首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 335 毫秒
1.
In this study, we investigated the structural properties of Urfa stone (US) doped with erbium oxide (Er2O3). Solid US was powdered by using an agate mortar, and its elemental composition was determined using inductive coupling plasma (ICP) methods. Varying amounts of Er2O3 (5, 10, 20, 30, and 40%) were added as a dopant to the US powder using mechanical alloying methods. The resultant samples were sintered at 1000 °C for 1 h. The structural properties of the Er2O3-doped US samples were subsequently investigated using X-ray diffraction (XRD), Fourier-transform infrared spectrometry (FTIR), and photoluminescence methods. Results from the XRD analysis of the Er2O3-doped US powder indicated two crystalline phases: (1) calcium oxide (CaO) or lime and (2) Er2O3. After the samples were sintered at 1000 °C, CaO, Er2O3, calcium carbonate (CaCO3), and mixed crystalline phases were observed. Results from the FTIR analysis of the Er2O3-doped US samples indicated absorption bands at 711.91, 872.08, and 1396.87 cm?1 in the spectra. Finally, photoluminescence analysis results indicated a shift in the emission and excitation bands to longer and shorter wavelengths, respectively, in the solid state (non-aqueous media) US-Er complex.  相似文献   

2.
Three (Cr1?x Al x )N (x = 0.33, 0.5, 0.66) coatings were deposited on Ni-super alloy IN718 using reactive magnetron sputtering. The oxidation behavior of all coatings at 900 °C up to 500 h in air was studied. Furthermore, the corrosion behavior of the (Cr0.33,Al0.66)N coating at 900 °C (corrosion type I) by spraying a uniform salt scale of Na2SO4 on the sample surface (1 mg/cm2) was investigated. It was found that the coated samples indicate significantly higher oxidation and corrosion resistance compared to uncoated Ni super alloy. This is mainly due to the formation of protective Cr2O3 and Al2O3 layers on the coating surface. With the increase of Al content, the coatings exhibited improved oxidation resistance. The formation of thin and adherent Al2O3 scale on the surface of Al rich coating is the reason for its better oxidation behavior. The detailed structures of the oxide scales and the interdiffusion between coating and substrate were studied using energy dispersive X-ray spectroscopy-analysis.  相似文献   

3.
Unusual Ti–Cr–Zr-rich garnet crystals from high-temperature melilitic skarn of the Maronia area, western Thrace, Greece, were investigated by electron-microprobe analysis, powder and single-crystal X-ray diffraction, IR, Raman and Mössbauer spectroscopy. Chemical data showed that the garnets contain up to 8 wt.% TiO2, 8 wt.% Cr2O3 and 4 wt.% ZrO2, representing a solid solution of andradite (Ca3Fe3+ 2Si3O12 ≈46 mol%), uvarovite (Ca3Cr2Si3O12 ≈23 mol%), grossular (Ca3Al2Si3O12 ≈10 mol%), schorlomite (Ca3Ti2[Si,(Fe3+,Al3+)2]O12 ≈15 mol%), and kimzeyite (Ca3Zr2[Si,Al2]3O12 ≈6 mol%). The Mössbauer analysis showed that the total Fe is ferric, preferentially located at the octahedral site and to a smaller extent at the tetrahedral site. Single-crystal XRD analysis, Raman and IR spectroscopy verified substitution of Si mainly by Al3+, Fe3+ and Ti4+. Cr3+ and Zr4+ are found at the octahedral site along with Fe3+, Al3+ and Ti4+. The measured H2O content is 0.20 wt.%. The analytical data suggest that the structural formula of the Maronia garnet can be given as: (Ca2.99Mg0.03)Σ=3.02(Fe3+ 0.67Cr0.54Al0.33Ti0.29Zr0.15)Σ=1.98(Si2.42Ti0.24Fe0.18Al0.14)Σ=2.98O12OH0.11. Ti-rich garnets are not common and their crystal chemistry is still under investigation. The present work presents new evidence that will enable the elucidation of the structural chemistry of Ti- and Cr-rich garnets.  相似文献   

