首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) analysis of zircons confirm a Late Devonian to Early Carboniferous age (ca 360–350 Ma) for silicic volcanic rocks of the Campwyn Volcanics and Yarrol terrane of the northern New England Fold Belt (Queensland). These rocks are coeval with silicic volcanism recorded elsewhere in the fold belt at this time (Connors Arch, Drummond Basin). The new U–Pb zircon ages, in combination with those from previous studies, show that silicic magmatism was both widespread across the northern New England Fold Belt (>250 000 km2 and ≥500 km inboard of plate margin) and protracted, occurring over a period of ~15 million years. Zircon inheritance is commonplace in the Late Devonian — Early Carboniferous volcanics, reflecting anatectic melting and considerable reworking of continental crust. Inherited zircon components range from ca 370 to ca 2050 Ma, with Middle Devonian (385–370 Ma) zircons being common to almost all dated units. Precambrian zircon components record either Precambrian crystalline crust or sedimentary accumulations that were present above or within the zone of magma formation. This contrasts with a lack of significant zircon inheritance in younger Permo‐Carboniferous igneous rocks intruded through, and emplaced on top of, the Devonian‐Carboniferous successions. The inheritance data and location of these volcanic rocks at the eastern margins of the northern New England Fold Belt, coupled with Sr–Nd, Pb isotopic data and depleted mantle model ages for Late Palaeozoic and Mesozoic magmatism, imply that Precambrian mafic and felsic crustal materials (potentially as old as 2050 Ma), or at the very least Lower Palaeozoic rocks derived from the reworking of Precambrian rocks, comprise basement to the eastern parts of the fold belt. This crustal basement architecture may be a relict from the Late Proterozoic breakup of the Rodinian supercontinent.  相似文献   

2.
New U–Pb zircon ages and Sr–Nd isotopic data for Triassic igneous and metamorphic rocks from northern New Guinea help constrain models of the evolution of Australia's northern and eastern margin. These data provide further evidence for an Early to Late Triassic volcanic arc in northern New Guinea, interpreted to have been part of a continuous magmatic belt along the Gondwana margin, through South America, Antarctica, New Zealand, the New England Fold Belt, New Guinea and into southeast Asia. The Early to Late Triassic volcanic arc in northern New Guinea intrudes high‐grade metamorphic rocks probably resulting from Late Permian to Early Triassic (ca 260–240 Ma) orogenesis, as recorded in the New England Fold Belt. Late Triassic magmatism in New Guinea (ca 220 Ma) is related to coeval extension and rifting as a precursor to Jurassic breakup of the Gondwana margin. In general, mantle‐like Sr–Nd isotopic compositions of mafic Palaeozoic to Tertiary granitoids appear to rule out the presence of a North Australian‐type Proterozoic basement under the New Guinea Mobile Belt. Parts of northern New Guinea may have a continental or transitional basement whereas adjacent areas are underlain by oceanic crust. It is proposed that the post‐breakup margin comprised promontories of extended Proterozoic‐Palaeozoic continental crust separated by embayments of oceanic crust, analogous to Australia's North West Shelf. Inferred movement to the south of an accretionary prism through the Triassic is consistent with subduction to the south‐southwest beneath northeast Australia generating arc‐related magmatism in New Guinea and the New England Fold Belt.  相似文献   

