochim. Acta70, 2354-2370] present three Ar-Ar age spectra for fluid inclusions in garnet from eclogite at Bixiling in the Dabie orogen, east-central China. These Paleozoic ages of 427 ± 20 to 444 ± 10 Ma are interpreted to represent the first formation of Dabie ultrahigh-pressure (UHP) eclogite and thus require subduction of Yangtze crust to have started much earlier than previously accepted. However, no petrographic evidence, such as mineral inclusions in the garnet relating to the particular metamorphic conditions, is presented to substantiate the proposed UHP metamorphic event. Because garnet growth is not uniquely responsible for UHP eclogite-facies metamorphism, a distinction between UHP and high-pressure (HP) metamorphic events must be made in the interpretation of geochronological results. Available data from mineral Sm-Nd and zircon U-Pb dating of eclogites from the same area have firmly established that the UHP eclogite-facies metamorphism took place at Triassic. Neither the age of UHP metamorphism nor the timing of continental collision is reliably constrained by their presented data; the fluid inclusions in garnet must contain inherited 40Ar from UHP eclogite precursor, without considerable resetting of the Ar-Ar isotopic system during Triassic UHP metamorphism. Therefore, their data are either meaningless, or at best viewed as the age of garnet growth by low-T/HP blueschist/eclogite-facies metamorphism of the UHP eclogite precursor during arc-continent collision in the early Paleozoic. Furthermore, it is critical for metamorphic geochronology to substantiate the timing of UHP metamorphic event by means of zircon U-Pb in situ dating on coesite-bearing domains of metamorphically grown zircon.  相似文献   

12.
In the Chinese southwestern Tianshan (U)HP belt, former lawsonite presence has been predicted for many (U)HP metamorphic eclogites, but only a very few lawsonite grains have been found so far. We discovered armoured lawsonite relicts included in quartz, which, on its part, is enclosed in porphyroblastic garnet in an epidote eclogite H711‐14 and a paragonite eclogite H711‐29. H711‐14 is mainly composed of garnet, omphacite, epidote and titanite, with minor quartz, paragonite and secondary barroisite and glaucophane. Coarse‐grained titanite occasionally occurs in millimetre‐wide veins in equilibrium with epidote and omphacite, and relict rutile is only preserved as inclusions in matrix titanite and garnet. H711‐29 shows the mineral assemblage of garnet, omphacite, glaucophane, paragonite, quartz, dolomite, rutile and minor epidote. Dolomite and rutile are commonly rimed by secondary calcite and titanite respectively. Porphyroblastic garnet in both eclogites is compositionally zoned and exhibits an inclusion‐rich core overgrown by an inclusion‐poor rim. Phase equilibria modelling predicts that garnet cores formed at the P‐peak (490–505 °C and 23–25.5 kbar) and coexisted with the lawsonite eclogite facies assemblage of omphacite + glaucophane + lawsonite + quartz. Garnet rims (550–570 °C and ~20 kbar) grew subsequently during a post‐peak epidote eclogite facies metamorphism and coexisted with omphacite + quartz ± glaucophane ± epidote ± paragonite. The results confirm the former presence of a cold subduction zone environment in the Chinese southwestern Tianshan. The P–T evolution of the eclogites is characterized by a clockwise P–T path with a heating stage during early exhumation (thermal relaxation). The preservation of lawsonite in these eclogites is attributed to isolation from the matrix by quartz and rigid garnet, which should be considered as a new type of lawsonite preservation in eclogites. The complete rutile–titanite transition in H711‐14 took place in the epidote eclogite facies stage in the presence of an extremely CO2‐poor fluid with X(CO2) [CO2/(CO2 + H2O) in the fluid] <<0.008. In contrast, the incomplete rutile–titanite transition in H711‐29 may have occurred after the epidote eclogite facies stage and the presence of dolomite reflects a higher X(CO2) (>0.01) in the coexisting fluid at the epidote eclogite facies stage.  相似文献   

