首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The periodic solutions for an Hamiltonian system with $$H = \frac{1}{2}\mathop \Sigma \limits_1^3 (\dot x_\alpha ^2 + \omega _\alpha ^2 x_\alpha ^2 ) - \varepsilon x_1 x_\alpha ^2 - \eta x_2 x_\alpha ^2 $$ are investigated analytically. The frequencies ωα, α=1, 2, 3 are assumed near the ratio 4—4—1. We find different families of periodic solutions whose periods are in the vicinity of the period T′=2π/ω3=2π/ω′. As in the case of the problem with two degrees of liberty, for particular values of ω1, ω2, ω3 and ε, η, we find that the families near the x3-axis are discontinuous. These families are periodic with periods near the period T′ in a region for ε, η, approximatively [0; 0.4] if we choose \(\omega ' = \sqrt {0.1} \) and h=0.00765.  相似文献   

2.
This short article supplements a recent paper by Dr R. Broucke on velocity-related series expansions in the two-body problem. The derivations of the Fourier and Legendre expansions of the functionsF(v), \(\sqrt {F(\upsilon )} \) and \(\sqrt {{1 \mathord{\left/ {\vphantom {1 {F(\upsilon )}}} \right. \kern-0em} {F(\upsilon )}}} \) are given, where $$F(\upsilon ) = (1 - e^2 )/(1 + 2e\cos \upsilon + e^2 ), e< 1$$ In the two-body problem,v is identified with the true anomaly,e the eccentricity andF(v) equals (an/V)2. Some interesting relations involving Legendre polynomials are also noted.  相似文献   

3.
We consider a two-planet system migrating under the influence of dissipative forces that mimic the effects of gas-driven (Type II) migration. It has been shown that, in the planar case, migration leads to resonant capture after an evolution that forces the system to follow families of periodic orbits. Starting with planets that differ slightly from a coplanar configuration, capture can, also, occur and, additionally, excitation of planetary inclinations has been observed in some cases. We show that excitation of inclinations occurs, when the planar families of periodic orbits, which are followed during the initial stages of planetary migration, become vertically unstable. At these points, vertical critical orbits may give rise to generating stable families of \(3D\) periodic orbits, which drive the evolution of the migrating planets to non-coplanar motion. We have computed and present here the vertical critical orbits of the \(2/1\) and \(3/1\) resonances, for various values of the planetary mass ratio. Moreover, we determine the limiting values of eccentricity for which the “inclination resonance” occurs.  相似文献   

4.
5.
The restricted three-body problem (R3BP) possesses the property that some classes of doubly asymptotic (i.e., homoclinic or heteroclinic) orbits are limit members of families of periodic orbits, this phenomenon has been known as the “blue sky catastrophe” termination principle. A similar case occurs in the restricted four body problem for the collinear equilibrium point $L_{2}$ L 2 . In the restricted four body problem with primaries in a triangle relative equilibrium, we show that the same phenomenon observed in the R3BP occurs. We prove that there exists a critical value of the mass parameter $\mu _{b}$ μ b such that for $\mu =\mu _{b}$ μ = μ b a Hamiltonian Hopf bifurcation takes place. Moreover we show that for $\mu >\mu _{b}$ μ > μ b the stable and unstable manifolds of $L_{2}$ L 2 intersect transversally and the spectrum corresponds to a complex saddle. This proves that Henrard’s theorem applies at least for $\mu $ μ close to $\mu _{b}$ μ b . In particular there exists a family of periodic orbits having the homoclinic orbit as a limit.  相似文献   

6.
The problem of finding nonsingular charged analogue of Schwarzschild’s interior solutions has been reduced to that of finding a monotonically decreasing function f. The models are discussed in generality by imposing reality condition on f. It is shown that the physical solutions are possible only for surface density to central density ratio greater than or equal to 2/3 i.e. $\frac{\rho_{a}}{\rho_{0}}\ge2/3$ . The unphysical nature of solutions with linear equation state has been proved. A generalization procedure has been utilized to generalize solutions by Guilfoyle (1999). Recently found solutions by Gupta and Kumar (2005a, 2005b, 2005c) are generalized by taking particular form of f and seen to have higher mass and more stable. The maximum mass is found to be 1.59482 M Θ . The models have been found to be stable once the physical requirements are established due to mass to radius less than 4/9, total charge to total mass ratio less than 1 and redshift quite low.  相似文献   

