首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Spatial and temporal characteristics of the water masses and the dispersion of the suspended particulate matter were investigated using current meter, hydrographic and nephelometric observations, gathered during the ECOFER experiment (1989–1991) in the Cap-Ferret Canyon on the Aquitanian margin of the Bay of Biscay. While characteristics of the deep water masses were stable from one year to another, large hydrographic change in the upper 500 m related to winter renewal induced by poleward advection of warm and saline water along the continental slope. The slope circulation and seasonal eddy activity appear as important dynamical mechanisms that control the entrainment and the dispersion of the suspended particulate matter from the neritic domain to the deep ocean. A predominantly northward along-slope current with occasional reversal characterizes this circulation. The nephelometric structures also showed seasonal changes in the overall suspended particulate matter content, but recurrent features, such as the presence of intermediate nepheloid layers at the shelf-break depth and various depths along the slope (∼500, 1000 and 2000 m), were observed. These nepheloid layers extended off the slope to about 10–30 km, but especially laterally along the slope. Their presence indicated that suspended particulate matter exchanges between the shelf and the slope occurred mainly in the head of the canyon and along the southern open slope. The intermediate nepheloid layers around 500 m depth detached from the slope particularly in regions where the bottom slope is close to critical for the M2 internal tide.  相似文献   

2.
The importance of the circulation of fresh water within the Nordic Seas has frequently been pointed out, especially its effect on deep water formation and therefore possibly on the thermohaline circulation. The main source of fresh water is the East Greenland Current entering the Nordic Seas through Fram Strait. The Jan Mayen Polar Current and the East Icelandic Current (EIC) carry a part of the fresh water into the Greenland and Iceland Seas respectively. As a part of the EU project VEINS, Aanderaa current meters were deployed on two moorings within the EIC from June 1997 to June 1998 on a standard CTD section from Langanes, Northeast Iceland, to the central Iceland Sea in the direction towards Jan Mayen. The current was mainly concentrated along the slope where it was baroclinic, while over the deeper part a weak barotropic flow was observed. Geostrophic calculations, referenced to the current meter data, were used for estimating the volume flux and fresh water transport with the current. The total transport over the section towards the east was found to be 2.5 Sv. The fresh water transport relative to a salinity of 34.93, above 170 m, amounted to 5.5 mSv. This is roughly 4% of the fresh water transport through Fram Strait. This transport is put into a long-term perspective using hydrographic data from the Langanes section.  相似文献   

3.
A.E. Aksu 《Marine Geology》1983,53(4):331-348
Calcium-carbonate dissolution has been studied in several grab samples and piston cores from Baffin Bay and Davis Strait ranging in water depth from 200 to 2300 m. The intensity of dissolution was determined from examining: (1) the ratio of arenaceous to calcareous benthonic foraminifera; (2) the ratio of benthonic to planktonic foraminifera; (3) the relationships between the dissolution-susceptible and dissolution-resistant foraminifera; (4) the degree of foraminiferal test fragmentation; and (5) the relationships between plankton tows and the fauna in the surface sediments. All core tops and grab samples from Baffin Bay surface sediments below 600–900 m water depth demonstrated intense dissolution of calcium carbonate. Sediments below 900 m were biogenic carbonate free, indicating 100% foraminiferal loss due to dissolution. Possible causes of substantial undersaturation in calcium carbonate of Baffin Bay Bottom Water are very low temperatures, and higher concentrations of carbon dioxide. All cores also demonstrated intense dissolution during interglacial or interstadial isotope stages 1, 3, 5, 7 and 9. Similarities in planktonic foraminiferal assemblages suggested the presence of similar bottom-water masses during these periods. The preservation state of biogenic carbonate debris in glacial isotope stages 2, 4, 6, 8 and 10 is similar to the assemblage found in the water at present.  相似文献   