4.
Four samples of synthetic chromium-bearing spinels of (Mg, Fe2+)(Cr, Fe3+)2O4 composition and four samples of natural spinels of predominantly (Mg, Fe2+)(Al, Cr)2O4 composition were studied at ambient conditions by means of optical absorption spectroscopy. Synthetic end-member MgCr2O4 spinel was also studied at pressures up to ca. 10 GPa. In both synthetic and natural samples, chromium is present predominantly as octahedral Cr3+ seen in the spectra as two broad intense absorption bands in the visible range caused by the electronic spin-allowed 4 A 2g  → 4 T 2g and 4 A 2g  → 4 T 1g transitions (U- and Y-band, respectively). A distinct doublet structure of the Y-band in both synthetic and natural spinels is related to trigonal distortion of the octahedral site in the spinel structure. A small, if any, splitting of the U-band can only be resolved at curve-fitting analysis. In all synthetic high-chromium spinels, a couple of relatively narrow and weak bands of the spin-allowed transitions 4 A 2g  → 2 E g and 4 A 2g  → 2 T 1g of Cr3+, intensified by exchange-coupled interaction between Cr3+ and Fe3+ at neighboring octahedral sites of the structure, appear at ~14,400 and ~15,100 cm?1. A vague broad band in the range from ca. 15,000 to 12,000 cm?1 in synthetic spinels is tentatively attributed to IVCr2+ + VICr3+ → IVCr3+ + VICr2+ intervalence charge-transfer transition. Iron, mainly as octahedral Fe3+, causes intense high-energy absorption edge in near UV-range (ligand–metal charge-transfer O2? → Fe3+, Fe2+ transitions). As tetrahedral Fe2+, it appears as a strong infrared absorption band at around 4,850 cm?1 caused by electronic spin-allowed 5 E → 5 T 2 transitions of IVFe2+. From the composition shift of the U-band in natural and synthetic MgCr2O4 spinels, the coefficient of local structural relaxation around Cr3+ in spinel MgAl2O4–MgCr2O4 system was evaluated as ~0.56(4), one of the lowest among (Al, Cr)O6 polyhedra known so far. The octahedral modulus of Cr3+ in MgCr2O4, derived from pressure-induced shift of the U-band of Cr3+, is ~313 (50) GPa, which is nearly the same as in natural low-chromium Mg, Al-spinel reported by Langer et al. (1997). Calculated from the results of the curve-fitting analysis, the Racah parameter B of Cr3+ in natural and synthetic MgCr2O4 spinels indicates that Cr–O-bonding in octahedral sites of MgCr2O4 has more covalent character than in the diluted natural samples. Within the uncertainty of determination in synthetic MgAl2O4 spinel, B does not much depend on pressure.  相似文献   

5.
The crystal structure and chemical composition of a crystal of (Mg14?x Cr x )(Si5?x Cr x )O24 (x ≈ 0.30) anhydrous Phase B (Anh-B) synthesized in the model system MgCr2O4–Mg2SiO4 at 12 GPa and 1600 °C have been investigated. The compound was found to be orthorhombic, space group Pmcb, with lattice parameters a = 5.900(1), b = 14.218(2), c = 10.029(2) Å, V = 841.3(2) Å3 and Z = 2. The structure was refined to R 1 = 0.065 using 1492 independent reflections. Chromium was found to substitute for both Mg at the M3 site (with a mean bond distance of 2.145 Å) and Si at the octahedral Si1 site (mean bond distance: 1.856 Å), according to the reaction Mg2+ + Si4+ = 2Cr3+. Such substitutions cause a reduction in the volume of the M3 site and an increase in the volume of the Si-dominant octahedron with respect to the values typically observed for pure Anh-B and Fe2+-bearing Anh-B. Taking into account that Cr3+ is not expected to be Jahn–Teller active, it appears that both the Cr3+–for–Mg and Cr3+–for–Si substitutions in the Anh-B structure decrease the distortion of the octahedra. Electron microprobe analysis gave the Mg13.66(8)Si4.70(6)Cr0.62(4)O24 stoichiometry for the studied phase. The successful synthesis of this phase provides new information for the possible mineral assemblages occurring in the Earth’s deep upper mantle and shed new light on the so-called X discontinuity that has been observed at 275–345 km depth in several subcontinental and subduction zone environments.  相似文献   