7.
The Ideal Resonance Problem in its normal form is defined by the Hamiltonian (1) $$F = A (y) + 2B (y) sin^2 x$$ with (2) $$A = 0(1),B = 0(\varepsilon )$$ where ? is a small parameter, andx andy a pair of canonically conjugate variables. A solution to 0(?1/2) has been obtained by Garfinkel (1966) and Jupp (1969). An extension of the solution to 0(?) is now in progress in two papers ([Garfinkel and Williams] and [Hori and Garfinkel]), using the von Zeipel and the Hori-Lie perturbation methods, respectively. In the latter method, the unperturbed motion is that of a simple pendulum. The character of the motion depends on the value of theresonance parameter α, defined by (3) $$\alpha = - A\prime /|4A\prime \prime B\prime |^{1/2} $$ forx=0. We are concerned here withdeep resonance, (4) $$\alpha< \varepsilon ^{ - 1/4} ,$$ where the classical solution with a critical divisor is not admissible. The solution of the perturbed problem would provide a theoretical framework for an attack on a problem of resonance in celestial mechanics, if the latter is reducible to the Ideal form: The process of reduction involves the following steps: (1) the ration 1/n2 of the natural frequencies of the motion generates a sequence. (5) $$n_1 /n_2 \sim \left\{ {Pi/qi} \right\},i = 1, 2 ...$$ of theconvergents of the correspondingcontinued fraction, (2) for a giveni, the class ofresonant terms is defined, and all non-resonant periodic terms are eliminated from the Hamiltonian by a canonical transformation, (3) thedominant resonant term and itscritical argument are calculated, (4) the number of degrees of freedom is reduced by unity by means of a canonical transformation that converts the critical argument into an angular variable of the new Hamiltonian, (5) the resonance parameter α (i) corresponding to the dominant term is then calculated, (6) a search for deep resonant terms is carried out by testing the condition (4) for the function α(i), (7) if there is only one deep resonant term, and if it strongly dominates the remaining periodic terms of the Hamiltonian, the problem is reducible to the Ideal form.  相似文献   

8.
We consider a class of Hamiltonian systems with two degrees of freedom with singularities. This class includes several symmetric subproblems of the $n$ -body problem where the singularities are due to collisions involving two or more bodies. “Schubart-like” periodic orbits having two collisions in one period, are present in most of these subproblems. The purpose of this paper is to study the existence of families of such a periodic orbits in a general setting. The blow up techniques of total collision and infinity are applied to our class of Hamiltonian system. This allows us to derive sufficient conditions to ensure the existence of families of double symmetric “Schubart-like” periodic orbits having many singularities. The orbits in the family can be parametrized by the number of singularities in one period. The results are applied to some subproblems of the gravitational $n$ -body problem.  相似文献   

9.
The equilibrium points and the curves of zero-velocity (Roche varieties) are analyzed in the frame of the regularized circular restricted three-body problem. The coordinate transformation is done with Levi-Civita generalized method, using polynomial functions of n degree. In the parametric plane, five families of equilibrium points are identified: \(L_{i}^{1}, L_{i}^{2}, \ldots, L_{i}^{n}\) , \(i\in\{ 1,2,\ldots,5 \}, n \in\mathbb{N}^{*}\) . These families of points correspond to the five equilibrium points in the physical plane L 1,L 2,…,L 5. The zero-velocity curves from the physical plane are transformed in Roche varieties in the parametric plane. The properties of these varieties are analyzed and the Roche varieties for n∈{1,2,…,6} are plotted. The equation of the asymptotic variety is obtained and its shape is analyzed. The slope of the Roche variety in \(L_{1}^{1}\) point is obtained. For n=1 the slope obtained by Plavec and Kratochvil (1964) in the physical plane was found.  相似文献   

10.
Photoelectric observations of the eclipsing variable β Per, were obtained inUBV standard system, and new elements for the primary minimum were determined as $$J.D. = 2445641.5135,O - C = 0_.^d 0.009.$$ The light curves of the system were analysed using Fourier techniques in the frequency-domain. The fractional radii of both components are $$r_1 = 0.217 \pm 0.002,r_2 = 0.233 \pm 0.002andi = 85.5 \pm 0.5.$$ Absolute elements were derived and the effective temperatures are $$T_1 = 11800K,T_2 = 5140K.$$   相似文献   

