首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract. The Nankai Trough runs along the Japanese Islands, where extensive BSRs have been recognized in its forearc basins. High resolution seismic surveys and site-survey wells undertaken by the MITI have revealed the gas hydrate distribution at a depth of about 290 mbsf. The MITI Nankai Trough wells were drilled in late 1999 and early 2000. The highlights were successful retrievals of abundant gas hydrate-bearing cores in a variety of sediments from the main hole and the post survey well-2, keeping the cored gas hydrate stable, and the obtaining of continuous well log data in the gas hydrate-dominant intervals from the main hole, the post survey well-1 and the post survey well-3. Gas-hydrate dominant layers were identified at the depth interval from 205 to 268 mbsf. Pore-space hydrate, very small in size, was recognized mostly filling intergranular pores of sandy sediments. Anomalous chloride contents in extracted pore water, core temperature depression, core observations as well as visible gas hydrates confirmed the presence of pore-space hydrates within moderate to thick sand layers. Gas hydrate-bearing sandy strata typically were 10 cm to a meter thick with porosities of about 40 %. Gas hydrate saturations in most hydrate-dominant layers were quite high, up to 90 % pore saturation.
All the gas hydrate-bearing cores were subjected to X-ray CT imagery measurements for observation of undisturbed sedimentary textures and gas-hydrate occurrences before being subjected to other analyses, such as (1) petrophysical properties, (2) biostratigraphy, (3) geochemistry, (4) microbiology and (5) gas hydrate characteristics.  相似文献   

2.
Abstract: Interstitial waters extracted from the sediment cores from the exploration wells, “BH‐1” and “MITI Nankai Trough”, drilled ~60 km off Omaezaki Peninsula in the eastern Nankai Trough, were analyzed for the chloride and sulfate concentrations to examine the depth profiles and occurrence of subsurface gas hydrates. Cored intervals from the seafloor to 310 mbsf were divided into Unit 1 (~70 mbsf, predominated by mud), Unit 2 (70–150 mbsf, mud with thin ash beds), Unit 3 (150–250+ mbsf, mud with thin ash and sand), and Unit 4 (275–310 mbsf, predominated by mud). The baseline level for Cl “concentrations was 540 mM, whereas low chloride anomalies (103 to 223 mM) were identified at around 207 mbsf (zone A), 234–240 mbsf (zone B), and 258–265 mbsf (zone C) in Unit 3. Gas hydrate saturation (Sh %) of sediment pores was calculated to be 60 % (zone A) to 80 % (zones B and C) in sands whereas only a few percent in clay and silt. The total amount of gas hydrates in hydrate‐bearing sands was estimated to be 8 to 10 m3 of solid gas hydrate per m2, or 1.48 km3 CH4 per 1 km2. High saturation zones (A, B and C) were consistent with anomaly zones recognized in sonic and resistivity logs. 2D and high‐resolution seismic studies revealed two BSRs in the study area. Strong BSRs (BSR‐1) at ~263 mbsf were correlated to the boundary between gas hydrate‐bearing sands (zone C) and the shallower low velocity zone, while the lower BSRs (BSR‐2) at~289 mbsf corresponded to the top of the deeper low velocity zone of the sonic log. Tectonic uplift of the study area is thought to have caused the upward migration of BGHS. That is, BSR‐1 corresponds to the new BGHS and BSR‐2 to the old BGHS. Relic gas hydrates and free gas may survive in the interval between BSR‐1 and BSR‐2, and below BSR‐2, respectively. Direct measurements of the formation temperature for the top 170 m interval yield a geothermal gradient of ~4.3d?C/ 100 m. Extrapolation of this gradient down to the base of gas hydrate stability yields a theoretical BGHS at~230 mbsf, surprisingly ~35 m shallower than the base of gas hydrate‐bearing sands (zone C) and BSR‐1. As with the double BSRs, another tectonic uplift may explain the BGHS at unreasonably shallow depths. Alternatively, linear extrapolation of the geothermal gradient down to the hydrate‐bearing zones may not be appropriate if the gradient changes below the depths that were measured. Recognition of double BSRs (263 and 289 mbsf) and probable new BGHS (~230 mbsf) in the exploration wells implies that the BGHS has gradually migrated upward. Tectonically induced processes are thought to have enhanced dense and massive accumulation of gas hydrate deposits through effective methane recycling and condensation. To test the hypothetical models for the accumulation of gas hydrates in Nankai accretionary prism, we strongly propose to measure the equilibrium temperatures for the entire depth range down to the free gas zone below predicted BGHS and to reconstruct the water depths and uplift history of hydrate‐bearing area.  相似文献   