3.
The northern part of the Tasman Fold Belt System in Queensland comprises three segments, the Thomson, Hodgkinson- Broken River, and New England Fold Belts. The evolution of each fold belt can be traced through pre-cratonic (orogenic), transitional, and cratonic stages. The different timing of these stages within each fold belt indicates differing tectonic histories, although connecting links can be recognised between them from Late Devonian time onward. In general, orogenesis became younger from west to east towards the present continental margin. The most recent folding, confined to the New England Fold Belt, was of Early to mid-Cretaceous age. It is considered that this eastward migration of orogenic activity may reflect progressive continental accretion, although the total amount of accretion since the inception of the Tasman Fold Belt System in Cambrian time is uncertain.The Thomson Fold Belt is largely concealed beneath late Palaeozoic and Mesozoic intracratonic basin sediments. In addition, the age of the more highly deformed and metamorphosed rocks exposed in the northeast is unknown, being either Precambrian or early Palaeozoic. Therefore, the tectonic evolution of this fold belt must remain very speculative. In its early stages (Precambrian or early Palaeozoic), the Thomson Fold Belt was probably a rifted continental margin adjacent to the Early to Middle Proterozoic craton to the west and north. The presence of calc-alkaline volcanics of Late Cambrian Early Ordovician and Early-Middle Devonian age suggests that the fold belt evolved to a convergent Pacific-type continental margin. The tectonic setting of the pre-cratonic (orogenic) stage of the Hodgkinson—Broken River Fold Belt is also uncertain. Most of this fold belt consists of strongly deformed, flysch-type sediments of Silurian-Devonian age. Forearc, back-arc and rifted margin settings have all been proposed for these deposits. The transitional stage of the Hodgkinson—Broken River Fold Belt was characterised by eruption of extensive silicic continental volcanics, mainly ignimbrites, and intrusion of comagmatic granitoids in Late Carboniferous Early Permian time. An Andean-type continental margin model, with calc-alkaline volcanics erupted above a west-dipping subduction zone, has been suggested for this period. The tectonic history of the New England Fold Belt is believed to be relatively well understood. It was the site of extensive and repeated eruption of calc-alkaline volcanics from Late Silurian to Early Cretaceous time. The oldest rocks may have formed in a volcanic island arc. From the Late Devonian, the fold belt was a convergent continental margin above a west-dipping subduction zone. For Late Devonian- Early Carboniferous time, parallel belts representing continental margin volcanic arc, forearc basin, and subduction complex can be recognised.A great variety of mineral deposits, ranging in age from Late Cambrian-Early Ordovician and possibly even Precambrian to Early Cretaceous, is present in the exposed rocks of the Tasman Fold Belt System in Queensland. Volcanogenic massive sulphides and slate belt-type gold-bearing quartz veins are the most important deposits formed in the pre-cratonic (orogenic) stage of all three fold belts. The voicanogenic massive sulphides include classic Kuroko-type orebodies associated with silicic volcanics, such as those at Thalanga (Late Cambrian-Early Ordovician. Thomson Fold Belt) and at Mount Chalmers (Early Permian New England Fold Belt), and Kieslager or Besshi-type deposits related to submarine mafic volcanics, such as Peak Downs (Precambrian or early Palaeozoic, Thomson Fold Belt) and Dianne. OK and Mount Molloy (Silurian—Devonian, Hodgkinson Broken River Fold Belt). The major gold—copper orebody at Mount Morgan (Middle Devonian, New England Fold Belt), is considered to be of volcanic or subvolcanic origin, but is not a typical volcanogenic massive sulphide.The most numerous ore deposits are associated with calc-alkaline volcanics and granitoid intrusives of the transitional tectonic stage of the three fold belts, particularly the Late Carboniferous Early Perman of the Hodgkinson—Broken River Fold Belt and the Late Permian—Middle Triassic of the southeast Queensland part of the New England Fold Belt. In general, these deposits are small but rich. They include tin, tungsten, molybdenum and bismuth in granites and adjacent metasediments, base metals in contact meta somatic skarns, gold in volcanic breccia pipes, gold-bearing quartz veins within granitoid intrusives and in volcanic contact rocks, and low-grade disseminated porphyry-type copper and molybdenum deposits. The porphyry-type deposits occur in distinct belts related to intrusives of different ages: Devonian (Thomson Fold Belt), Late Carboniferous—Early Permian (Hodgkinson—Broken River Fold Belt). Late Permian Middle Triassic (southeast Queensland part of the New England Fold Belt), and Early Cretaceous (northern New England Fold Belt). All are too low grade to be of economic importance at present.Tertiary deep weathering events were responsible for the formation of lateritic nickel deposits on ultramafics and surficial manganese concentrations from disseminated mineralisation in cherts and jaspers.  相似文献   