4.
The subtidal circulation of the southeast Greenland shelf is described using a set of high-resolution hydrographic and velocity transects occupied in summer 2004. The main feature is the East Greenland Coastal Current (EGCC), a low-salinity, high-velocity jet with a wedge-shaped hydrographic structure characteristic of other surface buoyancy-driven currents. The EGCC was observed along the entire Greenland shelf south of Denmark Strait, while the transect north of the strait showed only a weak shelf flow. This observation, in conjunction with water mass considerations and other supporting evidence, suggests that the EGCC is an inner branch of the East Greenland Current (EGC) that forms south of Denmark Strait. It is argued that bathymetric steering is the most likely reason why the EGC apparently bifurcates at this location. Repeat sections occupied at Cape Farewell between 1997 and 2004 show that the alongshelf wind stress can have an influence on the structure and strength of the EGCC and EGC on timescales of 2-3 days. Accounting for the wind-induced effects, the volume transport of the combined EGCC/EGC system is roughly constant (∼2 Sv) over the study domain, from 68°N to Cape Farewell near 60°N. The corresponding freshwater transport increases by roughly 60% over this distance (59-96 mSv, referenced to a salinity of 34.8). This trend is consistent with a simple freshwater budget of the EGCC/EGC system that accounts for meltwater runoff, melting sea-ice and icebergs, and net precipitation minus evaporation.  相似文献   

5.
《Oceanologica Acta》1999,22(3):281-290
The hydrological structure and the seasonal variability of marine currents in the Tyrrhenian Sea, off the coasts of Latium, are analysed using a data set obtained during several cruises between February 1988 and August 1990. Of particular interest is the fact that the hydrological surveys show the intermittent presence of a current of Levantine Intermediate Water (LIW) flowing anticlockwise along the Italian slope, at 250–700 m. This current is of particular importance in inferring the pathways of the Levantine Intermediate Water in the western Mediterranean Sea and in particular in the Tyrrhenian basin, downstream of the Strait of Sicily. These phenomena remain an open problem: our observations give support to the Millot's proposed general scheme, on the existence of a general cyclonic circulation of the LIW from the Strait of Sicily to the western Mediterranean, as opposed to a direct injection of LIW towards the Algerian basin.  相似文献   

6.
A combination of 2-year-long mooring-based measurements and snapshot conductivity–temperature–depth (CTD) observations at the continental slope off Spitsbergen (81°30′N, 31°00′E) is used to demonstrate a significant hydrographic seasonal signal in Atlantic Water (AW) that propagates along the Eurasian continental slope in the Arctic Ocean. At the mooring position this seasonal signal dominates, contributing up to 50% of the total variance. Annual temperature maximum in the upper ocean (above 215 m) is reached in mid-November, when the ocean in the area is normally covered by ice. Distinct division into ‘summer’ (warmer and saltier) and ‘winter’ (colder and fresher) AW types is revealed there. Estimated temperature difference between the ‘summer’ and ‘winter’ waters is 1.2 °C, which implies that the range of seasonal heat content variations is of the same order of magnitude as the mean local AW heat content, suggesting an important role of seasonal changes in the intensity of the upward heat flux from AW. Although the current meter observations are only 1-year long, they hint at a persistent, highly barotropic current with little or no seasonal signal attached.  相似文献   

7.
Seasonal hydrographic conductivity–temperature–depth surveys and moored current meter measurements have been analysed using an inverse approach in order to highlight the main features of the circulation in the western Sicily Strait during 2003. The variational inverse section model combines different types of constraints to seek for a continuous flow field satisfying data and physical assumptions within prescribed prior error bars. It is based on a finite element discretization that allows an appropriate resolution of very irregular topography. The corresponding results, consistent with data and dynamics, are providing new insight into the circulation of the surface and intermediate layers in conjunction with transport and formal error estimates during five hydrographic cruises. In the upper layer, these insights include the southward Atlantic Tunisian Current (ATC) off the Cap Bon Coasts, its high variability at short time-scales and its recirculation during October. For the Levantine Intermediate Water (LIW) regime, a detailed view of the circulation in the western Sicily Strait is given evidencing its recirculation at the western sill during the same period. Transports for both ATC and LIW are computed and found to be maximum in spring and decrease in summer and fall.  相似文献   