11.
In this paper, we deal with a Hill’s equation, depending on two parameters \(e\in [0,1)\) and \(\varLambda >0\), that has applications to some problems in Celestial Mechanics of the Sitnikov type. Due to the nonlinearity of the eccentricity parameter e and the coexistence problem, the stability diagram in the \((e,\varLambda )\)-plane presents unusual resonance tongues emerging from points \((0,(n/2)^2),\ n=1,2,\ldots \) The tongues bounded by curves of eigenvalues corresponding to \(2\pi \)-periodic solutions collapse into a single curve of coexistence (for which there exist two independent \(2\pi \)-periodic eigenfunctions), whereas the remaining tongues have no pockets and are very thin. Unlike most of the literature related to resonance tongues and Sitnikov-type problems, the study of the tongues is made from a global point of view in the whole range of \(e\in [0,1)\). Indeed, an interesting behavior of the tongues is found: almost all of them concentrate in a small \(\varLambda \)-interval [1, 9 / 8] as \(e\rightarrow 1^-\). We apply the stability diagram of our equation to determine the regions for which the equilibrium of a Sitnikov \((N+1)\)-body problem is stable in the sense of Lyapunov and the regions having symmetric periodic solutions with a given number of zeros. We also study the Lyapunov stability of the equilibrium in the center of mass of a curved Sitnikov problem.  相似文献   

12.
This paper studies the stability of infinitesimal motions about the triangular equilibrium points in the elliptic restricted three body problem assuming bigger primary as a source of radiation and the smaller one a triaxial rigid body. The perturbation technique developed by Bennet (Icarus 4:177, 1965b) has been used for determination of characteristic exponents. This technique is based on Floquet’s Theory for determination of characteristic exponents in the system with periodic coefficients. The results of the study are analytical and numerical expressions are simulated for the transition curves bounding the region of stability in the μ–e plane, accurate to O(e 2). The unstable region is found to be divided into three parts. The effect of radiation parameter is significant. For small values of e, the results are in favor with the numerical analysis of Danby (Astron. J. 69:166, 1964), Bennet (Icarus 4:177, 1965b), Alfriend and Rand (AIAA J. 6:1024, 1969). The effect of radiation pressure is significant than the oblateness and triaxiality of the primaries.  相似文献   

13.
The publication of the solution of the Ideal Resonance Problem (Garfinkelet al., 1971) has opened the way for a complete first-orderglobal theory of the motion of an artificial satellite, valid for all inclinations. Previous attempts at such a theory have been only partially successful. With the potential function restricted to $$V = - 1/r + J_2 P_2 (\sin \theta )/r^3 + J_4 P_4 (\sin \theta )/r^5 ,$$ the paper constructs aglobal solution of the first order in √J 2 for the Delaunay variablesG, g, h, l and for the coordinatesr, θ, and ?. As a check, it is shown that this solution includes asymptotically theclassical limit with the critical divisor 5 cos2 i?1. The solution is subject to thenormality condition $$eG^2 /(1 + \frac{{45}}{4}e^2 ) \geqslant O\left[ {\left| {\frac{1}{5}(J_2 + J_4 /J_2 )} \right|^{1/4} } \right],$$ which bounds the eccentricitye away from zero in deep resonance. A historical section orients this work with respect to the contributions of Hori (1960), Izsak (1962), and Jupp (1968).  相似文献   