3.
The Geochemical Context of Gas Hydrate in the Eastern Nankai Trough   总被引:1,自引:0,他引:1  
Abstract. Geochemical studies for gas hydrate, gas and organic matter collected from gas hydrate research wells drilled at the landward side of the eastern Nankai Trough, offshore Tokai, Japan, are reported. Organic matter in the 2355 m marine sediments drilled to Eocene is mainly composed of Type III kerogen with both marine and terrigenous organic input. The gas hydrate-bearing shallow sediments are immature for hydrocarbon generation, whereas the sediments below 2100 mbsf are thermally mature. The origins of gases change from microbial to thermogenic at around 1500 mbsf.
Carbon isotope compositions of CH4 and CO2, and hydrocarbon compositions consistently suggest that the CH4 in the gas hydrate-bearing sediments is generated by microbial reduction of CO2. The δ13C depth-profiles of CH4 and CO2 suggest that the microbial methanogenesis is less active in the Nankai Trough sediments compared with other gas hydrate-bearing sediments where solid gas hydrate samples of microbial origin were recovered. Since in situ generative-potential of microbial methane in the Nankai Trough sediments is interpreted to be low due to the low total organic carbon content (0.5 % on the average) in the gas hydrate-bearing shallow sediments, upward migration of microbial methane and selective accumulation into permeable sands should be necessary for the high concentration of gas hydrate in discrete sand layers.  相似文献   

4.
Abstract: Stratigraphic controls on the formation and distribution of gas hydrates were examined for sediments from a BH-1 well drilled in the landward slope of the Nankai Trough, approximately 60 km off Omaezaki, Japan. Three lithologic units were recognized in the 250 m-thick sequence of sediments: Unit 1 (0–70 mbsf) consists of calcareous silt and clay with thin volcanic ash layers, Unit 2 (70–150 mbsf) consists of calcareous silt and clay with volcanic ash and thin sand layers, and Unit 3 (150–250 mbsf) consists of weakly consolidated calcareous silt and clay with thick and frequent sand layers. Soupy structures and gas bubbles in the sediments indicate the presence of two hydrate zones between 40 and 130 mbsf and below 195 mbsf. Nannofossil biostratigraphy and magnetostratigraphy indicate that the sequence recovered at the BH-1 well is mostly continuous and represents sediments deposited from 0 to 1.5 Ma. Calculation of the sedimentation rate reveals a condensed section between 65 and 90 mbsf. The inferred distribution of gas hydrates in the BH-1 well appears to be strongly controlled by the stratigraphy and lithology of the sediments. Thick, gently inclined sand layers in Unit 3 provide a conduit for the migration of gases from deeper regions, and are considered responsible for the formation of the hydrate zone below 195 mbsf. At shallower levels, thin, gently inclined sand layers are also considered to allow for the migration of gases, leading to the formation of the upper hydrate zone between 40 and 130 mbsf. The overlying sub-horizontal silt and clay of the condensed section, truncating the underlying gently inclined sand and silt/clay layers, may provide an effective trap for gases supplied through the sand layers, further contributing to hydrate formation in the upper hydrate zone.  相似文献   