13.
Eclogites from the North Qilian suture zone are high‐pressure low‐temperature metamorphic rocks of ocean crust protolith, and occur in both massive and foliated varieties as individual blocks of tens to hundreds of metres in size. The massive type is weakly deformed and shows granoblastic texture characterized by a coarse‐grained peak mineral assemblage of Grt1 + Omp1 + Ph + Rt ± Lws (or retrograde Cz). In contrast, the foliated type is strongly deformed and shows a fine‐grained retrograde mineral assemblage of Grt2 + Omp2 + Cz + Gln + Ph. Both total FeO and aegirine contents in omphacite, as well as XFe[=Fe3+/(Fe3+ + AlVI)] in clinozoisite/epidote, increase significantly from massive to foliated eclogites. Lattice preferred orientation (LPO) of omphacite, determined by electron back‐scatter diffraction analysis, is characterized by weak and strong SL‐type fabrics for massive and foliated eclogites, respectively. Clinozoisite/epidote also developed SL‐type fabric, but different from the LPOs of omphacite in <010> and <001> axes, owing to their opposite crystallographic long and short axis definitions. The transition of deformation mechanism from dislocation creep to diffusive mass transfer (DMT) creep in omphacite and the concomitant retrograde metamorphism both are efficiently facilitated when the original coarse‐grained Omp1 + Grt1 + Lws assemblage is dynamically recrystallized and retrogressed into the fine‐grained Fe3+‐rich assemblage of Omp2 + Grt2 + Cz + Gln. The DMT process with concomitant anisotropic growth assisted by fluids is considered to be an important deformation mechanism for most minerals in the foliated eclogite. P–T estimates yielded 2.3–2.6 GPa and 485?510 °C for the massive eclogite and 1.8–2.2 GPa and 450?480 °C for the foliated eclogite. The significant increase in total Fe and Fe3+ contents in omphacite and clinozoisite/epidote from massive to foliated eclogite suggests changes in mineral compositions accompanied by an increase in oxygen fugacity during ductile deformation associated with exhumation. The LPO transition of omphacite, clinozoisite and rutile from weak SL‐type in massive eclogites to strong SL‐type in foliated eclogites is interpreted to represent the increment of shear strain during exhumation along the ‘subduction channel’.  相似文献   

14.
柴北缘斜长角闪岩的地球化学特征及其构造背景   总被引:2,自引:0,他引:2  
分布在柴北缘超高压变质带中的斜长角闪岩主要有两种类型,一种由榴辉岩退变而成,一种只经历角闪岩相变质作用。它们的原岩属于拉斑玄武质岩石,轻稀土富集,Nd同位素组成亏损,这些玄武岩浆分别来自不同的地幔源区,地壳混染不明显,形成的环境可能为大陆裂谷或初始洋盆,这可能是柴北缘早古生代洋盆打开的前兆。随着早古生代洋盆的关闭,这些基性火成岩部分经历了超高压变质作用,即发生了深俯冲,部分只经历角闪岩相变质。无论哪种情况,它们在遭受变质作用之前,就与陆壳岩石共生在一起,支持柴北缘榴辉岩、斜长角闪岩与片麻岩的关系为原地关系(in situ)?  相似文献   

15.
The oxygen and hydrogen isotope compositions of minerals and whole rock were determined for two types of gneiss (biotite gneiss and granitic gneiss) associated with ultrahigh pressure (UHP) eclogites in the Shuanghe district of the eastern Dabie Mountains. There are significant differences in δ18O between the two gneisses: the UHP biotite gneiss varying from −4.3‰ to 10.6‰ similar to the associated eclogites, whereas the non-UHP granitic gneiss ranges only from −3.8‰ to 1.2‰. The δD values are similar in the two gneisses with −37 to −64‰ for epidote/zoisite, −92 to −83‰ for amphibole, and −63 to −109‰ for biotite/phengite. Hydrogen isotope disequilibrium among the coexisting hydroxyl-bearing minerals is ascribed to retrograde exchange subsequent to amphibolite-facies metamorphism. Oxygen isotopic equilibrium has been preserved among various minerals in both gneisses regardless of the large variation in rock δ18O. Oxygen isotopic geothermometers yield different but regular temperatures corresponding to the closure temperatures of oxygen diffusion in the minerals. The metamorphic temperatures of both eclogite facies and amphibolite facies have been recovered in mineral pairs from the biotite gneiss. The isotopic temperatures for the granitic gneiss are mostly in accordance with amphibolite-facies metamorphism. However, high temperatures of 550 to 650 °C are obtained from those minerals resistant to retrograde oxygen isotope exchange, implying that the granitic gneiss may have experienced higher temperature metamorphism than expected from petrologic thermometers. The 18O-depletion of both gneisses is interpreted to result from meteoric-hydrothermal exchange before/during plate subduction. Therefore, the measured δ18O values of the gneisses reflect the oxygen isotope compositions of their protoliths prior to the UHP metamorphism. It is inferred that the UHP unit is in foreign contact with the non-UHP unit like a tectonic melange, but both of them experienced the two common stages of geodynamic evolution: (1) 18O-depletion prior to the UHP metamorphism, (2) uplifting since the amphibolite-facies metamorphism. Received: 5 May 1998 / Accepted: 27 August 1998  相似文献   

