首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The Khor Arbaat basin is the main source of potable water supply for the more than 750,000 inhabitants of Port Sudan, eastern Sudan. The variation in hydraulic conductivity and storage capacity is due to the heterogeneity of the sediments, which range from clay and silt to gravely sand and boulders. The water table rises during the summer and winter rainy seasons; it reaches its lowest level in the dry season. The storage capacity of the Khor Arbaat aquifer is estimated to be 21.75?×?106 m3. The annual recharge through the infiltration of flood water is about 1.93?×?106 m3. The groundwater recharge, calculated as underground inflow at the ‘upper gate’, is 1.33?×?105 m3/year. The total annual groundwater recharge is 2.06?×?106 m3. The annual discharge through underground outflow at the ‘lower gate’ (through which groundwater flows onto the coastal plain) is 3.29?×?105 m3/year. Groundwater discharge due to pumping from Khor Arbaat basin is 4.38?×?106 m3/year on average. The total annual groundwater discharge is about 4.7?×?106 m3. A deficit of 2.6?×?106 m3/year is calculated. Although the total annual discharge is twice the estimated annual recharge, additional groundwater flow from the fractured basement probably balances the annual groundwater budget since no decline is observed in the piezometric levels.  相似文献   

2.
A numerical groundwater model of the weathered crystalline aquifer of Ursuya (a major water source for the north-western Pyrenees region, south-western France) has been computed based on monitoring of hydrological, hydrodynamic and meteorological parameters over 3 years. The equivalent porous media model was used to simulate groundwater flow in the different layers of the weathered profile: from surface to depth, the weathered layer (5?·?10?8?≤?K?≤?5?·? 10?7 m s?1), the transition layer (7?·?10?8?≤?K?≤?1?·? 10?5 m s?1, the highest values being along major discontinuities), two fissured layers (3.5?·?10?8?≤?K?≤?5?·?? 10?4 m s?1, depending on weathering profile conditions and on the existence of active fractures), and the hard-rock basement simulated with a negligible hydraulic conductivity (K = 1 10 ?9 ). Hydrodynamic properties of these five calculation layers demonstrate both the impact of the weathering degree and of the discontinuities on the groundwater flow. The great agreement between simulated and observed hydraulic conditions allowed for validation of the methodology and its proposed use for application on analogous aquifers. With the aim of long-term management of this strategic aquifer, the model was then used to evaluate the impact of climate change on the groundwater resource. The simulations performed according to the most pessimistic climatic scenario until 2050 show a low sensitivity of the aquifer. The decreasing trend of the natural discharge is estimated at about ?360 m3 y?1 for recharge decreasing at about ?5.6 mm y?1 (0.8 % of annual recharge).  相似文献   

3.
The dynamics of artificial recharge of winter surface flows coupled with increased summer groundwater use for irrigation in the Sokh aquifer (Central Asia) have been investigated. Water release patterns from the giant Toktogul reservoir have changed, as priority is now given to hydropower generation in winter in Kyrgyzstan. Winter flows have increased and summer releases have declined, but the Syr Darya River cannot pass these larger winter flows and the excess is diverted to a natural depression, creating a 40?×?109m3 lake. A water balance study of all 18 aquifers feeding the Fergana Valley indicated the feasibility of winter groundwater recharge in storage created by summer abstraction. This modeling study examines the dynamics of the process in one aquifer over a 5-year period, with four scenarios: the current situation; increased groundwater abstraction of around 625 million (M) m3/year; groundwater abstraction with an artificial recharge of 144 Mm3/year, equivalent to the volume available in low flow years in the Sokh River; and with a larger artificial recharge of 268 Mm3/year, corresponding to high flow availability. Summer surface irrigation diversions can be reduced by up to 350 Mm3 and water table levels can be lowered.  相似文献   