5.
Abstract. For the purpose of development of methane hydrate, occurring in the deep marine subsurface, as a resource, the most important issue is to understand the methane hydrate system (generation, migration and accumulation) as well as to delineate the methane hydrate reservoir properties. We have applied the Amplitude Versus Offset (AVO) analysis to the seismic data acquired in the Nankai Trough, offshore Japan, in order to confirm the occurrence of gas just below the methane hydrate-bearing zone, assuming that gas will show a so-called Class-3 AVO response. Knowledge of the amount and occurrence of gas in the sediment below methane hydrate-bearing zone is one of the keys to understand the methane hydrate system.
We have utilized the qualitative analysis of AVO methodology to delineate how gas is located below the BSR, which is thought to be the reflection event from the interface between the methane hydrate-bearing zone and the underlying gas-bearing zone. In the region of MITI Nankai Trough Well PSW-3, we observe two BSRs separated by 25 ms. After AVO modeling using well data, we applied AVO attribute analysis and attribute crossplot analysis to the seismic data. Finally we applied an offset-amplitude analysis to CMP gather data at specific locations to confirm the results of AVO attribute analysis. The AVO analysis shows that there is very little gas located in the underlying sediment below methane hydrate-bearing zone. This result supports the fact that we could not obtain any clear evidence of gas occurrence just below the methane hydrate-bearing zone in the Nankai Trough well drilling.  相似文献   

6.
Abstract. Bottom-simulating reflectors suggestive of the presence of methane hydrates are widely distributed below the ocean floor around Japan. In late 1999, drilling of the MITI Nankai Trough wells was conducted to explore this potential methane hydrate resource and a Tertiary conventional structure. The wells are located in the Northwest Pacific Ocean off Central Japan at a water depth of 945 m. A total of six wells were drilled, including the main well, two pilot wells, and three post survey wells at intervals of 10–100 m. All wells except the first confirmed the occurrence of hydrates based on logging-while-drilling, wire-line logging and/or coring using a pressure and temperature coring system in addition to conventional methods. Based on the various well profiles, four methane hydrate-bearing sand-rich intervals in turbidite fan deposits were recognized. Methane hydrates fill the pore spaces in these deposits, reaching saturation of up to 80 % in some layers. The methane hydrate-bearing turbiditic sand layers are less than 1 m thick, with a total thickness of 12–14 m. The bottom depth of high hydrate concentration correlates well with the depth of the bottom-simulating reflector. Based on these exploration results, the Japanese government inaugurated a 16-year methane hydrate exploitation program in 2001.  相似文献   

7.
Abstract. The MITI Nankai Trough wells were drilled offshore Japan in the Tokai area in 1999 and 2000. The occurrence of methane hydrate was confirmed by various indicators in the borehole logs and from core data. These findings have a large impact on potential future Japanese energy resources and other related-scientific interests.
We first tried to find the methane hydrate-bearing zones using interval velocities derived from NMO velocity analysis. However, this analysis produced poor resolution. To achieve a more detailed delineation of the gas hydrate- and gas-bearing zones, we executed a seismic impedance inversion calibrated by the logs from two of the MITI Nankai Trough wells. Although these two wells are only about 90 m apart, we were able to produce an impedance section with fine detail by adopting a simple initial model and incorporating physical properties of the methane hydrate-bearing zones. The locations of the methane hydrate-bearing zones are readily apparent in the final section.  相似文献   

8.
《China Geology》2020,3(2):210-220
Shenhu Area is located in the Baiyun Sag of Pearl River Mouth Basin, which is on the northern continental slope of the South China Sea. Gas hydrates in this area have been intensively investigated, achieving a wide coverage of the three-dimensional seismic survey, a large number of boreholes, and detailed data of the seismic survey, logging, and core analysis. In the beginning of 2020, China has successfully conducted the second offshore production test of gas hydrates in this area. In this paper, studies were made on the structure of the hydrate system for the production test, based on detailed logging data and core analysis of this area. As to the results of nuclear magnetic resonance (NMR) logging and sonic logging of Well GMGS6-SH02 drilled during the GMGS6 Expedition, the hydrate system on which the production well located can be divided into three layers: (1) 207.8–253.4 mbsf, 45.6 m thick, gas hydrate layer, with gas hydrate saturation of 0–54.5% (31% av.); (2) 253.4–278 mbsf, 24.6 m thick, mixing layer consisting of gas hydrates, free gas, and water, with gas hydrate saturation of 0–22% (10% av.) and free gas saturation of 0–32% (13% av.); (3) 278–297 mbsf, 19 m thick, with free gas saturation of less than 7%. Moreover, the pore water freshening identified in the sediment cores, taken from the depth below the theoretically calculated base of methane hydrate stability zone, indicates the occurrence of gas hydrate. All these data reveal that gas hydrates, free gas, and water coexist in the mixing layer from different aspects.  相似文献   