6.
The crystal structure and chemical composition of crystals of (Mg1?x Cr x )(Si1?x Cr x )O3 ilmenite (with x = 0.015, 0.023 and 0.038) synthesized in the model system Mg3Cr2Si3O12–Mg4Si4O12 at 18–19 GPa and 1,600 °C have been investigated. Chromium was found as substitute for both Mg at the octahedral X site and Si at the octahedral Y site, according to the reaction Mg2+ + Si4+ = 2Cr3+. Such substitutions cause a shortening of the <X–O> and a lengthening of the <Y–O> distances with respect to the values typically observed for pure MgSiO3 ilmenite and eskolaite Cr2O3. Although no high Cr contents are considered in the pyrolite model, Cr-bearing ilmenite may be the host for chromium in the Earth’s transition zone. The successful synthesis of ilmenite with high Cr contents and its structural characterization are of key importance because the study of its thermodynamic constants combined with the data on phase relations in the lower-mantle systems can help in the understanding of the seismic velocity and density profiles of the transition zone and the constraining composition and mineralogy of pyrolite in this area of the Earth.  相似文献   

7.
The low-temperature heat capacity of knorringite garnet (Mg3Cr2Si3O12) was measured between 2 and 300 K, and thermochemical functions were derived from the results. The measured heat capacity curves show a sharp lambda-shaped anomaly peaking at around 5.1 K. Magnetic susceptibility data show that the transition is caused by antiferromagnetic ordering. From the C p data, we suggest a standard entropy (298.15 K) of 301 ± 2.5 J mol?1 K?1 for Mg3Cr2Si3O12. The new data are also used in conjunction with previous experimental results to constrain ?H f ° for knorringite.  相似文献   

8.
Fly ash is a product arising from coal combustion in thermal power plants. It represents a major source of environmental pollution. It is well known by its chemical composition rich of SiO2 and Al2O3. With the aim of preserving the environment against this contamination, fly ash was used along with the starting materials for producing glass cordierite (2MgO, 2Al2O3, 5SiO2). Four formulations were developed by mixing the silica gel, magnesium chloride (MgCl2.6H2O) and fly ash in the percentages enclosing the stoichiometry of cordierite (2MgO, 2Al2O3, 5SiO2). Different experimental techniques (DTA/TGA, X-ray diffraction, FTIR and SEM) were used to characterise the prepared formulations. The results shown that for all formulations, a cordierite phase was obtained at 1200 °C along with several secondary phases such as mullite, cristobalite, silicon oxide, enstatite and spinel. At 1300 °C, pure indialite (α-cordierite) was obtained along with a small amount of spinel. The four formulations sintered at 1200 °C exhibit a homogenous morphology and high porosity. The acicular-shaped indialite grains were observed in both formulations with excess of alumina and excess of magnesia.  相似文献   

9.
A new synchrotron X-ray diffraction study of chromium oxide Cr2O3 (eskolaite) with the corundum-type structure has been carried out in a Kawai-type multi-anvil apparatus to pressure of 15 GPa and temperatures of 1873 K. Fitting the Birch–Murnaghan equation of state (EoS) with the present data up to 15 GPa yielded: bulk modulus (K 0,T0), 206 ± 4 GPa; its pressure derivative K0,T , 4.4 ± 0.8; (?K 0,T /?T) = ?0.037 ± 0.006 GPa K?1; a = 2.98 ± 0.14 × 10?5 K?1 and b = 0.47 ± 0.28 × 10?8 K?2, where α 0,T  = a + bT is the volumetric thermal expansion coefficient. The thermal expansion of Cr2O3 was additionally measured at the high-temperature powder diffraction experiment at ambient pressure and α 0,T0 was determined to be 2.95 × 10?5 K?1. The results indicate that coefficient of the thermal expansion calculated from the EoS appeared to be high-precision because it is consistent with the data obtained at 1 atm. However, our results contradict α 0 value suggested by Rigby et al. (Brit Ceram Trans J 45:137–148, 1946) widely used in many physical and geological databases. Fitting the Mie–Grüneisen–Debye EoS with the present ambient and high-pressure data yielded the following parameters: K 0,T0 = 205 ± 3 GPa, K0,T  = 4.0, Grüneisen parameter (γ 0) = 1.42 ± 0.80, q = 1.82 ± 0.56. The thermoelastic parameters indicate that Cr2O3 undergoes near isotropic compression at room and high temperatures up to 15 GPa. Cr2O3 is shown to be stable in this pressure range and adopts the corundum-type structure. Using obtained thermoelastic parameters, we calculated the reaction boundary of knorringite formation from enstatite and eskolaite. The Clapeyron slope (with \({\text{d}}P/{\text{d}}T = - 0.014\) GPa/K) was found to be consistent with experimental data.  相似文献   