4.
The carbonate aquifers of Lora and Mingo form part of the hydrogeological unit of Sierra de Estepa (SE Spain). By means of time series analysis and a 1D numerical groundwater model, groundwater exploitation was quantified and the mean annual recharge in both systems was estimated (2001–2004). During this period, the Lora and Mingo aquifers received an average groundwater recharge of 0.29 × 106 m3/year and 0.14 × 106 m3/year, respectively, whereas an average of 0.34 × 106 m3/year and 0.21 × 106 m3/year, respectively, was extracted. These conditions led to a conspicuous lowering of the water table in both systems. In addition, the analysis of the evolution of the main hydrogeochemical parameters of the groundwater showed that the increased pumping rates produced an increase in total dissolved solids, and chloride and sodium ions in both aquifers. In the case of the Lora aquifer, the only ion that presented decreased levels was nitrate. The results show that groundwater pumping in both aquifers should not exceed the mean annual recharge of 0.29 × 106 m3/year and 0.14 × 106 m3/year in the Lora and Mingo aquifers, respectively. Nevertheless, it would be advisable to reduce pumping rates to below these values in order to restore piezometric levels and improve groundwater quality for different uses in the future.  相似文献   

5.
The Nyamandhlovu aquifer is the main water resource in the semi-arid Umguza district in Matebeleland North Province in Zimbabwe. The rapid increase in water demand in the city of Bulawayo has prompted the need to quantify the available groundwater resources for sustainable utilization. Groundwater recharge estimation methods and results were compared: chloride mass balance method (19–62 mm/year); water-table fluctuation method (2–50 mm/year); Darcian flownet computations (16–28 mm/year); 14C age dating (22–25 mm/year); and groundwater modeling (11–26 mm/year). The flownet computational and modeling methods provided better estimates for aerial recharge than the other methods. Based on groundwater modeling, a final estimate for recharge (from precipitation) on the order of 15–20 mm/year is believed to be realistic, assuming that part of the recharge water transpires from the water table by deep-rooted vegetation. This recharge estimate (2.7–3.6% of the annual precipitation of 555 mm/year) compares well with the results of other researchers. The advantages/disadvantages of each recharge method in terms of ease of application, accuracy, and costs are discussed. The groundwater model was also used to quantify the total recharge of the Nyamandhlovu aquifer system (20?×?106–25?×?106 m3/year). Groundwater abstractions exceeding 17?×?106 m3/year could cause ecological damage, affecting, for instance, the deep-rooted vegetation in the area.  相似文献   

6.
An innovative mode of groundwater recharge to a buried esker aquifer is considered. The current conceptual model affords a natural safeguard to underlying aquifers from the overlying muds. A hypothesis of groundwater recharge to a buried esker aquifer via preferential pathways across its overlying muds is tested here by heuristic numerical one-dimensional and two-dimensional modeling simulations. The hypothesis has been tested against two other conventionally accepted scenarios involving: (1) distal esker outcrop areas and (2) remote shallow-bedrock recharge areas. The main evidence comes from documented recharge pressure pulses in the overlying mud aquitard and in the underlying esker hydraulic-head time series for the Vars-Winchester esker aquifer in Eastern Ontario, Canada. These perturbations to the potentiometric surface are believed to be the aquifer response to recharge events. The migration rate of these pressure pulses is directly related to the hydraulic diffusivity of the formation. The measured response time and response amplitude between singular radar precipitation events and well hydrographs constituted the heuristic model calibration targets. The main evidence also includes mud-layering deformation (water escape features) which was observed in seismic surveys of the over-esker muds. These disturbed stratigraphic elements provide a realistic mechanism for migrating water to transit through the muds. The effective hydraulic conductivities of these preferential pathways in the muds were estimated to be between 2?×?10?6 and 7?×?10?6 m/s. The implications of these findings relate to the alleged natural safeguard of these overlying muds.  相似文献   

