首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Deposition of atmospheric particulate PCBs in suburban site of Turkey   总被引:2,自引:1,他引:2  
Dry deposition and air concentration samples were collected from July 2004 to May 2005 at a suburban site in Turkey. A water surface sampler (WSS) was used to measure directly the dry deposition flux of particulate polychlorinated biphenyls (PCBs) while a high volume air sampler (HVAS) was employed to collect air samples. Particulate PCB concentrations accounted for 15% of total PCBs (gas + particle phase) at the site. The overall particulate phase PCB flux ranged from 2 to 160 ng m− 2 d− 1 with an average of 46.3 ± 40.6 ng m− 2 d− 1. Forty one PCB congeners were targeted in the samples while twenty one congeners were found to be higher than detection limits in deposition samples. Fluxes for homolog groups ranged between 0.9 (7-CBs) and 21.0 (3-CBs) ng m− 2 d− 1. Measured dry deposition fluxes were lower than the ones usually reported for urban sites. Average PCB dry deposition velocity, calculated using flux values and concurrently measured atmospheric concentrations, was 1.26 ± 1.86 cm s− 1 depended on size distribution of particles, atmospheric PCB concentrations and meteorological conditions.  相似文献   

2.
Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were determined in urban air samples of Konya, Turkey between August 2006 and May 2007. The concentrations of pollutants in both the gas and particulate phase were separately analysed. The average total (gas + particulate) concentrations of PAHs, PCBs and OCPs were determined as 206 ng m− 3, 0.106 ng m− 3, 4.78 ng m− 3 respectively. All of the investigated target compounds were dominantly found in the gas phase except OCPs. Higher air concentrations of PAHs were found at winter season while the highest concentrations of PCBs were determined in September. The highest OCPs were detected in October and in March. In urban air of Konya, PCB 28 and PCB 52 congeners represent 46% and 35% of total PCBs while Phenanthrene, Fluoranthene, Pyrene accounted for 29%, 13%, 10% of total PAHs. HCH compounds (α + β + γ + δ-HCH), total DDTs (p,p′-DDE, p,p′-DDD, p,p′-DDT), Endosulfan compounds (Endosulfan I, Endosulfan II, Endosulfan sulfate) were dominantly determined as 30%, 21%, 20% of total OCPs respectively. Considering the relation between these compounds with temperature, there was no significant correlation observed. Despite banned/restricted use in Turkey, some OCPs were determined in urban air. These results demonstrated that they are either illegally being used in the course of agricultural activity and gardens in Konya or they are residues of past use in environment. According to these results, it can be suggested that Konya is an actively contributing region to persistent organic pollutants in Turkey.  相似文献   

3.
Aerosol size distributions were measured with Micro Orifice Uniform Deposit Impactor (MOUDI) cascade impactors at the rural Angiola and urban Fresno Supersites in California's San Joaquin Valley during the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) winter campaign from December 15, 2000 to February 3, 2001. PM2.5 filter samples were collected concurrently at both sites with Sequential Filter Samplers (SFS). MOUDI nitrate (NO3) concentrations reached 66 μg/m3 on January 6, 2001 during the 1000–1600 PST (GMT-8) period. Pair-wise comparisons between PM2.5 MOUDI and SFS concentrations revealed high correlations at the Angiola site (r > 0.93) but more variability (r < 0.85) at the Fresno site for NO3, sulfate (SO4=), and ammonium (NH4+). Correlations were higher at Fresno (r > 0.87) than at Angiola (r < 0.7) for organic carbon (OC), elemental carbon (EC), and total carbon (TC). NO3 and SO4= size distributions in Fresno were multi-modal and wider than the uni-modal distributions observed at Angiola. Geometric mean diameters (GMD) were smaller for OC and EC than for NO3 and SO4= at both sites. OC and EC were more concentrated on the lowest MOUDI stage (0.056 µm) at Angiola than at Fresno. The NO3 GMD increased from 0.97 to 1.02 µm as the NO3 concentration at Angiola increased from 43 to 66 µg m− 3 during a PM2.5 episode from January 4–7, 2001. There was a direct relationship between GMD and NO3 and SO4= concentrations at Angiola but no such relationships for OC or EC. This demonstrates that secondary aerosol formation increases both concentration and particle size for the rural California environment.  相似文献   

4.
Low-molecular-weight carbonyl compounds, generated by photochemical reactions in the atmosphere and found in the exhaust of motor vehicles, have recently come to the attention of researchers because some of them are suspected carcinogens or mutagens. Six bifunctional carbonyl compounds were detected and measured in a suburban site 30 km northwest of the Tokyo metropolitan area. Samples were taken on five sunny days between 2 August and 11 August 2003 with a low-volume denuder and three-filter tandem system using O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA) as a sorbent. Bifunctional carbonyls were measured by gas chromatography–mass spectrometry after two derivatization processes with PFBHA and N,O-bis(trimethylsilyl)-trifluoroacetamide (BSTFA). The average total (gas plus particle) concentrations were 162.8 ng m− 3 for pyruvic acid, 113.7 ng m− 3 for methylglyoxal, 36.0 ng m− 3 for glycolaldehyde and 58.6 ng m− 3 for glyoxal.  相似文献   