4.
The northwestern corner of New South Wales consists of the paratectonic Late Proterozoic to Early Cambrian Adelaide Fold Belt and older rocks, which represent basement inliers in this fold belt. The rest of the state is built by the composite Late Proterozoic to Triassic Tasman Fold Belt System or Tasmanides.In New South Wales the Tasman Fold Belt System includes three fold belts: (1) the Late Proterozoic to Early Palaeozoic Kanmantoo Fold Belt; (2) the Early to Middle Palaeozoic Lachlan Fold Belt; and (3) the Early Palaeozoic to Triassic New England Fold Belt. The Late Palaeozoic to Triassic Sydney—Bowen Basin represents the foredeep of the New England Fold Belt.The Tasmanides developed in an active plate margin setting through the interaction of East Gondwanaland with the Ur-(Precambrian) and Palaeo-Pacific plates. The Tasmanides are characterized by a polyphase terrane accretion history: during the Late Proterozoic to Triassic the Tasmanides experienced three major episodes of terrane dispersal (Late Proterozoic—Cambrian, Silurian—Devonian, and Late Carboniferous—Permian) and six terrane accretionary events (Cambrian—Ordovician, Late Ordovician—Early Silurian, Middle Devonian, Carboniferous, Middle-Late Permian, and Triassic). The individual fold belts resulted from one or more accretionary events.The Kanmantoo Fold Belt has a very restricted range of mineralization and is characterized by stratabound copper deposits, whereas the Lachlan and New England Fold Belts have a great variety of metallogenic environments associated with both accretionary and dispersive tectonic episodes.The earliest deposits in the Lachlan Fold Belt are stratabound Cu and Mn deposits of Cambro-Ordovician age. In the Ordovician Cu deposits were formed in a volcanic are. In the Silurian porphyry Cu---Au deposits were formed during the late stages of development of the same volcanic are. Post-accretionary porphyry Cu---Au deposits were emplaced in the Early Devonian on the sites of the accreted volcanic arc. In the Middle to Late Silurian and Early Devonian a large number of base metal deposits originated as a result of rifting and felsic volcanism. In the Silurian and Early Devonian numerous Sn---W, Mo and base metal—Au granitoid related deposits were formed. A younger group of Mo---W and Sn deposits resulted from Early—Middle Carboniferous granitic plutonism in the eastern part of the Lachlan Fold Belt. In the Middle Devonian epithermal Au was associated with rifting and bimodal volcanism in the extreme eastern part of the Lachlan Fold Belt.In the New England Fold Belt pre-accretionary deposits comprise stratabound Cu and Mn deposits (pre-Early Devonian): stratabound Cu and Mn and ?exhalite Au deposits (Late Devonian to Early Carboniferous); and stratabound Cu, exhalite Au, and quartz—magnetite (?Late Carboniferous). S-type magmatism in the Late Carboniferous—Early Permian was responsible for vein Sn and possibly Au---As---Ag---Sb deposits. Volcanogenic base metals, when compared with the Lachlan Fold Belt, are only poorly represented, and were formed in the Early Permian. The metallogenesis of the New England Fold Belt is dominated by granitoid-related mineralization of Middle Permian to Triassic age, including Sn---W, Mo---W, and Au---Ag---As Sb deposits. Also in the Middle Permian epithermal Au---Ag mineralization was developed. During the above period of post-orogenic magmatism sizeable metahydrothermal Sb---Au(---W) and Au deposits were emplaced in major fracture and shear zones in central and eastern New England. The occurrence of antimony provides an additional distinguishing factor between the New England and Lachlan Fold Belts. In the New England Fold Belt antimony deposits are abundant whereas they are rare in the Lachlan Fold Belt. This may suggest fundamental crustal differences.  相似文献   

5.

The Middle Devonian to Early Carboniferous Campwyn Volcanics of coastal central Queensland form part of the fore‐arc basin and eastern flank of the volcanic arc of the northern New England Fold Belt. They consist of a complex association of pyroclastic, hyaloclastic and resedimented, texturally immature volcaniclastic facies associated with shallow intrusions, lavas and minor limestone, non‐volcanic siliciclastics and ignimbrite. Primary igneous rocks indicate a predominantly mafic‐intermediate parentage. Mafic to intermediate pyroclastic rocks within the unit formed from both subaerial and ?submarine to emergent strombolian and phreatomagmatic eruptions. Quench‐fragmented hyaloclastite breccias are widespread and abundant. Shallow marine conditions for much of the succession are indicated by fossil assemblages and intercalated limestone and epiclastic sandstone and conglomerate facies. Volcanism and associated intrusions were widely dispersed in the Campwyn depositional basin in both space and time. The minor component of silicic volcanic products is thought to have been less proximal and derived from eruptive centres to the west, inboard of the basin.  相似文献   

6.