9.
中国近海天然气水合物找矿前景   总被引:38,自引:3,他引:38  
天然气水合物是一种新型能源,在海底沉积物和陆上永远冻土带中均有广泛分布。西太平洋是全球三大天然气水合物成矿带之一,在其中已发现许多水合物矿床或矿点。中国近海,包括南海、东海和台湾东部海域,具备良好的天然气水合物成矿条件和找矿前景,并已在这些海域中发现了一系列的找矿标志。南海的西沙海槽、台湾西南陆坡和台西南盆地、笔架南盆地及其东缘增生楔、东沙群岛东南坡、南部陆坡区,东海的冲绳海槽和台湾东北部海域是中国近海最有利的天然气水合物找矿远景区。  相似文献   

10.
祁连山冻土区天然气水合物及其基本特征   总被引:14,自引:0,他引:14  
2008年11月5日, 由中国地质科学院矿产资源研究所、勘探技术研究所和青海煤炭地质局105勘探队施工的“祁连山冻土区天然气水合物科学钻探工程”DK-1孔取得重大突破, 成功钻获天然气水合物实物样品。这是我国冻土区首次钻获并检测出的天然气水合物实物样品, 也是世界上第一次在中低纬度高原冻土区发现的天然气水合物, 具有重要的科学、经济和环境意义。目前钻获的天然气水合物均产于冻土层之下, 产出深度133~396 m, 其层位属于中侏罗统江仓组。水合物以薄层状、片状、团块状赋存于粉砂岩、泥岩、油页岩的裂隙中, 或以浸染状赋存于细粉砂岩的孔隙中。祁连山冻土区天然气水合物具有埋深浅、冻土层 薄、气体组分复杂、以煤层气为主等特征, 应是一种新类型水合物。  相似文献   

11.
Abstract: Interstitial water expelled from gas hydrate-bearing and -free sediments in the Nankai Trough are analyzed in terms of Cl-, SO42-, δ18O and δD. The baselines for the Cl- concentration and δ18O value are close to seawater values (530 mM and 0%), indicating that the interstitial water is of seawater origin. The δD values decrease with depth, implying isotopic exchange of hydrogen between upwelling biogenic methane depleted in D and interstitial water. The Cl- concentrations in gas hydrate-bearing sediments are anomalously low, while the δ18O and δD values are both high, suggesting that the water forming these gas hydrates was poor in Cl- and enriched in 18O and D during gas hydrate formation. Calculation of the gas hydrate saturations using Cl "and δ18O anomalies gives results of up to 80 % in sand, and shows that the δ18O baseline is not consistent with the Cl" baseline. The δ18O baseline increases by +1% in gas hydrate-free clay and silt. This is considered to be caused by clustering of water molecules after gas hydrate dissociation in response to the upward migration of the base of gas hydrate stability, as indicated by the presence of a double bottom-simulating reflector at this site. The water clusters enriched in 18O are responsible for the increase in the δ18O baseline with normal Cl". The abrupt shallowing of the base of gas hydrate stability may induce the dissociation of gas hydrates and the accumulation of gases in the new stability zone, representing a geological process that increases gas hydrate saturation.  相似文献   