16.
U–Pb and Rb–Sr dating was undertaken in combination with P–T estimates to (1) constrain the time of ultrahigh-pressure (UHP) eclogite formation in the Stadlandet UHP province of Norway, (2) date later crustal melting–migmatization of the eclogite country gneisses, and (3) temporally trace post-migmatite cooling and retrogression under amphibolite facies metamorphic conditions. In contrast to earlier U–Pb studies which used accessory minerals from the gneisses, we focused on the direct dating of minerals defining the HP assemblage. For the eclogite, rutile and omphacite fractions were analyzed for U–Pb, and from an adjacent migmatite leucosome titanites and K-feldspar. For Rb–Sr dating, phengite was measured for the eclogite, and biotite for two leucosome layers of the migmatite–eclogite complex. A U–Pb age of 389±7 (2σ) Ma is obtained if the full set of 12 rutile and five omphacite analyses is regressed (MSWD: 16), and 389±2 Ma for those nine data which strictly satisfy isochron conditions (MSWD: 0.78). The 389-Ma age is interpreted to date equilibration and freezing of the eclogite paragenesis at maximum temperatures of 770 °C, reached during decompression to 1.8 GPa. Decompression from 2.8 to 1.8 GPa occurred in the partial melting domain of granitic crust, with the migmatites being dated at 375±6 Ma by titanite and K-feldspar from an eclogite-adjacent granitic leucosome. This titanite age also shows that the U–Pb chronometer in rutile is very robust to high temperatures—it remained a closed system for at least 14 million years, at temperatures in excess to 650 °C. After decompression and migmatization, exhumation is accompanied by rapid cooling to reach the 300 °C isograde by 357± 9 Ma, determined by a biotite isochron for a leucosome in a slightly shallower structural level. In considering that the time of maximum pressure is bracketed by early zircon crystallization during subduction and later omphacite–rutile equilibration in the eclogites, an exhumation rate of 5 mm/year is deduced for initial exhumation, occurring between 394 and 389 Ma. For subsequent cooling from 770 to 600 °C, we obtain a rate of 2.3±1.3 mm/year. First stages of exhumation most likely occurred under an overall compressional regime, whereas Devonian basin formation is associated to detachment movements during 389–375 Ma exhumation. This period of extension is followed by a much younger, decoupled thermal phase at 327±5 Ma, occurring under static conditions within very restricted zones, most likely in association with the circulation of fluid phases along old discontinuities. Initial isotopic signatures of Sr and Pb substantiate Paleo- to Meso-Proterozoic crust formation times of the Stadlandet UHP province precursor lithologies.  相似文献   

17.
Coesite‐bearing eclogites from >100 km2 in the southern Dulan area, North Qaidam Mountains (NQM) of western China, contain zircon that records protolith crystallization and ultra high pressure (UHP) metamorphism. Sensitive High‐Resolution Ion Microprobe (Mass Spectrometer) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry U–Pb analyses from cathodoluminescence (CL)‐dark zircon cores in a coesite‐bearing eclogite yield an upper intercept age of 838 ± 50 Ma, and oscillatory zoned cores in a kyanite‐bearing eclogite gave a weighted mean 206Pb/238U age of 832 ± 20 Ma. These zircon cores yield steep heavy rare earth element (HREE) slopes and negative Eu anomalies that suggest a magmatic origin. Thus, c. 835 Ma is interpreted as the eclogite protolith age. Unzoned CL‐grey or ‐bright zircon and zircon rims from four samples yield weighted mean ages of 430 ± 4, 438 ± 2, 446 ± 10 and 446 ± 3 Ma, flat HREE patterns without Eu anomalies, and contain inclusions of garnet, omphacite, rutile, phengite and rare coesite. These ages are interpreted to record 16 ± 5 Myr of UHP metamorphism. These new UHP ages overlap the age range of both eclogite and paragneiss from the northern Dulan area, suggesting that all UHP rock types in the Dulan area belong to the same tectonic unit. Our results are consistent with slow continental subduction, but do not match oceanic subduction and diapiric exhumation UHP model predictions. These new data suggest that, similar to eclogites in other HP/UHP units of the NQM and South Altyn Tagh, protoliths of the eclogites in the Dulan area formed in a continental setting during the Neoproterozoic, and then subducted to mantle depth together with continental materials during the Early Palaeozoic.  相似文献   