Ophiolitic and metamorphic rocks of the eastern part of the New England Fold Belt in the Shoalwater Bay region and the Percy Isles are grouped in the Marlborough and Shoalwater terranes, respectively. Marlborough terrane units occur on South Island (Percy Isles) and comprise the Northumberland Serpentinite, antigorite serpentinite with rodingite and more silicic dykes and mafic inclusions, the Chase Point Metabasalt, some 800+ metres of pillow lava, and the intervening South Island Shear Zone containing fault‐bounded slices of mafic and ultramafic igneous rocks, schist, and volcaniclastic sedimentary rocks, and zones of mélange. The Shoalwater terrane, an ancient subduction complex, consists of the Shoalwater Formation greenschist facies metamorphosed quartz sandstone and mudstone on North East Island and on the mainland at Arthur Point, the Townshend Formation, amphibolite‐grade quartzite, schist and metabasalt on Townshend Island, and the Broome Head Metamorphics on the western side of Shoalwater Bay, upper amphibolite facies quartz‐rich gneiss. With the exception of a sliver emplaced onto the western Yarrol terrane, possibly by gravity sliding, Shoalwater terrane rocks show the effects of Late Permian polyphase deformation. The Shacks Mylonite Zone along the northwest edge of the Broome Head Metamorphics marks a zone of oblique thrusting and is part of the major Stanage Fault Zone. The latter is a northeast‐striking oblique‐slip dextral tear fault active during Late Permian west‐directed thrusting that emplaced large ultramafic sheets farther south. Marlborough terrane rocks were emplaced along the Stanage Fault Zone, probably from the arc basement on which rocks of the Yarrol terrane were deposited. Structural trends and the distribution of rock units in the Shoalwater Bay‐Percy Isles region are oblique to the overall structural trend of the northern New England Fold Belt, probably due to the presence of a promontory in the convergent margin active in this region in Devonian and Carboniferous time.  相似文献   

7.
Epizonal igneous and metamorphic rocks in northwestern Argentina are exposed in the Sierra de Paiman. The metamorphic rocks are quartzites, phyllites, and slates with soft-body impressions and fossil traces that suggest a late Precambrian-Cambrian age. The igneous rocks were intruded during two major magmatic events according to K---Ar and Rb---Sr data. The older event is represented by different kinds of granitoids and gabbroids, intruded 437–459 Ma. These rocks were emplaced syntectonically in a shear zone that remained active after emplacement, causing extensive mylonitization on the east side of the range. The granitoids show Sr isotopic disturbances possibly related to magma mixing events. Petrologic, geochemical, and isotopic data for these rocks suggest a volcanic-arc setting, probably related to the back arc of the eastward-dipping continental arc of the Famatina Belt. During the younger event (ca. 379 Ma) stocks and dikes of leucogranites were emplaced post-tectonically with respect to the last episode of mylonitization. The leucogranites have syn-collisional signatures and may thus represent the culmination of the volcanic arc of the Famatina Belt.  相似文献   

8.
Abstract

Eight sets of stratigraphic layers and igneous rocks are the basis for the recognition of eight tectonic periods, TP1‐TP8, in the history of the New England and Yarrol Orogens from the Devonian to the opening of the Tasman Sea in the Late Cretaceous. The opening of the Tasman Sea caused the removal of an eastern section of the New England Orogen to form parts of the Lord Howe Rise and Norfolk Ridge. The Gwydir‐Calliope and Kuttung volcanic arc systems of TP1 and TP2 in the Devonian and Carboniferous were possibly W‐facing, and probably formed far to the NE of their present positions relative to the Lachlan Orogen. They moved SW as they developed, and in the latest Carboniferous or earliest Permian were cut obliquely by the Mooki Fault on which there was a dextral strike‐slip of about 500 km before the Kuttung volcanic arc became extinct. In the Late Carboniferous a narrow region on the E side of the Peel Fault was elevated to form the Campbell High which was intruded by the Bundarra Plutonic Suite and has probably remained elevated since then. Plutons of similar ages were intruded into a high to the E of the Bowen Basin (and the northern part of the Mooki Fault). The two highs and the intrusives in them divided the Yarrol Belt of the Yarrol Orogen from the Tamworth Belt of the New England Orogen, and the two belts have developed in different ways since the Visean. In Latest Carboniferous to Early Permian there was a major tectonic change and the Gympie‐Brook Street volcanic arc developed. The New England Orogen was in a back arc setting and broke into a mosaic of microplates, the relative motions between them being accompanied by deposition of diamictites, by metamorphism, by folding on W to NW trending axes, and by the intrusion of the Hillgrove Plutonic Suite. Further W, sediments of the Sydney, Gunnedah and Bowen basins were deposited above the Mooki Fault System and above the two segments of the Kuttung arc system that had been displaced along the Mooki Fault System.  相似文献   