12.
祁连山冻土区天然气水合物现场识别方法   总被引:1,自引:0,他引:1  
天然气水合物是一种赋存在低温、高压条件下,陆上永久冻土区和海底沉积物中的规模巨大的新型能源。在冻土区的天然气水合物研究过程中,钻探取样和天然气水合物岩芯研究仍是识别和推断天然气水合物最直接有效的方法。因此,如何在钻探现场快速有效地识别出天然气水合物及相关异常特征就显得极其重要。近几年在祁连山天然气水合物勘探过程中,探索性地总结出适用于冻土区的天然气水合物现场识别方法,主要包括肉眼观测、孔口气涌观测、岩芯红外测温、岩芯裂隙孔隙水盐度测定、岩芯气体解析与组分测定和岩芯次生构造与伴生矿物鉴别等方法。利用该套现场识别方法和随钻岩芯编录,有效地查明了祁连山冻土区天然气水合物在岩芯中的产状和分布特征,为该区天然气水合物资源评价和试开采试验提供了重要依据。  相似文献   

13.
于常青  王琪  卢振权  瞿辰  罗愫  周宇  谈顺佳 《现代地质》2015,29(5):1130-1137
首次在中国祁连山冻土区青海木里地区实施了针对天然气水合物的三维地震探测。根据工区内冻土层厚度、地层岩性、水合物储集空间类型和赋存深度等特 点,设计了三维地震数据采集方案,制定了地震数据处理流程,获得了良好的三维地震探测结果。结果表明,工区内天然气水合物赋存层段地震响应特征与国外冻土区的天然气水合物具有明 显差异;冻土层厚度、岩性、水合物储集空间类型等因素,对该区地震资料振幅、频率、速度等影响显著;水合物层段的地震资料存在低频、中等杂乱振幅等明显的特点,这些特征为该区天然气水合物探测和识别提供了依据。  相似文献   

14.
青海祁连山冻土区发现天然气水合物   总被引:64,自引:1,他引:63  
祁连山冻土区位于青藏高原北缘,多年冻土面积约10×10~4km~2,具有良好的天然气水合物形成条件和找矿前景.2008~2009年间中国地质调查局在青海省天峻县木里煤田聚乎更矿区施工"祁连山冻土区天然气水合物科学钻探工程",迄今共完成钻探试验井4口,总进尺2059.13m,分别在DK-1、DK-2和DK-3钻井中钻获天然气水合物实物样品,取得了找矿工作的重大突破.天然气水合物产于冻土层之下,埋深133~396m.水合物呈白色、乳白色晶体,点火能燃烧,红外热像仪测温后呈明显的低温异常,放进水里强烈冒泡,水合物分解后能不断冒出气泡和水滴,并残留下特征的蜂窝状构造.激光拉曼光谱仪检测呈现特征的水合物光谱曲线,测井曲线也具有较明显的高电阻率和高波速标志.祁连山天然气水合物具有冻土层薄、埋深浅、气体组分复杂、以煤层气成因为主等明显特征,是一种新类型水合物.这是我国冻土区首次钻获的天然气水合物实物样品,也是全球首次在中低纬度高山冻土区发现天然气水合物实物样品,具有重要的科学意义和经济意义.  相似文献   