8.
The high-resolution Bay of Bengal circulation modeling in the region [80E–95E; 5N–22N] is performed with a horizontal resolution of 10 km and the highest vertical resolution of 5 m near the surface. The intercomparison experiments, with ocean model forced with the near-surface (1) National Centers for Environmental Prediction (NCEP) reanalysis winds and (2) blended seawinds data (a combination of remotely sensed scatterometer and in situ observations) are carried out for a period of 17 years during 1998–2014. The seasonal variability of the realistically simulated surface hydrographic (temperature and salinity) and circulation (currents) variables from both the experiments is compared and contrasted with the observational data. The mixed layer depth seasonal variability of the region is also studied. The mesoscale features of currents at 50 and 100 m are also studied. The volume transport across different sections in the Bay of Bengal is computed and its relation with summer monsoon rainfall is investigated. The results suggest that there is no real advantage of using high-resolution blended seawinds over the much coarser NCEP reanalysis winds.  相似文献   

9.
During a recent (2006) cruise of RV ‘Dana’ high resolution side-scan sonar and sub-bottom profiling was carried out on selected shelf and slope transects offshore Disko Bugt, central West Greenland. Available commercial seismic data from the margin indicate here irregular seabed morphology with erosional features locally extending down to c. 1100 m water depth. The newly acquired side-scan sonar data reveal the presence of giant iceberg plow marks extending (sub)parallel to the slope between about 800 and 1085 m water depth. The height difference between bottom of the scours and rim crest is up to 40 m. The largest plow marks are about 750 m wide. To date no observed modern icebergs including those from Antarctica have drafts in excess of c. 500 m. Taking into account maximum glacial sea level lowering of c. 120 m, the paleo-iceberg keel depth was at least 950 m. Due to the presence of the relatively shallow (< 700 m) sill of Davis Strait to the south, calving of these paleo-icebergs is thought to have occurred from an ice margin in the Baffin Bay region (Jakobshavn Isbræ paleo-ice stream?). The depth of occurrence (> 1000 m) and dimensions of the plow marks are concluded to be exceptional, and comparable to glacial scouring features reported from the Arctic Ocean.  相似文献   

10.
The sea-ice export out of the central Arctic through the Fram Strait is a key variable in the Arctic climate system. Satellite data provide the only basis for mapping ice features with a high spatial and temporal resolution in polar regions. An automatic drift algorithm has been employed and optimized to monitor the sea-ice drift velocity in the Greenland Sea with AVHRR data. The combination of the ice drift and the spatial ice distribution provides an insight into the ice transport processes along the coast of Greenland. The combination with sea-ice thickness measurements allows an estimation of the spatial distribution of the sea-ice mass flux. The seasonal and spatial variability of the mass flux allows further predictions of the meridional melting and freezing processes along the East Greenland Current. This investigation covers the years 1993 and 1994. Seasonal and spatial distributions of the sea-ice drift were derived. The derived absolute values in this study are in good agreement with estimates proposed by other authors.  相似文献   

11.
This study describes the first year round observations of the outflow from Hudson Strait as obtained from a moored array deployed mid-strait from August 2004–2005, and from a high-resolution hydrographic section conducted in September 2005. The outflow has the structure of a buoyant boundary current spread across the sloping topography of its southern edge. The variability in the flow is dominated by the extreme semi-diurnal tides and by vigorous, mostly barotropic, fluctuations over several days. The fresh water export is seasonally concentrated between June and March with a peak in November–December, consistent with the seasonal riverine input and sea-ice melt. It is highly variable on weekly timescales because of synchronous salinity and velocity variations. The estimated volume and liquid fresh water transports during 2004–2005 are, respectively, of 1–1.2 Sv and 78–88 (28–29) mSv relative to a salinity of 34.8 (33). This implies that the Hudson Strait outflow accounts for approximately 15% of the volume and 50% of the fresh water transports of the Labrador Current. This larger than previously estimated contribution is partially due to the recycling, within the Hudson Bay System, of relatively fresh waters that flow into Hudson Strait, along its northern edge. It is speculated that the source of this inflow is the outflow from Davis Strait.  相似文献   