9.
Northeastern China is suited in the eastern part of the Central Asian Orogenic Belt, and it is mainly composed of Erguna Massif, Xing'an Massif, Songnen-Zhangguangcai Range Massif, Jiamusi Massif, and Nadanhada Terrane. The Late Paleozoic magmatism was relatively intense accompanied with multiple stages of amalgamation in several microcontinents, therefore these magmatic products are an important media in recording the Late Paleozoic tectonic evolution history of the northeastern China. According to the petrological, geochronological, and geochemical characteristics of Late Paleozoic igneous rocks in the northeastern China, we found that the Late Paleozoic magmatism was based on Carboniferous -Permian igneous rocks. The Early Carboniferous magmatic products are gabbro, diorite and granite, the Late Carboniferous magmatic products are mainly composed of granitoids with minor gabbro, and the Permian magmatic products are mainly granitoids. Meanwhile, these Late Paleozoic igneous rocks mostly exhibit typical arc characteristics. In addition, the Late Paleozoic igneous rocks in eastern Jilin and Heilongjiang provinces are mainly Permian granitoids with minor gabbro, and these Permian igneous rocks show typical arc characteristics. Combined with petrological, geochronological, geochemical and isotopic characteristics, we suggest that the Late Paleozoic igneous rocks in the Great Xing'an Range and eastern Jilin and Heilongjiang provinces underwent different magmatic evolution history, and the microcontinents in NE China had different crustal growth history.  相似文献   

10.

Devonian and Carboniferous (Yarrol terrane) rocks, Early Permian strata, and Permian‐(?)Triassic plutons outcrop in the Stanage Bay region of the northern New England Fold Belt. The Early‐(?)Middle Devonian Mt Holly Formation consists mainly of coarse volcaniclastic rocks of intermediate‐silicic provenance, and mafic, intermediate and silicic volcanics. Limestone is abundant in the Duke Island, along with a significant component of quartz sandstone on Hunter Island. Most Carboniferous rocks can be placed in two units, the late Tournaisian‐Namurian Campwyn Volcanics, composed of coarse volcaniclastic sedimentary rocks, silicic ash flow tuff and widespread oolitic limestone, and the conformably overlying Neerkol Formation dominated by volcaniclastic sandstone and siltstone with uncommon pebble conglomerate and scattered silicic ash fall tuff. Strata of uncertain stratigraphic affinity are mapped as ‘undifferentiated Carboniferous’. The Early Permian Youlambie Conglomerate unconformably overlies Carboniferous rocks. It consists of mudstone, sandstone and conglomerate, the last containing clasts of Carboniferous sedimentary rocks, diverse volcanics and rare granitic rocks. Intrusive bodies include the altered and variably strained Tynemouth Diorite of possible Devonian age, and a quartz monzonite mass of likely Late Permian or Triassic age.

The rocks of the Yarrol terrane accumulated in shallow (Mt Holly, Campwyn) and deeper (Neerkol) marine conditions proximal to an active magmatic arc which was probably of continental margin type. The Youlambie Conglomerate was deposited unconformably above the Yarrol terrane in a rift basin. Late Permian regional deformation, which involved east‐west horizontal shortening achieved by folding, cleavage formation and east‐over‐west thrusting, increases in intensity towards the east.  相似文献   

11.
Extrusive and high level intrusive Early Devonian keratophyres are the oldest in situ igneous rocks in the Tamworth Block of the New England Fold Belt of eastern Australia. They show extensive evidence of degradation, including the destruction of magmatic phases, the growth of low grade metamorphic minerals, and changes in composition involving the dilution of elemental abundances in response to silica addition. Relations between the less mobile minor and trace elements, and limited data on clinopyroxene compositions, lead to the conclusion that these Early Devonian volcanic rocks are mostly calc‐alkaline volcanic arc andesites with minor dacite. These rocks unconformably overlie a sequence of Early Palaeozoic forearc basin deposits, indicating that the Early Devonian marks a period of readjustment of tectonic elements within the New England Fold Belt, associated with a marked east‐directed stepping out of the magmatic arc. Generation of the keratophyres in a subduction zone environment limits the position of the trench to 100 km east of the Peel Fault System.  相似文献   

12.
张喜  王信水  江拓  高俊 《地球科学》2022,47(3):1038-1058
位于中亚造山带西段和塔里木克拉通之间的天山造山带的古生代构造演化历史目前还存在很大争议,其广泛发育的古生代岩浆岩则是揭示俯冲增生过程和构造体制转换的重要岩石探针.本文对我国西天山巴仑台地区的7个古生代岩浆岩进行了系统的年代学和地球化学研究.LA-ICP-MS锆石U-Pb定年限定它们的结晶年龄在319~307 Ma之间,...  相似文献   