7.
Groundwater in shallow unconsolidated sedimentary aquifers close to the Bornheim fault in the Lower Rhine Embayment (LRE), Germany, has relatively low δ2H and δ18O values in comparison to regional modern groundwater recharge, and 4He concentrations up to 1.7?×?10?4 cm3 (STP) g–1?±?2.2 % which is approximately four orders of magnitude higher than expected due to solubility equilibrium with the atmosphere. Groundwater age dating based on estimated in situ production and terrigenic flux of helium provides a groundwater residence time of ~107 years. Although fluid exchange between the deep basal aquifer system and the upper aquifer layers is generally impeded by confining clay layers and lignite, this study’s geochemical data suggest, for the first time, that deep circulating fluids penetrate shallow aquifers in the locality of fault zones, implying  that sub-vertical fluid flow occurs along faults in the LRE. However, large hydraulic-head gradients observed across many faults suggest that they act as barriers to lateral groundwater flow. Therefore, the geochemical data reported here also substantiate a conduit-barrier model of fault-zone hydrogeology in unconsolidated sedimentary deposits, as well as corroborating the concept that faults in unconsolidated aquifer systems can act as loci for hydraulic connectivity between deep and shallow aquifers. The implications of fluid flow along faults in sedimentary basins worldwide are far reaching and of particular concern for carbon capture and storage (CCS) programmes, impacts of deep shale gas recovery for shallow groundwater aquifers, and nuclear waste storage sites where fault zones could act as potential leakage pathways for hazardous fluids.  相似文献   

8.
The hydrogeologic and hydraulic characteristics of a lateritic terrain in West Bengal, India, were investigated. Test drilling was conducted at ten sites and grain-size distribution curves (GSDCs) were prepared for 275 geologic samples. Performance evaluation of eight grain-size-analysis (GSA) methods was carried out to estimate the hydraulic conductivity (K) of subsurface formations. Finally, the GSA results were validated against pumping-test data. The GSDCs indicated that shallow aquifer layers are coarser than the deeper aquifer layers (uniformity coefficient 0.19–11.4). Stratigraphy analysis revealed that both shallow and deep aquifers of varying thickness exist at depths 9–40 and 40–79 m, respectively. The mean K estimates by the GSA methods are 3.62–292.86 m/day for shallow aquifer layers and 0.97–209.93 m/day for the deeper aquifer layers, suggesting significant aquifer heterogeneity. Pumping-test data indicated that the deeper aquifers are leaky confined with transmissivity 122.69–693.79 m2/day, storage coefficient 1.01?×?10?7–2.13?×?10?4 and leakance 2.01?×?10?7–34.56?×?10?2 day?1. Although the K values yielded by the GSA methods are generally larger than those obtained from the pumping tests, the Slichter, Harleman and US Bureau Reclamation (USBR) GSA methods yielded reasonable values at most of the sites (1–3 times higher than K estimates by the pumping-test method). In conclusion, more reliable aquifers exist at deeper depths that can be tapped for dependable water supply. GSA methods such as Slichter, Harleman and USBR can be used for the preliminary assessment of K in lateritic terrains in the absence of reliable field methods.  相似文献   

9.
Groundwater recharge by natural replenishment for the unconsolidated alluvial aquifer in Wadi Al-Yammaniyah is estimated on a daily basis instead of the conventional monthly basis The study reveals that during the two-year period (1978 and 1979), the estimated recharge in the area is about 40% of the total average annual rainfall of 155 mm Subsurface underflow estimated at 36×10−6 m3/yr from the Wadi Al-Yammaniyah aquifer occurs in the vicinity of Wadi Ash-Shamiyah A comparison of the recharge and extracted volumes of water from the aquifer indicates that there is a net increase of 10 million m3 and 38 million m3 of water in the storage for 1978 and 1979, respectively  相似文献   

10.
The Sacramento Mountains and the adjacent Roswell Artesian Basin, in south-central New Mexico (USA), comprise a regional hydrologic system, wherein recharge in the mountains ultimately supplies water to the confined basin aquifer. Geologic, hydrologic, geochemical, and climatologic data were used to delineate the area of recharge in the southern Sacramento Mountains. The water-table fluctuation and chloride mass-balance methods were used to quantify recharge over a range of spatial and temporal scales. Extrapolation of the quantitative recharge estimates to the entire Sacramento Mountains region allowed comparison with previous recharge estimates for the northern Sacramento Mountains and the Roswell Artesian Basin. Recharge in the Sacramento Mountains is estimated to range from 159.86?×?106 to 209.42?×?106 m3/year. Both the location of recharge and range in estimates is consistent with previous work that suggests that ~75 % of the recharge to the confined aquifer in the Roswell Artesian Basin has moved downgradient through the Yeso Formation from distal recharge areas in the Sacramento Mountains. A smaller recharge component is derived from infiltration of streamflow beneath the major drainages that cross the Pecos Slope, but in the southern Sacramento Mountains much of this water is ultimately derived from spring discharge. Direct recharge across the Pecos Slope between the mountains and the confined basin aquifer is much smaller than either of the other two components.  相似文献   