14.
If a dynamical problem ofN degress of freedom is reduced to the Ideal Resonance Problem, the Hamiltonian takes the form 1 $$\begin{array}{*{20}c} {F = B(y) + 2\mu ^2 A(y)\sin ^2 x_1 ,} & {\mu \ll 1.} \\ \end{array} $$ Herey is the momentum-vectory k withk=1,2?N, x 1 is thecritical argument, andx k fork>1 are theignorable co-ordinates, which have been eliminated from the Hamiltonian. The purpose of this Note is to summarize the first-order solution of the problem defined by (1) as described in a sequence of five recent papers by the author. A basic is the resonance parameter α, defined by 1 $$\alpha \equiv - B'/\left| {4AB''} \right|^{1/2} \mu .$$ The solution isglobal in the sense that it is valid for all values of α2 in the range 1 $$0 \leqslant \alpha ^2 \leqslant \infty ,$$ which embrances thelibration and thecirculation regimes of the co-ordinatex 1, associated with α2 < 1 and α2 > 1, respectively. The solution includes asymptotically the limit α2 → ∞, which corresponds to theclassical solution of the problem, expanded in powers of ε ≡ μ2, and carrying α as a divisor. The classical singularity at α=0, corresponding to an exact commensurability of two frequencies of the motion, has been removed from the global solution by means of the Bohlin expansion in powers of μ = ε1/2. The singularities that commonly arise within the libration region α2 < 1 and on the separatrix α2 = 1 of the phase-plane have been suppressed by means of aregularizing function 1 $$\begin{array}{*{20}c} {\phi \equiv \tfrac{1}{2}(1 + \operatorname{sgn} z)\exp ( - z^{ - 3} ),} & {z \equiv \alpha ^2 } \\ \end{array} - 1,$$ introduced into the new Hamiltonian. The global solution is subject to thenormality condition, which boundsAB″ away from zero indeep resonance, α2 < 1/μ, where the classical solution fails, and which boundsB′ away from zero inshallow resonance, α2 > 1/μ, where the classical solution is valid. Thedemarcation point 1 $$\alpha _ * ^2 \equiv {1 \mathord{\left/ {\vphantom {1 \mu }} \right. \kern-\nulldelimiterspace} \mu }$$ conventionally separates the deep and the shallow resonance regions. The solution appears in parametric form 1 $$\begin{array}{*{20}c} {x_\kappa = x_\kappa (u)} \\ {y_1 = y_1 (u)} \\ {\begin{array}{*{20}c} {y_\kappa = conts,} & {k > 1,} \\ \end{array} } \\ {u = u(t).} \\ \end{array} $$ It involves the standard elliptic integralsu andE((u) of the first and the second kinds, respectively, the Jacobian elliptic functionssn, cn, dn, am, and the Zeta functionZ (u).  相似文献   

15.
The Ideal Resonance Problem, defined by the Hamiltonian $$F = B(y) + 2\mu ^2 A(y)\sin ^2 x,\mu \ll 1,$$ has been solved in Garfinkelet al. (1971). As a perturbed simple pendulum, this solution furnishes a convenient and accurate reference orbit for the study of resonance. In order to preserve the penduloid character of the motion, the solution is subject to thenormality condition, which boundsAB" andB' away from zero indeep and inshallow resonance, respectively. For a first-order solution, the paper derives the normality condition in the form $$pi \leqslant max(|\alpha /\alpha _1 |,|\alpha /\alpha _1 |^{2i} ),i = 1,2.$$ Herep i are known functions of the constant ‘mean element’y', α is the resonance parameter defined by $$\alpha \equiv - {\rm B}'/|4AB\prime \prime |^{1/2} \mu ,$$ and $$\alpha _1 \equiv \mu ^{ - 1/2}$$ defines the conventionaldemarcation point separating the deep and the shallow resonance regions. The results are applied to the problem of the critical inclination of a satellite of an oblate planet. There the normality condition takes the form $$\Lambda _1 (\lambda ) \leqslant e \leqslant \Lambda _2 (\lambda )if|i - tan^{ - 1} 2| \leqslant \lambda e/2(1 + e)$$ withΛ 1, andΛ 2 known functions of λ, defined by $$\begin{gathered} \lambda \equiv |\tfrac{1}{5}(J_2 + J_4 /J_2 )|^{1/4} /q, \hfill \\ q \equiv a(1 - e). \hfill \\ \end{gathered}$$   相似文献   

16.
In a previous paper, Hayliet al. (1983), two families of periodic orbits in the three-dimensional potential $$U = \frac{1}{2}(Ax^2 + By^2 + Cz^2 ) - \varepsilon xz^2 - nyz^2 $$ with \(\sqrt A :\sqrt B :\sqrt C = 6:4:3\) and ?=0.5 were described. It was found empirically that the characteristic curves of the two families intersect in the space (x0, y0, η) for |η|?0.2. This property is demonstrated in the present paper by writing explicitely the Poincaré mapping and by giving an approximation directly comparable with the numerical results obtained in Hayliet al. (1983). It is thus shown that one family bifurcates off the other.  相似文献   