10.
The Hongge magmatic Fe-Ti-V oxide deposit in the Panxi region, SW China, is hosted in a layered mafic–ultramafic intrusion. This 2.7-km-thick, lopolith-like intrusion consists of the lower, middle, and upper zones, which are composed of olivine clinopyroxenite, clinopyroxenite, and gabbro, respectively. Abundant Fe-Ti oxide layers mainly occur in the middle zone and the lower part of the upper zone. Fe-Ti oxides include Cr-rich and Cr-poor titanomagnetite and granular ilmenite. Cr-rich titanomagnetite is commonly disseminated in the olivine clinopyroxenite of the lower parts of the lower and middle zones and contains 1.89 to 14.9 wt% Cr2O3 and 3.20 to 16.2 wt% TiO2, whereas Cr-poor titanomagnetite typically occurs as net-textured and massive ores in the upper middle and upper zones and contains much lower Cr2O3 (<0.4 wt%) but more variable TiO2 (0.11 to 18.2 wt%). Disseminated Cr-rich titanomagnetite in the ultramafic rocks is commonly enclosed in either olivine or clinopyroxene, whereas Cr-poor titanomangetite of the net-textured and massive ores is mainly interstitial to clinopyroxene and plagioclase. The lithology of the Hongge intrusion is consistent with multiple injections of magmas, the lower zone being derived from a single pulse of less differentiated ferrobasaltic magma and the middle and upper zones from multiple pulses of more differentiated magmas. Cr-rich titanomagnetite in the disseminated ores of the lower and middle zones is interpreted to represent an early crystallization phase whereas clusters of Cr-poor titanomagnetite, granular ilmenite, and apatite in the net-textured ores of the middle and upper zones are thought to have formed from an Fe-Ti-(P)-rich melt segregated from a differentiated ferrobasaltic magma as a result of liquid immiscibility. The dense Fe-Ti-(P)-rich melt percolated downward through the underlying silicate crystal mush to form net-textured and massive Fe-Ti oxide ores, whereas the coexisting Si-rich melt formed the overlying plagioclase-rich rocks in the intrusion.  相似文献   

11.
Textural and mineral–chemical characteristics in the Bangriposi wehrlites (Eastern India) provide insight into metamorphic processes that morphologically and chemically modified magmatic spinel during serpentinization of wehrlite. Aluminous chromite included in unaltered magmatic olivine is chemically homogenous. In sub-cm to 10s-of-micron-wide veins, magnetite associated with antigorite and clinochlore comprising the serpentine matrix is near-stoichiometric. But Al–Cr–Fe3+ spinels in the chlorite–magnetite veins are invariably zoned, e.g., chemically homogenous Al-rich chromite interior successively mantled by ferritchromite/Cr-rich magnetite zone and magnetite continuous with vein magnetite in the serpentine matrix. In aluminous chromite, ferritchromite/Cr-rich magnetite zones are symmetrically disposed adjacent to fracture-controlled magnetite veins that are physically continuous with magnetite rim. The morphology of ferritchromite–Cr-rich magnetite mimics the morphology of aluminous chromite interior but is incongruous with the exterior margin of magnetite mantle. Micropores are abundant in magnetite veins, but are fewer in and do not appear to be integral to the adjacent ferritchromite–Cr-rich magnetite zones. Sandwiched between chemically homogenous aluminous chromite interior and magnetite mantle, ferritchromite–Cr-rich magnetite zones show rim-ward decrease in Cr2O3, Al2O3 and MgO and complementary increase in Fe2O3 at constant FeO. In diffusion profiles, Fe2O3–Cr2O3 crossover coincides with Al2O3 decrease to values <0.5 wt% in ferritchromite zone, with Cr2O3 continuing to decrease within magnetite mantle. Following fluid-mediated (hydrous) dissolution of magmatic olivine and olivine + Al–chromite aggregates, antigorite + magnetite and chlorite + magnetite were transported in 10s-of-microns to sub-cm-wide veins and precipitated along porosity networks during serpentinization (T: 550–600 °C, f(O2): ?19 to ?22 log units). These veins acted as conduits for precipitation of magnetite as mantles and veins apophytic in chemically/morphologically modified magmatic Al-rich chromite. Inter-crystalline diffusion induced by chemical gradient at interfaces separating aluminous chromite interiors and magnetite mantles/veins led to the growth of ferritchromite/Cr-rich magnetite zones, mimicking the morphology of chemically modified Al–Cr–Fe–Mg spinel interiors. Inter-crystalline diffusion outlasted fluid-mediated aluminous chromite dissolution, mass transfer and magnetite precipitation.  相似文献   