11.
The Wadi Watir delta, in the arid Sinai Peninsula, Egypt, contains an alluvial aquifer underlain by impermeable Precambrian basement rock. The scarcity of rainfall during the last decade, combined with high pumping rates, resulted in degradation of water quality in the main supply wells along the mountain front, which has resulted in reduced groundwater pumping. Additionally, seawater intrusion along the coast has increased salinity in some wells. A three-dimensional (3D) groundwater flow model (MODFLOW) was calibrated using groundwater-level changes and pumping rates from 1982 to 2009; the groundwater recharge rate was estimated to be 1.58?×?106 m3/year. A variable-density flow model (SEAWAT) was used to evaluate seawater intrusion for different pumping rates and well-field locations. Water chemistry and stable isotope data were used to calculate seawater mixing with groundwater along the coast. Geochemical modeling (NETPATH) determined the sources and mixing of different groundwaters from the mountainous recharge areas and within the delta aquifers; results showed that the groundwater salinity is controlled by dissolution of minerals and salts in the aquifers along flow paths and mixing of chemically different waters, including upwelling of saline groundwater and seawater intrusion. Future groundwater pumping must be closely monitored to limit these effects.  相似文献   

12.
Groundwater stored in the deep seated sedimentary aquifers is the most important source of water supply. The lack of sufficient groundwater recharge and the overdependence on groundwater might lead to unavailability of this precious natural resource if proper management practices are not adopted. Finite difference modelling using the MODFLOW program was carried out in the east of Riyadh city to simulate the groundwater level conditions under different abstraction scenarios. The simulated aquifer system combines the Wasia and Biyadh aquifer (composed of sandstone) and Aruma aquifer (limestone) which lies between 24°30'00"- 25°30'00" N and longitudes 47°00'00"- 48°00'00"E. The transmissivity and storage coefficient values of Biyadh aquifer are 7.0x10-3 to 7.0x10-2 m2/day and 3.7x10-4 to 9.4x10-4 respectively. The transmissivity and storage coefficient values of Wasia aquifer ranges from 6.7x10-3 to 8.5x10-2 m2/day and 2x10-4 to 2.3x10-4 respectively. The model calibration involved altering the values of model input parameters to match field conditions within certain acceptable limits to forecast the aquifer response over a period of 35 years (2015-2050). The modelling grid consisted of 20 and 24 columns with the grids spacing of 4 km for the small grids and 6 km for large grids. The results showed that though the Wasia aquifer was productive, it showed a large decline in water levels if water abstraction continued at the present rate. If the existing trends of groundwater withdraw continues; the piezometric heads in Wasia and Biyadh aquifers will decline by the year 2050. A reduction in 25% of the existing groundwater pumping rate in the well field will minimize the rate of groundwater decline in the aquifer to a considerable extent.  相似文献   

13.
The city of Querétaro, located near the political boundary of the Mexican states of Querétaro and Guanajuato, relies on groundwater as it sole water supply. Groundwater extraction in the city increased from 21?×?106 m3/yr in 1970 to 104?×?106 m3/yr in 2010, with an associated drawdown of 100 m in some parts of the aquifer. A three-dimensional numerical groundwater-flow model has been developed that represents the historical evolution of the aquifer’s potentiometric levels and is used to simulate the effect of two scenarios: (1) a 40 % reduction in the extraction rate from public water supply wells in early 2011 (thus reducing the extraction to 62?×?106 m3/yr), and (2) a further reduction in 2021 to 1?×?106 m3/yr. The modeling results project a temporary recovery of the potentiometric levels after the 40 % reduction of early 2011, but a return to 2010 levels by 2020. If scenario 2 is implemented in 2021, the aquifer will take nearly 30 years to recover to the simulated levels of 1995. The model also shows that the wells located in the city of Querétaro started to extract water from part of the aquifer beneath the State of Guanajuato in the late 1970s, thus showing that the administrative boundaries used in Mexico to study and develop water resources are inappropriate, and consideration should be given to physical boundaries instead. A regional approach to studying aquifers is needed in order to adequately understand groundwater flow dynamics.  相似文献   

14.