13.
The Mayo Kebbi region in SW Chad is part of the NNE-SSW trending Neoproterozoic Central African Fold Belt (CAFB) and is made up of three calc-alkaline granitoid suites emplaced into a metavolcanic–metasedimentary sequence. The first suite is represented by mafic to intermediate rocks (gabbro-diorite and metadiorite) emplaced between 737 and 723 Ma during early Pan-African convergence. The second consists of the Mayo Kebbi batholith and includes tonalites, trondhjemites and granodiorites, emplaced during several magmatic pulses between 665 and 640 Ma. The third suite includes porphyritic granodiorite and hypersthene monzodiorite dated at ca. 570 Ma. The Mayo Kebbi domain extends southward into Cameroon and is interpreted as a middle Neoproterozoic arc stabilized at ca. 650 Ma. This study also revealed a diachronous evolution between Mayo Kebbi and western Cameroon (e.g., the Poli region). The overall evolution of this part of the CAFB is interpreted as the result of successive development of magmatic arcs, since ca. 740 Ma, and tectonic collage of three different domains (Adamawa-Yade, Mayo Kebbi, and West Cameroon) which, after suturing, were intruded by post-collisional granitoids (<600 Ma).  相似文献   

14.
Detrital zircon from the Carboniferous Girrakool Beds in the central Tablelands Complex of the southern New England Orogen, Australia, is dominated by ca 350–320 Ma grains with a peak at ca 330 Ma; there are very few Proterozoic or Archean grains. A maximum deposition age for the Girrakool Beds of ca 309 Ma is identified. These data overlap the age of the Carboniferous Keepit arc, a continental volcanic arc along the western margin of the Tamworth Belt. Zircon trace-element and isotopic compositions support petrographic evidence of a volcanic arc provenance for sedimentary and metasedimentary rocks of the central Tablelands Complex. Zircon Hf isotope data for ca 350–320 Ma detrital grains become less radiogenic over the 30 million-year record. This pattern is observed with maturation of continental volcanic arcs but is opposite to the longer-term pattern documented in extensional accretionary orogens, such as the New England Orogen. Volcanic activity in the Keepit arc is inferred to decrease rapidly at ca 320 Ma, based on a major change in the detrital zircon age distribution. Although subduction continues, this decrease is inferred to coincide with the onset of trench retreat, slab rollback and the eastward migration of the magmatic arc that led to the Late Carboniferous to early Permian period of extension, S-type granite production and intrusion into the forearc basin, high-temperature–low-pressure metamorphism, and development of rift basins such as the Sydney–Gunnedah–Bowen system.  相似文献   

15.
The eastern part of the Tasman Orogenic Zone (or Fold Belt System) comprises the Hodgkinson—Broken River Orogen (or Fold Belt) in the north and the New England Orogen (or Fold Belt) in the centre and south. The two orogens are separated by the northern part of the Thomson Orogen.The Hodgkinson—Broken River Orogen contains Ordovician to Early Carboniferous sequences of volcaniclastic flysch with subordinate shelf carbonate facies sediments. Two provinces are recognized, the Hodgkinson Province in the north and the Broken River Province in the south. Unlike the New England Orogen where no Precambrian is known, rocks of the Hodgkinson—Broken River Orogen were deposited immediately east of and in part on, Precambrian crust.The evolution of the New England Orogen spans the time range Silurian to Triassic. The orogen is orientated at an acute angle to the mainly older Thomson and Lachlan Orogens to the west, but the relationships between all three orogens are obscured by the Permian—Triassic Bowen and Sydney Basins and younger Mesozoic cover. Three provinces are recognized, the Yarrol Province in the north, the Gympie Province in the east and the New England Province in the south.Both the Yarrol and New England Provinces are divisible into two zones, western and eastern, that are now separated by major Alpine-type ultramafic belts. The western zones developed at least in part on early Palaeozoic continental crust. They comprise Late Silurian to Early Permian volcanic-arc deposits (both island-arc and terrestrial Andean types) and volcaniclastic sediments laid down on unstable continental shelves. The eastern zones probably developed on oceanic crust and comprise pelagic sediments, thick flysch sequences and ophiolite suite rocks of Silurian (or older?) to Early Permian age. The Gympie Province comprises Permian to Early Triassic volcanics and shallow marine and minor paralic sediments which are now separated from the Yarrol Province by a discontinuous serpentinite belt.In morphotectonic terms, a Pacific-type continental margin with a three-part arrangement of calcalkaline volcanic arc in the west, unstable volcaniclastic continental shelf in the centre and continental slope and oceanic basin in the east, appears to have existed in the New England Orogen and probably in the Hodgkinson—Broken River Orogen as well, through much of mid- to late Palaeozoic time. However, the easternmost part of the New England Orogen, the Gympie Province, does not fit this pattern since it lies east of deepwater flysch deposits of the Yarrol Province.  相似文献   