18.
《China Geology》2021,4(1):111-125
High/ultrahigh-pressure (HP/UHP) metamorphic complexes, such as eclogite and blueschist, are generally regarded as significant signature of paleo-subduction zones and paleo-suture zones. Glaucophane eclogites have been recently identified within the Lancang Group characterized by accretionary mélange in the Changning-Menglian suture zone, at Bangbing in the Shuangjiang area of southeastern Tibetan Plateau. The authors report the result of petrological, mineralogical and metamorphism investigations of these rocks, and discuss their tectonic implications. The eclogites are located within the Suyi blueschist belt and occur as tectonic lenses in coarse-grained garnet muscovite schists. The major mineral assemblage of the eclogites includes garnet, omphacite, glaucophane, phengite, clinozoisite and rutile. Eclogitic garnet contains numerous inclusions, such as omphacite, glaucophane, rutile, and quartz with radial cracks around. Glaucophane and clinozoisite in the matrix have apparent optical and compositional zonation. Four stages of metamorphic evolution can be determined: The prograde blueschist facies (M1), the peak eclogite facies (M2), the decompression blueschist facies (M3) and retrograde greenschist facies (M4). Using the Grt-Omp-Phn geothermobarometer, a peak eclogite facies metamorphic P-T condition of 3000–3270 MPa and 617–658°C was determined, which is typical of low-temperature ultrahigh-pressure metamorphism. The comparison of the geological characteristics of the Bangbing glaucophane eclogites and the Mengku lawsonite-bearing retrograde eclogites indicates that two suites of eclogites may have formed from significantly different depths or localities to create the tectonic mélange in a subduction channel during subduction of the Triassic Changning-Menglian Ocean. The discovery of the Bangbing glaucophane eclogites may represent a new oceanic HP/UHP metamorphic belt in the Changning-Menglian suture zone.©2021 China Geology Editorial Office.  相似文献   

19.
Glaucophane‐bearing ultrahigh pressure (UHP) eclogites from the western Dabieshan terrane consist of garnet, omphacite, glaucophane, kyanite, epidote, phengite, quartz/coesite and rutile with or without talc and paragonite. Some garnet porphyroblasts exhibit a core–mantle zoning profile with slight increase in pyrope content and minor or slight decrease in grossular and a mantle–rim zoning profile characterized by a pronounced increase in pyrope and rapid decrease in grossular. Omphacite is usually zoned with a core–rim decrease in j(o) [=Na/(Ca + Na)]. Glaucophane occurs as porphyroblasts in some samples and contains inclusions of garnet, omphacite and epidote. Pseudosections calculated in the NCKMnFMASHO system for five representative samples, combined with petrographic observations suggest that the UHP eclogites record four stages of metamorphism. (i) The prograde stage, on the basis of modelling of garnet zoning and inclusions in garnet, involves PT vectors dominated by heating with a slight increase in pressure, suggesting an early slow subduction process, and PT vectors dominated by a pronounced increase in pressure and slight heating, pointing to a late fast subduction process. The prograde metamorphism is predominated by dehydration of glaucophane and, to a lesser extent, chlorite, epidote and paragonite, releasing ~27 wt% water that was bound in the hydrous minerals. (ii) The peak stage is represented by garnet rim compositions with maximum pyrope and minimum grossular contents, and PT conditions of 28.2–31.8 kbar and 605–613 °C, with the modelled peak‐stage mineral assemblage mostly involving garnet + omphacite + lawsonite + talc + phengite + coesite ± glaucophane ± kyanite. (iii) The early decompression stage is characterized by dehydration of lawsonite, releasing ~70–90 wt% water bound in the peak mineral assemblages, which results in the growth of glaucophane, j(o) decrease in omphacite and formation of epidote. And, (iv) The late retrograde stage is characterized by the mineral assemblage of hornblendic amphibole + epidote + albite/oligoclase + quartz developed in the margins or strongly foliated domains of eclogite blocks due to fluid infiltration at P–T conditions of 5–10 kbar and 500–580 °C. The proposed metamorphic stages for the UHP eclogites are consistent with the petrological observations, but considerably different from those presented in the previous studies.  相似文献   

20.
大别—苏鲁超高压变质带内的块状榴辉岩及其构造意义   总被引:13,自引:1,他引:12  
大别—苏鲁超高压(> 27× 108Pa) 变质带内的榴辉岩, 在大陆深俯冲、碰撞和折返剥露过程中, 大都遭受了强烈的变形和变质作用的重置与再造.但是, 大型榴辉岩体核部以及包裹于大理岩和石榴橄榄岩体内部的块状榴辉岩, 往往保留其初始简单的矿物组合、中-细粒状变晶结构和块状构造.详细地分析了块状榴辉岩的几何学、岩相学及变质作用特征, 指出它们是超高压榴辉岩递进及多期变质变形分解作用的残留体, 位于尺度不同的弱应变域内, 是大陆深俯冲及碰撞作用的真正记录.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号