12.
The Ospino-Kitoi and Kharanur ultrabasic massifs represent the northern and southern ophiolite branches respectively of the Upper Onot ophiolitic nappe and they are located in the southeastern part of the Eastern Sayan(SEPES ophiolites).Podiform chromitites with PGE mineralization occur as lensoid pods within dunites and rarely in harzburgites or serpentinized peridotites.The chromitites are classified into type I and type Ⅱ based on their Cr~#.Type I(Cr~# = 59-85) occurs in both northern and southern branches,whereas type Ⅱ(Cr~# = 76-90) occurs only in the northern branch.PGE contents range from ∑PGE 88-1189 ppb,Pt/Ir0.04-0.42 to ∑PGE 250-1700 ppb,Pt/Ir 0.03-0.25 for type I chromitites of the northern and southern branches respectively.The type Ⅱ chromitites of the northern branch have ∑PGE contents higher than that of type Ⅰ(468-8617 ppb,Pt/Ir 0.1-0.33).Parental melt compositions,in equilibrium with podiform chromitites,are in the range of boninitic melts and vary in Al_2O_3,TiO_2 and FeO/MgO contents from those of type I and type Ⅱ chromitites.Calculated melt compositions for type Ⅰ chromitites are(Al_2O_3)_(melt) = 10.6—13.5 wt.%,(TiO_2)_(melt) = 0.01-0.44 wt.%,(Fe/Mg)_(melt) = 0.42-1.81;those for type Ⅱ chromitites are:(Al_2O_3)_(melt) = 7.8-10.5 wt.%,(TiO_2)_(melt) = 0.01-0.25 wt.%,(Fe/Mg)_(melt) = 0.5-2.4.Chromitites are further divided into Os-Ir-Ru(Ⅰ) and Pt-Pd(Ⅱ) based on their PGE patterns.The type Ⅰ chromitites show only the Os-Ir-Ru pattern whereas type Ⅱ shows both Os-Ir-Ru and Pt-Pd patterns.PGE mineralization in type Ⅰ chromitites is represented by the Os-Ir-Ru system,whereas in type Ⅱ it is represented by the Os-Ir-Ru-Rh-Pt system.These results indicate that chromitites and PGE mineralization in the northern branch formed in a suprasubduction setting from a fluid-rich boninitic melt during active subduction.However,the chromitites and PGE mineralization of the southern branch could have formed in a spreading zone environment.Mantle peridotites have been exposed in the area with remnants of mantle-derived reduced fluids,as indicated by the occurrence of widespread highly carbonaceous graphitized ultrabasic rocks and serpentinites with up to 9.75 wt.%.Fluid inclusions in highly carbonaceous graphitized ultrabasic rocks contain CO,CO_2,CH4,N_2 and the δ~(13)C isotopic composition(-7.4 to-14.5‰) broadly corresponds to mantle carbon.  相似文献   