16.
North Xinjiang, Northwest China, is made up of several Paleozoic orogens. From north to south these are the Chinese Altai, Junggar, and Tian Shan. It is characterized by widespread development of Late Carboniferous–Permian granitoids, which are commonly accepted as the products of post-collisional magmatism. Except for the Chinese Altai, East Junggar, and Tian Shan, little is known about the Devonian and older granitoids in the West Junggar, leading to an incomplete understanding of its Paleozoic tectonic history. New SHRIMP and LA-ICP-MS zircon U–Pb ages were determined for seventeen plutons in northern West Junggar and these ages confirm the presence of Late Silurian–Early Devonian plutons in the West Junggar. New age data, combined with those available from the literature, help us distinguish three groups of plutons in northern West Junggar. The first is represented by Late Silurian–Early Devonian (ca. 422 to 405 Ma) plutons in the EW-striking Xiemisitai and Saier Mountains, including A-type granite with aegirine–augite and arfvedsonite, and associated diorite, K-feldspar granite, and subvolcanic rocks. The second is composed of the Early Carboniferous (ca. 346 to 321 Ma) granodiorite, diorite, and monzonitic and K-feldspar granites, which mainly occur in the EW-extending Tarbgatay and Saur (also spelled as Sawuer in Chinese) Mountains. The third is mainly characterized by the latest Late Carboniferous–Middle Permian (ca. 304 to 263 Ma) granitoids in the Wuerkashier, Tarbgatay, and Saur Mountains.As a whole, the three epochs of plutons in northern West Junggar have different implications for tectonic evolution. The volcano-sedimentary strata in the Xiemisitai and Saier Mountains may not be Middle and Late Devonian as suggested previously because they are crosscut by the Late Silurian–Early Devonian plutons. Therefore, they are probably the eastern extension of the Early Paleozoic Boshchekul–Chingiz volcanic arc of East Kazakhstan in China. It is uncertain at present if these plutons might have been generated in either a subduction or post-collisional setting. The early Carboniferous plutons in the Tarbgatay and Saur Mountains may be part of the Late Paleozoic Zharma–Saur volcanic arc of the Kazakhstan block. They occur along the active margin of the Kazakhstan block, and their generation may be related to southward subduction of the Irtysh–Zaysan Ocean between Kazakhstan in the south and Altai in the north. The latest Late Carboniferous–Middle Permian plutons occur in the Zharma–Saur volcanic arc, Hebukesaier Depression, and the West Junggar accretionary complexes and significantly postdate the closure of the Irtysh–Zaysan Ocean in the Late Carboniferous because they are concurrent with the stitching plutons crosscutting the Irtysh–Zaysan suture zone. Hence the latest Late Carboniferous–Middle Permian plutons were generated in a post-collisional setting. The oldest stitching plutons in the Irtysh–Zaysan suture zone are coeval with those in northern West Junggar, together they place an upper age bound for the final amalgamation of the Altai and Kazakhstan blocks to be earlier than 307 Ma (before the Kaslmovian stage, Late Carboniferous). This is nearly coincident with widespread post-collisional granitoid plutons in North Xinjiang.  相似文献   

17.
Two major divisions of the New England Fold Belt, Zone A and Zone B, are separated by the Peel Fault. Deposition in these two zones was probably contemporaneous (Lower Palaeozoic ‐ Lower Permian). Terminal orogenesis in both zones was also contemporaneous (Middle Permian) but whereas in Zone A deformation was only moderate, metamorphism was of burial type, and granitic emplacement was uncommon, in Zone B many rocks were severely deformed and regionally metamorphosed, and both syn‐tectonic and post‐tectonic granites are widespread.