17.
In the now classical Lindblad-Lin density-wave theory, the linearization of the collisionless Boltzmann equation is made by assuming the potential functionU expressed in the formU=U 0 + \(\tilde U\) +... WhereU 0 is the background axisymmetric potential and \(\tilde U<< U_0 \) . Then the corresponding density distribution is \(\rho = \rho _0 + \tilde \rho (\tilde \rho<< \rho _0 )\) and the linearized equation connecting \(\tilde U\) and the component \(\tilde f\) of the distribution function is given by $$\frac{{\partial \tilde f}}{{\partial t}} + \upsilon \frac{{\partial \tilde f}}{{\partial x}} - \frac{{\partial U_0 }}{{\partial x}} \cdot \frac{{\partial \tilde f}}{{\partial \upsilon }} = \frac{{\partial \tilde U}}{{\partial x}}\frac{{\partial f_0 }}{{\partial \upsilon }}.$$ One looks for spiral self-consistent solutions which also satisfy Poisson's equation $$\nabla ^2 \tilde U = 4\pi G\tilde \rho = 4\pi G\int {\tilde f d\upsilon .} $$ Lin and Shu (1964) have shown that such solutions exist in special cases. In the present work, we adopt anopposite proceeding. Poisson's equation contains two unknown quantities \(\tilde U\) and \(\tilde \rho \) . It could be completelysolved if a second independent equation connecting \(\tilde U\) and \(\tilde \rho \) was known. Such an equation is hopelesslyobtained by direct observational means; the only way is to postulate it in a mathematical form. In a previouswork, Louise (1981) has shown that Poisson's equation accounted for distances of planets in the solar system(following to the Titius-Bode's law revised by Balsano and Hughes (1979)) if the following relation wasassumed $$\rho ^2 = k\frac{{\tilde U}}{{r^2 }} (k = cte).$$ We now postulate again this relation in order to solve Poisson's equation. Then, $$\nabla ^2 \tilde U - \frac{{\alpha ^2 }}{{r^2 }}\tilde U = 0, (\alpha ^2 = 4\pi Gk).$$ The solution is found in a classical way to be of the form $$\tilde U = cte J_v (pr)e^{ - pz} e^{jn\theta } $$ wheren = integer,p =cte andJ v (pr) = Bessel function with indexv (v 2 =n 2 + α2). By use of the Hankel function instead ofJ v (pr) for large values ofr, the spiral structure is found to be given by $$\tilde U = cte e^{ - pz} e^{j[\Phi _v (r) + n\theta ]} , \Phi _v (r) = pr - \pi /2(v + \tfrac{1}{2}).$$ For small values ofr, \(\tilde U\) = 0: the center of a galaxy is not affected by the density wave which is onlyresponsible of the spiral structure. For various values ofp,n andv, other forms of galaxies can be taken into account: Ring, barred and spiral-barred shapes etc. In order to generalize previous calculations, we further postulateρ 0 =kU 0/r 2, leading to Poisson'sequation which accounts for the disc population $$\nabla ^2 U_0 - \frac{{\alpha ^2 }}{{r^2 }}U_0 = 0.$$ AsU 0 is assumed axisymmetrical, the obvious solution is of the form $$U_0 = \frac{{cte}}{{r^v }}e^{ - pz} , \rho _0 = \frac{{cte}}{{r^{2 + v} }}e^{ - pz} .$$ Finally, Poisson's equation is completely solvable under the assumptionρ =k(U/r 2. The general solution,valid for both disc and spiral arm populations, becomes $$U = cte e^{ - pz} \left\{ {r^{ - v} + } \right.\left. {cte e^{j[\Phi _v (r) + n\theta ]} } \right\},$$ The density distribution along the O z axis is supported by Burstein's (1979) observations.  相似文献   