13.
A series of strontium- and barium-doped alumina samples were prepared by hydrolysis, in neutral medium, starting from commercial Al2O3, SrCO3, and BaCO3 materials. The precursors thus obtained were calcined under air at 700 °C; then, the bulk and surface properties of the resulting mixed oxides were characterized by nitrogen physisorption, X-ray diffraction (XRD), hydrogen temperature-programmed reduction (H2-TPR), thermogravimetry (TGA), and differential thermal analysis (DTA). Contrary to SrCO3, an addition of BaCO3 to α-Al2O3 increases slightly the specific surface area. XRD patterns essentially reveal the characteristic reflections assigned to α-Al2O3. In agreement with TGA and XRD analysis, strontium and barium carbonates remain after calcination at 700 °C, their decomposition starting above 800 °C. Let us note that this decomposition occurs more readily on AlSr-100 than on AlBa-100 with no apparent relationship with the evolution observed on the specific surface areas. H2-TPR experiments underline a significant bulk reduction of barium and strontium carbonates taking place significantly above 900 °C with similar trend noticed during TGA regarding their thermal decomposition. However, the most relevant observation is related to a sharp enhancement of the reducibility of AlSr-y with the appearance two reduction ranges highlighting the existence of different types of interactions with strontium and the alumina substrate.  相似文献   

14.
The new mineral species lavoisierite, ideally Mn2+ 8[Al10(Mn3+Mg)][Si11P]O44(OH)12, has been discovered in piemontite-bearing micaschists belonging to the Piedmontese Nappe from Punta Gensane, Viù Valley, Western Alps, Italy. It occurs as yellow-orange acicular to prismatic-tabular crystals up to a few millimeters in length, with white streak and vitreous luster, elongated along [010] and flattened on {001}. Lavoisierite is associated with quartz, “mica,” sursassite, piemontite, spessartine, braunite, and “tourmaline.” Calculated density is 3.576 g cm?3. In plane-polarized light, it is transparent, pleochroic, with pale yellow parallel to [010] and yellow-orange normal to this direction; extinction is parallel and elongation is positive. Birefringence is moderate; the calculated average refraction index n is 1.750. Lavoisierite is orthorhombic, space group Pnmm, with a 8.6891(10), b 5.7755(3), c 36.9504(20) Å, V 1854.3(2) Å3, Z = 2. Calculated main diffraction lines of the X-ray powder diffraction pattern are [d in Å, (I), (hkl); relative intensities are visually estimated]: 4.62 (m) (112), 2.931 (vs) (1110), 2.765 (s) (1111), 2.598 (s) (310), 2.448 (ms) (028). Chemical analyses by electron microprobe give (in wt%) P2O5 2.08, V2O5 0.37, SiO2 34.81, TiO2 0.13, Al2O3 22.92, Cr2O3 0.32, Fe2O3 0.86, Mn2O3 6.92, MnO 19.09, MgO 5.73, CaO 1.94, Na2O 0.01, H2O 5.44, sum 100.62 wt%. H2O content was calculated from structure refinement. The empirical formula, based on 56 anions, is (Mn 5.340 2+ Mg1.810Ca0.686Na0.006)Σ=7.852(Al8.921Mn 1.739 3+ Mg1.010Fe 0.214 3+ Cr0.084Ti0.032)Σ=12.000(Si11.496P0.582V0.081)Σ=12.159O43.995(OH)12.005. The crystal structure of lavoisierite was solved by direct methods and refined on the basis of 1743 observed reflections to R 1 = 4.6 %. The structure is characterized by columns of edge-sharing octahedra running along [010] and linked to each other by means of [SiO4], [Si2O7], and [Si3O10] groups. Lavoisierite, named after the French chemist and biologist Antoine-Laurent de Lavoisier (1743–1794), displays an unprecedented kind of structure, related to those of “ardennite” and sursassite.  相似文献   

15.
Wadeite-type K2Si4O9 was synthesized with a cubic press at 5.4 GPa and 900 °C for 3 h. Its unit-cell parameters were measured by in situ high-T powder X-ray diffraction up to 600 °C at ambient P. The TV data were fitted with a polynomial expression for the volumetric thermal expansion coefficient (αT = a 0 + a 1 T), yielding a 0 = 2.47(21) × 10?5 K?1 and a 1 = 1.45(36) × 10?8 K?2. Compression experiments at ambient T were conducted up to 10.40 GPa with a diamond-anvil cell combined with synchrotron X-ray radiation. A second-order Birch–Murnaghan equation of state was used to fit the PV data, yielding K T = 97(3) GPa and V 0 = 360.55(9) Å3. These newly determined thermal expansion data and compression data were used to thermodynamically calculate the PT curves of the following reactions: 2 sanidine (KAlSi3O8) = wadeite (K2Si4O9) + kyanite (Al2SiO5) + coesite (SiO2) and wadeite (K2Si4O9) + kyanite (Al2SiO5) + coesite/stishovite (SiO2) = 2 hollandite (KAlSi3O8). The calculated phase boundaries are generally consistent with previous experimental determinations.  相似文献   