15.
Natural gas hydrates have been hailed as a new and promising unconventional alternative energy, especially as fossil fuels approach depletion, energy consumption soars, and fossil fuel prices rise, owing to their extensive distribution, abundance, and high fuel efficiency. Gas hydrate reservoirs are similar to a storage cupboard in the global carbon cycle, containing most of the world’s methane and accounting for a third of Earth’s mobile organic carbon. We investigated gas hydrate stability zone burial depths from the viewpoint of conditions associated with stable existence of gas hydrates, such as temperature, pressure, and heat flow, based on related data collected by the global drilling programs. Hydrate-related areas are estimated using various biological, geochemical and geophysical tools. Based on a series of previous investigations, we cover the history and status of gas hydrate exploration in the USA, Japan, South Korea, India, Germany, the polar areas, and China. Then, we review the current techniques for hydrate exploration in a global scale. Additionally, we briefly review existing techniques for recovering methane from gas hydrates, including thermal stimulation, depressurization, chemical injection, and CH4–CO2 exchange, as well as corresponding global field trials in Russia, Japan, United States, Canada and China. In particular, unlike diagenetic gas hydrates in coarse sandy sediments in Japan and gravel sediments in the United States and Canada, most gas hydrates in the northern South China Sea are non-diagenetic and exist in fine-grained sediments with a vein-like morphology. Therefore, especially in terms of the offshore production test in gas hydrate reservoirs in the Shenhu area in the north slope of the South China Sea, Chinese scientists have proposed two unprecedented techniques that have been verified during the field trials: solid fluidization and formation fluid extraction. Herein, we introduce the two production techniques, as well as the so-called “four-in-one” environmental monitoring system employed during the Shenhu production test. Methane is not currently commercially produced from gas hydrates anywhere in the world; therefore, the objective of field trials is to prove whether existing techniques could be applied as feasible and economic production methods for gas hydrates in deep-water sediments and permafrost zones. Before achieving commercial methane recovery from gas hydrates, it should be necessary to measure the geologic properties of gas hydrate reservoirs to optimize and improve existing production techniques. Herein, we propose horizontal wells, multilateral wells, and cluster wells improved by the vertical and individual wells applied during existing field trials. It is noteworthy that relatively pure gas hydrates occur in seafloor mounds, within near-surface sediments, and in gas migration conduits. Their extensive distribution, high saturation, and easy access mean that these types of gas hydrate may attract considerable attention from academia and industry in the future. Herein, we also review the occurrence and development of concentrated shallow hydrate accumulations and briefly introduce exploration and production techniques. In the closing section, we discuss future research needs, key issues, and major challenges related to gas hydrate exploration and production. We believe this review article provides insight on past, present, and future gas hydrate exploration and production to provide guidelines and stimulate new work into the field of gas hydrates.  相似文献   

16.
In the present study, we have developed a numerical method which can simulate the dynamic behaviour of a seabed ground during gas production from methane hydrate‐bearing sediments. The proposed method can describe the chemo‐thermo‐mechanical‐seismic coupled behaviours, such as phase changes from hydrates to water and gas, temperature changes and ground deformation related to the flow of pore fluids during earthquakes. In the first part of the present study, the governing equations for the proposed method and its discretization are presented. Then, numerical analyses are performed for hydrate‐bearing sediments in order to investigate the dynamic behaviour during gas production. The geological conditions and the material parameters are determined using the data of the seabed ground at Daini‐Atsumi knoll, Eastern Nankai Trough, Japan, where the first offshore production test of methane hydrates was conducted. A predicted earthquake at the site is used in the analyses. Regarding the seismic response to the earthquake which occur during gas production process, the wave profiles of horizontal acceleration and horizontal velocity were not extensively affected by the gas production. Hydrate dissociation behaviour is sensitive to changes in the pore pressure during earthquakes. Methane hydrate dissociation temporarily became active in some areas because of the main motion of the earthquake, then methane hydrate dissociation brought about an increase in the average pressure of the fluids during the earthquake. And, it was this increase in average pore pressure that finally caused the methane hydrate dissociation to cease during the earthquake. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Abstract. Simulation experiments with a one-dimensional static model for formation of methane hydrate are used to demonstrate models of hydrate occurrence and its generation mechanism for two end-member cases. The simulation results compare well with experimental data for two natural examples (the Nankai Trough and the Blake Ridge).
At the MITI Nankai Trough wells, the hydrate occurrence is characterized by strongly hydrated sediments developing just above the BGHS. Such occurrence can be reproduced well by simulation in which the end-member case of upward advective fluid flow from below the BGHS is set. The strongly hydrated sediments is formed by oversaturated solution with free gas which directly enters the BGHS by the upward advective fluid flow. The recycling of dissociated methane of preexisting hydrate also contributes to the increase of hydrate saturation.
At the Site 997 in the Blake Ridge area, the hydrate occurrence is characterized by thick zone with poorly hydrated sediments and no hydrate zone developing above the hydrate zone. Such occurrence can be reproduced well by simulation in which the end-member case of in-situ biogenic production of methane in the sediment of methane hydrate zone is set. The distribution pattern of hydrate saturation is basically controlled by that of TOC. However, the hydrate concentration near the bottom of the hydrate zone is increased by the effect of recycling of dissociated methane of pre-existing hydrate. No hydrate zone expresses the geologic time needed until the local concentration of methane exceeds the solubility by gradual accumulation of in-situ biogenic methane with burial.  相似文献   