The Dena rainstorm in Iran in March and April 2019 caused about US$ 8.3?×?109 damage in the country; however, it resulted in the replenishment of half of the dam reservoirs and 35% of ponds and lakes. Also, it increased the volume of groundwater stored in aquifers by 3.6?×?109 m3. In arid and semiarid regions such as most parts of Iran, which usually face water scarcity, getting water from rainstorms is essential for replenishing water resources. This research aims to quantify the direct and indirect effects of the Dena rainstorm on the replenishment of Iran’s groundwater storage using the groundwater balance method and water-table fluctuation method. Studies showed that the main mechanisms for replenishment of groundwater storage due to the rainstorm included increases in precipitation recharge, surface runoff recharge, and artificial recharge, and reductions in irrigation withdrawal and evapotranspiration, while the contribution of each factor is estimated to be about 23, 28, 2, 15, and 32%, respectively.

  相似文献   

15.
The River Gash Basin is filled by the Quaternary alluvial deposits, unconformably overlying the basement rocks. The alluvial deposits are composed mainly of unconsolidated layers of gravel, sand, silt, and clays. The aquifer is unconfined and is laterally bounded by the impermeable Neogene clays. The methods used in this study include the carry out of pumping tests and the analysis of well inventory data in addition to the river discharge rates and other meteorological data. The average annual discharge of the River Gash is estimated to be 1,056?×?106 m3 at El Gera gage station (upstream) and 587?×?106 m3 at Salam-Alikum gage station (downstream). The annual loss mounts up to 40% of the total discharge. The water loss is attributed to infiltration and evapotranspiration. The present study proofs that the hydraulic conductivity ranges from 36 to 105 m/day, whereas the transmissivity ranges from 328 to 1,677 m2/day. The monitoring of groundwater level measurements indicates that the water table rises during the rainy season by 9 m in the upstream and 6 m in the midstream areas. The storage capacity of the upper and middle parts of the River Gash Basin is calculated as 502?×?106 m3. The groundwater input reach 386.11?×?106 m3/year, while the groundwater output is calculated as 365.98?×?106 m3/year. The estimated difference between the input and output water quantities in the upper and middle parts of the River Gash Basin demonstrates a positive groundwater budget by about 20?×?106 m3/year  相似文献   

16.
The aquifer of the semi-arid Kairouan plain has been exploited for decades to supply the growing irrigated agriculture and the need of drinking water. In parallel, the major hydraulic works drastically changed the natural groundwater recharge processes. The continuous groundwater level drop observed since the 1970s naturally raises the question of groundwater storage sustainability. To date, hydrogeological studies focused on groundwater fluxes, but the total amount of groundwater stored in the aquifer system has never been fully estimated. This is the purpose of the present paper. A complete database of all available geological, hydrogeological and geophysical data was created to build a 3D lithology model. Then, the lithological units were combined with the hydraulic properties to estimate the groundwater storage. Over the 700 km2 of the modelled area, the estimated storage in 2013 was around 18?×?109 m3 (equivalent to 80 times the annual consumption of 2010) with a highly variable spatial distribution. In 45 years (1968–2013), 12% of the amount of groundwater stored in the aquifer has been depleted. According to these results, individual farms will face strong regional disparities for their access to groundwater in the near future.  相似文献   