12.
In this paper, effort is made to demonstrate the quality of high-resolution regional ocean circulation model in realistically simulating the circulation and variability properties of the northern Indian Ocean(10°S–25°N,45°–100°E) covering the Arabian Sea(AS) and Bay of Bengal(BoB). The model run using the open boundary conditions is carried out at 10 km horizontal resolution and highest vertical resolution of 2 m in the upper ocean.The surface and sub-surface structure of hydrographic variables(temperature and salinity) and currents is compared against the observations during 1998–2014(17 years). In particular, the seasonal variability of the sea surface temperature, sea surface salinity, and surface currents over the model domain is studied. The highresolution model's ability in correct estimation of the spatio-temporal mixed layer depth(MLD) variability of the AS and BoB is also shown. The lowest MLD values are observed during spring(March-April-May) and highest during winter(December-January-February) seasons. The maximum MLD in the AS(BoB) during December to February reaches 150 m (67 m). On the other hand, the minimum MLD in these regions during March-April-May becomes as low as 11–12 m. The influence of wind stress, net heat flux and freshwater flux on the seasonal variability of the MLD is discussed. The physical processes controlling the seasonal cycle of sea surface temperature are investigated by carrying out mixed layer heat budget analysis. It is found that air-sea fluxes play a dominant role in the seasonal evolution of sea surface temperature of the northern Indian Ocean and the contribution of horizontal advection, vertical entrainment and diffusion processes is small. The upper ocean zonal and meridional volume transport across different sections in the AS and BoB is also computed. The seasonal variability of the transports is studied in the context of monsoonal currents.  相似文献   

13.
西格陵兰位于北极—北大西洋地区,其海洋环境演变受西格陵兰洋流中冷、暖水团的显著影响。本文运用主成分分析方法对西格陵兰Disko湾DA06-139G孔沉积物中主要硅藻属种进行研究,试图揭示5000a BP以来西格陵兰洋流中冷、暖水团强度变化对研究区海洋环境的影响。5000—3800a BP期间,东格陵兰寒流携带的极地冷水团强度较弱,而北大西洋暖水团势力较强,Disko湾地区海洋环境较为温暖。3800—2000a BP期间,西格陵兰洋流中极地冷水团势力呈现阶段性增强,此时Disko湾地区气候缓慢转冷,海冰覆盖面积逐渐增加。2000a BP以后,特别是650a BP之后,样品在主成分轴一上的得分显著增高,表明Disko湾气候明显变冷,来自东格陵兰寒流的极地冷水团强度显著增强。Disko湾中晚全新世以来的硅藻记录及样品在主成分轴一上的得分所指示的极地冷水团的强度变化与格陵兰冰芯温度及海冰变化等具有较好的一致性,说明研究区海流特征与大气温度、海冰等环境要素密切相关。  相似文献   