18.
Various families of periodic solutions are shown to exist in the three body problem, in which two of the bodies are close to a commensurability in mean motions about the third body, the primary, which is considerably more massive than the other two. The cases considered are
  1. The non-planar circular restricted problem (in which one of the secondary bodies has zero mass, and the other moves in a fixed circular orbit about the primary).
  2. The planar non-restricted problem (in which the three bodies move in a plane, and both secondaries have finite mass).
  3. The planar elliptical restricted problem (in which the three bodies move in a plane, one of the secondary bodies has zero mass, and the other moves in a fixed elliptical orbit about the primary).
The method used is to eliminate all short period terms from the Hamiltonian of the motion by means of a von Zeipel transformation, leaving only the long period terms which are due to the commensurability. Hence only the long period part of the motion is considered, and the variables used differ from the variables describing the full motion by a series of short-period trigonometric terms of the order of the ratio of the mass of the secondaries to that of the primary body. It is shown that solutions of the long-period problem in which the variables remain constant are equivalent to solutions in the full motion in which the bodies periodically return to the same configuration, and these are the types of periodic solution that are shown to exist. The form of the disturbing function, and hence of the equations of motion, is found up to the fourth powers of the eccentricities and inclination by considering the d'Alembert property. The coefficients of the terms appearing in this expansion are functions of the semi-major axes of the orbits of the secondary bodies. Expressions for these coefficients are not worked out as they are not required. Lete, n, m be the orbital eccentricity, mean motion and mass of one of the secondary bodies, and lete′, n′, m′ be the corresponding quantities for the other. (The mass of the primary is taken as unity). In cases (a) and (c) we will havem=0. In case (a)e′ will be zero, and in case (c) it will be a constant. Leti be the mutual inclination of the orbits of the secondary bodies. Suppose the commensurability is of the form(p+q) n =pn′, wherep andq are relatively prime integers, and put γ=(p+q) n/n′?p. The families of periodic solutions shown to exist are as follows. For q=1 No periodic solutions are found withi≠0 in case (a), and none withe′≠0, in case (c). In case (b) periodic solutions are found in whiche=0 (m′/γ),e′=0 (m/γ) for values of γ away from the exact commensurability. As γ approaches zero thene ande′ become 0 (1). For q≠1 Case (a). Families of periodic solutions bifurcating from the family withe=0, i=0 are shown to exist. Families in whichi=0 ande becomes non-zero exist for all values ofq. Families in whiche=0 andi becomes non-zero exist for even values ofq. Families in whiche andi become non-zero simultaneously exist for odd values ofq. Case (b). No families are found other than those withe=e′=0. Case (c). Families are found bifurcating from the familye=e′=0 in whiche ande′ become non-zero simultaneously. For all these solutions existence is only demonstrated close to the point of bifurcation, where all the variables are small, as the method uses series expansions ine, e′ andi. From the form of the solutions it is clear that the non-zero variables will become large for values of γ away from the bifurcation point.  相似文献   

19.
We consider the problem of strange-star (SS) radiation. The bare quark SS surface and electrons on the stellar surface generate an electric field that is strong enough for electron-positron pairs to be produced from a vacuum at a nonzero temperature. The luminosity in pairs is assumed to be within ?1049 erg s?1 from a surface with a characteristic radius of 10 km. We consider the energy transfer from pairs to photons by taking into account the well-studied reactions between e, e +, γ and obtain a change in the photon spectrum with luminosity. Our analysis is restricted to the spherically symmetric case. The magnetic field is disregarded. To solve the problem, we developed a new numerical method of integrating the Boltzmann kinetic equations for pairs and photons. This method is used to calculate the problem up to a luminosity of 1042 erg s?1 This region is difficult to investigate when the optical path for pairs or photons is considerably larger than unity but the two optical depths are not simultaneously much larger than unity (when hydrodynamics with heat conduction is applicable). It turns out that the mean photon energy is approximately equal to $\bar \in _\gamma \approx m_e c^2$ (the annihilation line for pairs) at a modest luminosity, L?1×1037 erg s?1, and decreases to ≈210 keV at L?1038 erg s?1. Hydrodynamic estimates point to an increase in the mean energy $\bar \in _\gamma$ to 1 MeV as the luminosity further increases to L?1049 erg s?1. Our calculations may prove to be useful in interpreting soft gamma repeaters (SGRs) and are of methodological interest.  相似文献   

20.
The averaged spin-orbit resonant motion of Mercury is considered, with e the orbital eccentricity, and i o the orbital inclination introduced as very slow functions of time, given by any secular planetary theory. The basis is our Hamiltonian approach (D’Hoedt, S., Lemaître, A.: Celest. Mech. Dyn. Astron. 89:267–283, 2004) in which Mercury is considered as a rigid body. The model is based on two degrees of freedom; the first one is linked to the 3:2 resonant spin-orbit motion, and the second one to the commensurability of the rotational and orbital nodes. Mercury is assumed to be very close to the Cassini equilibrium of the model. To follow the motion of rotation close to this equilibrium, which varies with respect to time through e and i o , we use the adiabatic invariant theory, extended to two degrees of freedom. We calculate the corrections (remaining functions) introduced by the time dependence of e and i o in the three steps necessary to characterize the frequencies at the equilibrium. The conclusion is that Mercury follows the Cassini equilibrium (stays in the Cassini forced state), in an adiabatic behavior: the area around the equilibrium does not change by more than ${\varepsilon}$ for times smaller than ${\frac{1}{\varepsilon}}$ . The role of the inclination and the eccentricity can be dissociated and measured in each step of the canonical transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号