17.
Hydrochemical and isotopic study of Miocene and Mio-Plio-Quaternary (M-P-Q) aquifers in Wadi El Hechim?CGaraa Hamra basin, Central Tunisia was undertaken in order to investigate recharge mode and processes leading to mineralization of groundwater as well as interaction between both systems. The results revealed striking differences between the two aquifer systems. While the Miocene aquifer contains recently recharged waters with generally low mineralization (around 0.5?g?L?1), stemming mainly from dissolution of carbonate minerals, the M-P-Q aquifer reveals TDS values reaching 3?g?L?1, controlled mainly by dissolution of evaporitic minerals. Isotopic data indicate that the Miocene aquifer contains water recharged in past several decades (bomb tritium and bomb radiocarbon detected). The M-P-Q system appears to be much slower, with time scales of groundwater flow possibly reaching some thousands of years. Sharp discontinuity of hydrochemical and isotope characteristic of groundwater observed across the major tectonic fault separating the Miocene and M-P-Q aquifers supports the idea of very limited (if any) hydraulic interconnection between both studied systems. This in turn calls for revision of existing conceptual models of groundwater flow in the region postulating significant groundwater fluxes crossing the fault in the direction of M-P-Q aquifer and adjacent aquifers in the Wadi al Fakka plain.  相似文献   

18.
Water-table elevation measurements and aquifer parameter estimates are rare in alpine settings because few wells exist in these environments. Alpine groundwater systems may be a primary source of recharge to regional groundwater flow systems. Handcart Gulch is an alpine watershed in Colorado, USA comprised of highly fractured Proterozoic metamorphic and igneous rocks with wells completed to various depths. Primary study objectives include determining hydrologic properties of shallow bedrock and surficial materials, developing a watershed water budget, and testing the consistency of measured hydrologic properties and water budget by constructing a simple model incorporating groundwater and surface water for water year 2005. Water enters the study area as precipitation and exits as discharge in the trunk stream or potential recharge for the deeper aquifer. Surficial infiltration rates ranged from 0.1–6.2×10?5 m/s. Discharge was estimated at 1.28×10?3 km3. Numerical modeling analysis of single-well aquifer tests predicted lower specific storage in crystalline bedrock than in ferricrete and colluvial material (6.7×10?5–2.0×10?3 l/m). Hydraulic conductivity in crystalline bedrock was significantly lower than in colluvial and alluvial material (4.3×10?9–2.0×10?4 m/s). Water budget results suggest that during normal precipitation and temperatures water is available to recharge the deeper groundwater flow system.  相似文献   

19.
A 1D numerical model is constructed to investigate the impact of sedimentation and sea level changes on transport of Cl? in the aquifer–aquitard system in the Pearl River Delta (PRD), China. The model simulates the evolution of the vertical Cl? concentration profiles during the Holocene. Sedimentation is modeled as a moving boundary problem. Chloride concentration profiles are reconstructed for nine boreholes, covering a wide area of the PRD, from northwest to southeast. Satisfactory agreement is obtained between simulated and measured Cl? concentration profiles. Diffusion solely is adequate to reproduce the vertical Cl? concentration profiles, which indicates that diffusion is the regionally dominant vertical transport mechanism across the aquitards in the PRD. The estimated effective diffusion coefficients of the aquitards range from 2.0?×?10–11 to 2.0?×?10–10 m2/s. The effective diffusion coefficients of the aquifers range from 3.0?×?10–11 to 4.0?×?10–10 m2/s. Advective transport tends to underestimate Cl? concentrations in the aquitard and overestimate Cl? concentrations in the basal aquifer. The results of this study will help understand the mechanisms of solute transport in the PRD and other deltas with similar geological and hydrogeological characteristics.  相似文献   

20.
Darcy’s law is the equation of reference widely used to model aquifer flows. However, its use to model karstic aquifers functioning with large pores is problematic. The physics occurring within the karstic conduits requires the use of a more representative macroscopic equation. A hydrodynamic model is presented which is adapted to the karstic aquifer of the Val d’Orléans (France) using two flow equations: (1) Darcy’s law, used to describe water flow within the massive limestone, and (2) the Brinkman equation, used to model water flow within the conduits. The flow equations coupled with the transport equation allow the prediction of the karst transfer properties. The model was tested by using six dye tracer tests and compared to a model that uses Darcy’s law to describe the flow in karstic conduits. The simulations show that the conduit permeability ranges from 5?×?10?6 to 5.5?×?10?5?m2 and the limestone permeability ranges from 8?×?10?11 to 6?×?10?10?m2. The dispersivity coefficient ranges from 23 to 53 m in the conduits and from 1 to 5 m in the limestone. The results of the simulations carried out using Darcy’s law in the conduits show that the dispersion towards the fractures is underestimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号