18.
中国近海海域卫星热红外亮温增温异常探讨   总被引:17,自引:6,他引:11  
在大量风云静止气象卫星热红外观测资料的基础上,对比总结了中国近海海域卫星热红外亮温增温异常的特征,分析了热红外亮温异常与海底常规油气及天然气水合物藏之间的关系,探讨了中国近海海域卫星热红外增温异常的机制,指出了中国近海海域天然气水合物的可能赋存区。根据地球排气理论及卫星热红外亮温增温异常与海底烃类聚集体、油气盆地或潜在天然气水合物藏、断裂构造、地震活动等之间的关系,中国近海临震前卫星热红外增温异常的原因可能与临震前地球排气作用导致的油气渗漏和(或)海底天然气水合物分解后扩散有关。中国近海海域的西沙海槽、东沙群岛岛坡、笔架南盆地、北吕宋海槽、南沙海槽、冲绳海槽中南部至西南部等是天然气水合物的可能赋存区。  相似文献   

19.
基于天然气水合物地震数据计算南海北部陆坡海底热流   总被引:24,自引:10,他引:14  
天然气水合物是一种由水的冰晶格架及其间吸附的气体分子(以甲烷为主)组成的固态化合物,地震剖面上的似海底反射BSR是天然气水合物赋存的重要地球物理标志。相同气体成分水合物的相对稳定的温压关系是根据BSR的赋存深度计算海底热流的理论基础。选择南海北部陆坡有典型BSR反射的地震剖面,计算了南海北部陆坡天然气水合物发育区的压力、温度、地温梯度、热导率及热流等地热参数。通过计算热流值与实测热流值的对比可以大致推测,在南海北部陆坡海底运用该方法计算的热流值误差可能在12%以内。本研究不仅可以为海底热流等理论研究提供一定信度的数据资料,而且通过实测热流值校正后的热流数据以及经验公式,可以反过来用于BSR深度的计算以及天然气水合物稳定域的预测,具有重要的实践意义。  相似文献   

20.
Presented here are halogen concentrations (Cl, Br and I) in pore waters and sediments from three deep cores in gas hydrate fields of the Nankai Trough area. The three cores were drilled between 1999 and 2004 in different geologic regions of the northeastern Nankai Trough hydrate zone. Iodine concentrations in all three cores increase rapidly with depth from seawater concentrations (0.00043 mmol/L) to values of up to 0.45 mmol/L. The chemical form of I was identified as I, in accordance with the anaerobic conditions in marine sediments below the SO4 reduction depth. The increase in I is accompanied by a parallel, although lesser increase in Br concentrations, while Cl concentrations are close to seawater values throughout most of the profiles. Large concentration fluctuations of the three halogens in pore waters were found close to the lower boundary of the hydrate stability zone, related to processes of formation and dissociation of hydrates in this zone. Generally low concentrations of I and Br in sediments and the lack of correlation between sediment and pore water profiles speak against derivation of I and Br from local sediments and suggest transport of halogen rich fluids into the gas hydrate fields. Differences in the concentration profiles between the three cores indicate that modes of transportation shifted from an essentially vertical pattern in a sedimentary basin location to more horizontal patterns in accretionary ridge settings. Because of the close association between organic material and I and the similarity of transport behavior for I and CH4, the results suggest that the CH4 in the gas hydrates also was transported by aqueous fluids from older sediments into the present layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号