14.
Over the past 30 years, shelf circulation on the West Antarctic Peninsula (WAP) has been derived from hydrographic data with a reasonable level of confidence. However, with the exception of a very few drifter tracks and current-meter timeseries from moorings, direct velocity measurements have not previously been available. In this article, shelf and shelf-edge circulation is examined using a new velocity dataset, consisting of several years of acoustic Doppler current profiler transects, routinely collected along the ship tracks of the R/V Gould and the R/V Palmer since the fall of 1997. Initial processing and quality control is performed by Dr. Teresa Chereskin and Dr. Eric Firing, who then place the data in an archive accessible by public website, resulting in the broad availability of the data for a variety of uses. In this study, gridded Eulerian means have been calculated to examine circulation on the shelf and slope off the South Shetland Islands, in Bransfield Strait, and on the shelf and slope south of these regions, including Marguerite Bay and the adjacent shelf and shelf-edge. Shelf-edge flow is northeastward in the study area from the offshore of northern Alexander Island to Smith Island, while a southward flowing shelf-edge feature, probably the shallow component of the polar slope current, appears between Elephant Island and Livingston Island. The shallow polar slope current appears to turn shoreward to pass through Boyd Strait between Smith and Livingston Islands. In Bransfield Strait, there is cyclonic circulation. The previously identified northeastward-flowing South Shetland Island jet is strong and present in all seasons, with a large barotropic component not revealed by the hydrography-based velocities derived in the past. On the shelf seaward of Adelaide, Anvers and Brabant Islands, the strong along-shelf Antarctic Peninsula coastal current flows southwestward, with strongest velocities in winter (June–September) off Anvers and Brabant Islands, but stronger in summer (December–March) off Adelaide Island. Seaward of Marguerite Bay, there is seaward flow in the upper 400 m of the water column over the southwest bank of Marguerite Trough, strongest in summer, and shoreward flow near the northeast bank and adjacent shallower shelf areas.  相似文献   

15.
Hydrographic observations in Hidaka Bay, south of Hokkaido, Japan were carried out in late winter 1996 and 1997 to examine the spatial distributions and circulation features of two different water masses, i.e., Coastal Oyashio Water (COW) and Tsugaru Warm Water (TWW), and their modifications. It is known that COW is mostly composed of cold and low-salinity water of the melted drift ice coming from the Okhotsk Sea and flows into Hidaka Bay from winter to spring and TWW with high-salinity continuously supplies from the Tsugaru Strait to the North Pacific. Cold surface mixed layers (<26.2σθ, 0–100 m depth) were found mainly over the shelf slope, confirming that anti-clockwise flow of COW was formed. TWW was relatively high in salinity and low in potential vorticity, and had some patch-like water masses with a temperature and salinity maximum in the limited area in the further offshore at the deeper density levels of 26.6–26.8σθ. The fine structure of vertical temperature and salinity profiles appeared between TWW and COW is an indication of enhanced vertical mixing (double-diffusive mixing), as inferred from the estimated Turner angles. At a mouth of the Tsugaru Strait in late winter 1997, a significant thermohaline front between TWW and the modified COW was formed and a main path of TWW spreaded south along the Sanriku coast, probably as the bottom controlled flow. Hence, the patch-like TWW observed in late winter is isolated from the Tsugaru Warm Current and then rapidly modified due to a diapycnal mixing. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
A large-scale contourite drift complex has been recognised on multi-channel 2D reflection seismic data acquired in the south-eastern Davis Strait and adjacent Labrador Sea slope offshore West Greenland between 63°?C66°N. Based on well-tie data, the drift complex developed from the Middle Miocene to the Recent. It has been mapped in a wide variety of water depths ranging from about 700?m, at a NNW-ESE-elongated crest located above structural highs in the Davis Strait, to more than 2,000?m beyond the slope to the Labrador Sea. The overall drift geometry has been described by subdivision into two first-order seismic units, enabling the generation of time-isochore maps. The reflection patterns demonstrating current-related deposition are illustrated by seismic examples. The time-isochores of the two first-order seismic units show lateral changes in their depocentres: the lower unit is absent in a zone slightly displaced south-westwards of the present-day crest, indicating changes in the prevailing deepwater current system during the Early Pliocene. The observations can be explained by two alternative palaeoceanographic scenarios: (1) either the present-day oceanographic setting with Arctic?CAtlantic water exchange across the Davis Strait was largely established by the mid-Miocene, with only minor adjustments during the Early Pliocene caused by tectonic movements, or (2) it became established during the Early Pliocene as a consequence of enhanced northward flow across the Davis Strait due to lowering of the sill depth.  相似文献   