Pre‐orogenic palaeogeography is envisaged in terms of an evolving volcanic chain ‐ fore‐chain basin ‐ trench system, with an outer non‐volcanic arc developed in the Carboniferous. Cessation of movement on a subduction zone dipping westward beneath the volcanic chain is believed to have caused the Middle Permian deformation, but neither metamorphism nor the granitic rocks are directly related to subduction.  相似文献   

18.
The Batouri gold mining area in southeastern Cameroon is part of the Adamawa–Yadé Domain of the Central African Fold Belt (Pan-African). It is underlain by a variety of granitic rocks, including alkali-feldspar granite, syeno-monzogranite, granodiorite, and tonalite. Geochemical data suggest that these rocks formed by differentiation of I-type tonalitic magma under oxidizing conditions in a continental volcanic arc setting. U–Pb dating of zircons from gold-associated monzogranite-granodiorite at Kambélé gave concordant ages of 619 ± 2 and 624 ± 2 Ma, while Ar–Ar dating of alkali-feldspar granite yielded a non-plateau maximum age of 640–620 Ma. These ages imply that the Batouri granitoids were emplaced during the collision of the West African Craton and the Congo Craton.

The geochemical characteristics of the Batouri granitoids as well as their oxidized state (magnetite series) are typical of gold-associated felsic rocks in subduction settings elsewhere. The similarities in age, composition, and geochemical affinities of these granitoids with those reported from other localities in the Adamawa–Yadé Domain reinforce the earlier assumption that the granitic rocks of this domain represent parts of a regional-scale batholith, with commonly small-scale, high-grade auriferous quartz veins in structurally favourable sites. The spatial and temporal association of gold mineralization and the Batouri granitoids may suggest potential for regional-scale, high-tonnage, granite-related gold ore.  相似文献   

19.
New U–Pb detrital zircon ages from Triassic metasandstones of the Torlesse Terrane in New Zealand are compared with 40Ar/39Ar muscovite data and together, reveal four main source components: (i) major, Triassic–Permian (210–270 Myr old) and (ii) minor, Permian–Carboniferous (280–350 Myr old) granitoids (recorded in zircon and muscovite data); (iii) minor, early middle Palaeozoic, metamorphic rocks, recorded mainly by muscovite, 420–460 Myr old, and (iv) minor, Late Precambrian–Cambrian igneous and metamorphic complexes, 480–570 Myr old, recorded by zircon only. There are also Proterozoic zircon ages with no clear grouping (580–1270 Myr). The relative absence of late Palaeozoic (350–420 Myr old) components excludes granitoid terranes in the southern Lachlan Fold Belt (Australia) and its continuation into North Victoria Land (East Antarctica) and Marie Byrd Land (West Antarctica) as a potential source for the Torlesse. The age data are compatible with derivation from granitoid terranes of the northern New England Orogen (and hinterland) in NE Australia. This confirms that the Torlesse Terrane of New Zealand is a suspect terrane, that probably originated at the NE Australian, Permian–Triassic, Gondwanaland margin and then (200–120 Ma) moved 2500 km southwards to its present New Zealand position by the Late Cretaceous (90 Ma). This sense of movement is analogous to that suggested for Palaeozoic Mesozoic terranes at the North American Pacific margin.  相似文献   

20.
Regional geochronological studies indicate that mid-Cretaceous plutonism (the Hohonu Suite at 110 Ma) in the Hohonu Batholith, Western Province of New Zealand, occurred during a period of rapid tectonic change in the SW Pacific portion of Gondwana. The 30–40 m.y. preceding Hohonu Suite magmatism were dominated by the subduction-related plutonism of the Median Tectonic Zone volcanic arc. Between 125–118 Ma there was a major collisional event, inferred to be the result of collision between the Median Tectonic Zone and the Western Province. This collision resulted in melting of the Median Tectonic Zone arc underplate and generation of a distinctive suite of alkali-calcic granitoids, termed the Separation Point Suite. At 110 Ma there was another pulse of magmatism, restricted to the Buller terrane of the Western Province, and including the Hohonu Suite granitoids. This was followed almost immediately by extension, culminating in the opening of the Tasman Sea some 30 m.y. later. The Hohonu Suite granitoids overlap temporally with the last vestiges of collisional Separation Point magmas and the onset of crustal extension in the Western Province, and thus represent magmatism in a post-collisional setting. Hohonu Suite magmas are typically calc-alkaline, but retain a chemical signature which suggests that the earlier Separation Point Suite magmas and/or sources were involved in Hohonu Suite petrogenesis. A model is proposed in which rapid isothermal uplift, resulting from the post-collisional collapse of continental crust previously thickened during the Median Tectonic Zone collision, caused melting of lower continental crust to generate the Hohonu Suite granitoids. In this example, granitoid composition is a consequence of the composition of the source rocks and the conditions present during melting, and no geochemical signature indicative of the tectonic setting during magmatism is present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号