16.
Dehoo manganese deposit is located 52 km to the south of Zahedan in Sistan and Baluchestan Province, southeastern Iran. This deposit that lies in the central part of the Iranian Flysch Zone is lenticular in shape and lies above the micritic limestone-radiolarite cherts of the upper Cretaceous ophiolite unit. It is hosted within the reddish to brown radiolarite cherts and in places interlinks with them, so that the radiolarite chert packages play a key role for Mn mineralization in the region. Investigated ore-paragenetic successions and the geochemical characteristics of the Dehoo deposit were studied by means of major oxide, trace, and rare earth element (REE) contents that provide information as to the mineral origin. Strong positive correlations were found between major oxides and trace elements (Al2O3-TiO2, r = 0.95; TiO2-MgO, r = 0.94; Fe2O3-Al2O3, r = 0.90; MgO-Al2O3, r = 0.84; MgO-Fe2O3, r = 0.88; Fe2O3-TiO2, r = 0.91; Fe2O3-K2O, r = 0.74; Al2O3-K2O, r = 0.69; Al2O3-V, r = 0.72; TiO2-V, r = 0.73, and MgO-V, r = 0.69) that testify to the contribution of mafic terrigenous detrital material to the deposit. Chondrite-normalized REE patterns of all ore samples are characterized by negative Ce (0.06–0.15, average 0.10) and slightly positive Eu (0.29–0.45, average 0.36) anomalies. Based on ratios of Mn/Fe (average 56.23), Co/Ni (average 0.33), Co/Zn (average 0.38), U/Th (average 3.40), La/Ce (average 1.45), Lan/Ndn (average 2.16), Dyn/Ybn (average 0.33), and light REE/heavy REE (average 8.40; LREE > HREE), as well as Ba (average 920 ppm) and total REE contents (average 6.96 ppm) negative Ce and positive Eu anomalies, Dehoo could be considered a predominantly submarine hydrothermal Mn deposit complemented by terrigenous detrital mafic material.  相似文献   

17.
We determined activity-composition relationships in Pt-Cr and Pt-Fe-Cr alloys at 1300°C experimentally and used the results to constrain the thermodynamic properties of chromite-picrochromite spinels. The Pt-Cr binary is characterized by strong negative deviations from ideality throughout the investigated composition range and the activity-composition relationship can be fit by a four-suffix asymmetric regular solution with three binary interaction parameters. The ternary alloy was modeled as a four-suffix asymmetric regular solution; the three ternary interaction parameters in this model were constrained by combining interaction parameters for the three bounding binaries taken from this and previous work with results for a set of experiments in which the activity of Cr in Pt-Fe-Cr-alloys was fixed by coexisting Cr2O3 at known fO2.The free energy of formation of FeCr2O4 at 1300°C was determined using the activities of Fe and Cr in Pt-alloys in equilibrium with oxide mixes of FeCr2O4 and Cr2O3. The free energy of formation of chromite from Fe+Cr2O3+O2 is −202.7 ± 0.4 kJ/mol (1σ), indistinguishable from literature values. The corresponding free energy of formation of FeCr2O4 from the elements is −923.5 ± 2.1 kJ/mol (1σ), and the enthalpy of formation at 298 K is −1438 kJ/mol. The activity-composition relationship for the chromite component in (Fe,Mg)Cr2O4 solid solutions was determined from a set of experiments in which Pt-alloys were equilibrated with spinel + Cr2O3. (Fe,Mg)Cr2O4 spinels are nearly ideal at 1300°C; modeling our data with a one-site symmetric regular solution yields an interaction parameter of +2.14 ± 0.62 kJ/mol (1σ), similar to values based on data from the literature.  相似文献   