17.
The Ulleung Basin is one of three deep basins that are contained within the East/Japan Sea. Current meter moorings have been maintained in this basin beginning in 1996. The data from these moorings are used to investigate the mean circulation pattern, variability of deep flows, and volume transports of major water masses in the Ulleung Basin with supporting hydrographic data and help from a high-resolution numerical model. The bottom water within the Ulleung Basin, which must enter through a constricted passage from the north, is found to circulate cyclonically—a pattern that seems prevalent throughout the East Sea. A strong current of about 6 cms−1 on average flows southward over the continental slope off the Korean coast underlying the northward East Korean Warm Current as part of the mean abyssal cyclonic circulation. Volume transports of the northward East Korean Warm Current, and southward flowing East Sea Intermediate Water and East Sea Proper Water are estimated to be 1.4 Sv (1 Sv=10−6 m3 s−1), 0.8 Sv, and 3.0–4.0 Sv, respectively. Deep flow variability involves a wide range of time scales with no apparent seasonal variations, whereas the deep currents in the northern East Sea are known to be strongly seasonal.  相似文献   

18.
The recently discovered East Greenland Spill Jet is a bottom-intensified current on the upper continental slope south of Denmark Strait, transporting intermediate density water equatorward. Until now the Spill Jet has only been observed with limited summertime measurements from ships. Here we present the first year-round mooring observations demonstrating that the current is a ubiquitous feature with a volume transport similar to the well-known plume of Denmark Strait overflow water farther downslope. Using reverse particle tracking in a high-resolution numerical model, we investigate the upstream sources feeding the Spill Jet. Three main pathways are identified: particles flowing directly into the Spill Jet from the Denmark Strait sill; particles progressing southward on the East Greenland shelf that subsequently spill over the shelfbreak into the current; and ambient water from the Irminger Sea that gets entrained into the flow. The two Spill Jet pathways emanating from Denmark Strait are newly resolved, and long-term hydrographic data from the strait verifies that dense water is present far onto the Greenland shelf. Additional measurements near the southern tip of Greenland suggest that the Spill Jet ultimately merges with the deep portion of the shelfbreak current, originally thought to be a lateral circulation associated with the sub-polar gyre. Our study thus reveals a previously unrecognized significant component of the Atlantic Meridional Overturning Circulation that needs to be considered to understand fully the ocean׳s role in climate.  相似文献   

19.
台湾海峡南部的海洋锋   总被引:23,自引:7,他引:16  
李立  郭小钢  吴日升 《台湾海峡》2000,19(2):147-156
通过近期水文观测,结合卫星遥感和历史水文资料,对台湾海峡南部海域的海洋锋现象进行了整体分析。结果表明,由于多种水系在此交汇,台湾海峡南部冬、夏季匀有明显锋面发育。受季风气候影响,锋面发育有显著的季节差异。夏季影响本海区的水系主要有韩江冲淡水、上升流、南海水、和黑潮水等。它们的交汇形成了韩江冲淡水羽状锋、台湾浅滩上升流锋、黑潮锋、以及陆架/陆坡锋等的三维锋结构。韩江冲淡水和上升汉对夏季海崃南部浅海峰  相似文献   

20.
The residual currents in Tokyo Bay during four seasons are calculated diagnostically from the observed water temperature, salinity and wind data collected by Unokiet al. (1980). The calculated residual currents, verified by the observed ones, show an obvious seasonal variable character. During spring, a clear anticlockwise circulation develops in the head region of the bay and a strong southwestward current flows in the upper layer along the eastern coast from the central part to the mouth of the bay. During summer, the anticlockwise circulation in the head region is maintained but the southwestward current along the eastern coast becomes weak. During autumn, the preceding anticlockwise circulation disappears but a clockwise circulation develops in the central part of the bay. During winter, the calculated residual current is similar to that during autumn. As a conclusion, the seasonal variation of residual current in Tokyo Bay can be attributed to the variation of the strength of two eddies. The first one is the anticlockwise circulation in the head region of the bay, which develops in spring and summer and disappears in autumn and winter. The second one is the clockwise circulation in the central part of the bay, which develops in autumn and winter, decreases in spring and nearly disappears in summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号