18.
We present the temperature dependence of the specific heat of CoCr2O4 between 2.08 K and 306 K in zero magnetic field. The lattice component can be described by the Komada–Westrum model with a characteristic temperature ΘKW = 541 K. The entropy of the magnetic component amounts to 33.51 J mol?1 K?1 at T = 298.15 K, in good agreement with the magnetic entropy of Co2+ and Cr3+ ions with completely quenched orbital moments. We compare our results with data available in literature.  相似文献   

19.
Orange, ochre-coloured, light green and dark blue varieties of kyanite, ideally Al2SiO5, from Loliondo, Tanzania, have been characterised by electron microprobe analysis and polarised infrared and optical absorption spectroscopy. All colour varieties show elevated Fe contents of 0.39 to 1.31 wt.% FeO, but Ti contents only in the range of the EMP detection limit. Orange and ochre-coloured crystals have Mn contents of 0.23 and 0.06 wt.% MnO, respectively, the dark blue kyanite contains 0.28 wt.% Cr2O3, while the light green sample is nearly free from transition metal cations other than Fe. Polarised infrared spectra reveal OH defect concentrations of 3 to 17 wt.ppm H2O with structural OH defects partially replacing the OB (O2) oxygen atoms. Polarised optical absorption spectra show that the colour of all four varieties is governed by crystal field d-d transitions of trivalent cations, i.e. Fe3+ (all samples), Mn3+ (orange and ochre) and Cr3+ (blue kyanite), replacing Al in sixfold coordinated triclinic sites of the kyanite structure. Intervalence charge transfer, the prevalent colour-inducing mechanism in ‘usual’ (Cr-poor) blue kyanites, seems to play a very minor, if any, role in the present samples. Crystal field calculations in both a ‘classic’ tetragonal and in the semiempirical Superposition Model approach, accompanied by distance- and angle-least-squares refinements, indicate that Fe3+ preferably occupies the Al4 site, Cr3+ prefers the Al1 and Al2 sites, and Mn3+ predominantly enters the Al1 site. In each case specific local relaxation effects were observed according to the crystal chemical preferences of these transition metal cations. Furthermore, the high values obtained in the calculations for the interelectronic repulsion parameter Racah B correspond to a high ionic contribution to Me3+–O bonding in the kyanite structure. In the particular case of the blue sample, band positions specifically related to the high Racah B value enable this ‘unusual’ type of blue colouration of kyanite solely due to Cr3+ cations.  相似文献   

20.
ABSTRACT

We investigated lherzolitic peridotites in the Cretaceous Purang ophiolite along the Yarlung Zhangbo suture zone (YZSZ) in SW Tibet to constrain their mantle–melt evolution history. Coarse-grained Purang lherzolites contain orthopyroxene (Opx) and olivine (Ol) porphyroclasts with embayments filled by small olivine (Ol) neoblasts. Both clinopyroxene (Cpx) and Opx display exsolution textures represented by lamellae structures. Opx exsolution (Opx1) in clinopyroxene (Cpx1) is made of enstatite, whose compositions (Al2O3 = 3.85–4.90 wt%, CaO = <3.77 wt%, Cr2O3 = 0.85–3.82 wt%) are characteristic of abyssal peridotites. Host clinopyroxenes (Cpx1) have higher Mg#s and Na2O, with lower TiO2 and Al2O3 contents than Cpx2 exsolution lamellae in Opx, and show variable LREE patterns. Pyroxene compositions of the lherzolites indicate 10–15% partial melting of a fertile mantle protolith. P–T estimates (1.3–2.3 GPa, 745–1067°C) and the trace element chemistry of pyroxenes with exsolution textures suggest crystallization depths of ~75 km in the upper mantle, where the original pyroxenes became decomposed, forming exsolved structures. Further upwelling of lherzolites into shallow depths in the mantle resulted in crystal–plastic deformation of the exsolved pyroxenes. Combined with the occurrence of microdiamond and ultrahigh-pressure (UHP) mineral inclusions in chromites of the Purang peridotites, the pyroxene exsolution textures reported here confirm a multi-stage partial melting history of the Purang lherzolites and at least three discrete stages of P-T conditions in the course of their upwelling through the mantle during their intra-oceanic evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号