5.
The main objective of this study is to investigate the chemical characteristics of biomass burning aerosol and its impact on regional air quality during an agricultural waste burning period in early summer in the rural areas of Korea. A 12-h integrated intensive sampling of biomass burning aerosol in the fine and coarse modes was conducted on 2–20 June 2003 in Gwangju, Korea. The collected samples were analyzed for concentrations of mass, ionic, elemental, and carbonaceous species. Average concentrations of fine and coarse mass were measured to be 67.9 and 18.7 μg m− 3 during the biomass burning period, 41.9 and 18.8 μg m− 3 during the haze period, and 35.6 and 13.3 μg m− 3 during the normal period, respectively. An exceptionally high PM2.5 concentration of 110.3 μg m− 3 with a PM2.5/PM10 ratio of 0.79 was observed on 6 June 2003 during the biomass burning period. The potassium ratio method was used to identify biomass burning samples. The average ratio of potassium in the fine mode to the coarse mode (FK/CK) was 23.8 during the biomass burning period, 6.0 during the haze period, and 4.7 during the normal period, respectively. A FK/CK ratio above 9.2 was considered a criterion for biomass burning event in this study. Particulate matter from the open field burning of agricultural waste has an adverse impact on visibility, human health, and regional air quality.  相似文献   

6.
Coastal nucleation events and behavior of cluster ions were characterized through the measurements of air ion mobility distributions at the Mace Head research station on the west coast of Ireland in 2006. We measured concentrations of cluster ions and charged aerosol particles in the size range of 0.34–40 nm. These measurements allow us to characterize freshly nucleated charged particles with diameters smaller than 3 nm. The analysis shows that bursts of intermediate ions (1.6–7 nm) are a frequent phenomenon in the marine coastal environment. Intermediate ion concentrations were generally close to zero, but during some nucleation episodes the concentrations increased to several hundreds per cm3. Nucleation events occurred during most of the measurement days. We classified all days into one of seven classes according to the occurrence and type of new particle formation. Nucleation events were observed during 207 days in 2006, most prominently in the spring and summer months. Rain-induced events, in turn, were observed during 132 days. Particle formation and growth events mostly coincided with the presence of low tide. Also small cluster ions (0.34–1.6 nm) were characterized. Average concentrations of small ions were 440 cm− 3 for the negative ions and 423 cm− 3 for the positive ions. Average mean mobilities of small ions were 1.86 cm2V− 1s− 1 and 1.49 cm2V− 1s− 1 for the negative and positive polarities, respectively. Concentrations of small ions were observed to be strongly dependent on the variations of meteorological parameters including wind speed and direction.  相似文献   

7.
Atmospheric PAH concentrations were determined in Gulbahce district of Bursa, Turkey between August 2004 and April 2005. Measured PAH concentrations were classified as heating and non-heating season samples. The concentrations of total PAHs in heating season were almost ten times higher than those in non-heating season. Diagnostic ratios and factor analysis results show that in the heating season traffic along with residential heating emissions heavily influence PAH concentrations. The plot of logKp versus logPL0 for all the data set of heating and non-heating season samples gave significantly different slopes. The slope for the heating season samples (− 0.92) was steeper than the one for the non-heating season samples (− 0.78). The partitioning results for individual samples further indicated that slope values varied depending on air parcel trajectories. Air parcels traveled over water (either over the Black Sea or Aegean Sea) prior to arriving at the sampling site had less steep slopes. Partitioning of PAHs was also investigated by comparing experimentally determined Kp values with the results obtained both from octanol-based model (Kp(Oct.)) and soot and octanol-based model (Kp (Soot + Oct.)). Both models were useful in predicting the experimental Kp values. However, they did not explain the observed variability in the experimental Kp values.  相似文献   

8.
In the present study, the wet and dry depositions of particulate NO3, SO42−, Cl and NH4+ were measured using a wet/dry sampler as a surrogate surface. Gas phase compounds of nitrogen, sulfur and chloride (HNO3, NH3, SO2 and HCl) were measured by an annular denuder system (ADS) equipped with a back up filter for the collection of particles with diameter ≤ 5 μm. Ambient concentrations of NO, NO2 and SO2 were also taken into consideration. Sampling was conducted at an urban site in the center of the city of Thessaloniki, northern Greece. The presence of the aerosol species was examined by cold/warm period and the possible compounds in dry deposits were also considered. Dry deposition fluxes were found to be well correlated with ambient particle concentrations in order to be used for the calculation of particle deposition velocity. Average particulate deposition velocities calculated were 0.36, 0.20, 0.20 and 0.10 cm s− 1 for Cl, NO3, SO42− and NH4+, respectively. Total dry deposition fluxes (gas and particles) were estimated at 3.24 kg ha− 1 year− 1 for chloride (HCl + p-Cl), 9.97 kg ha− 1 year− 1 for nitrogen oxidized (NO + NO2 + HNO3 + p-NO3), 5.32 kg ha− 1 year− 1 for nitrogen reduced (NH3 + p-NH4) and 15.77 kg ha− 1 year− 1 for sulfur (SO2 + p-SO4). 70–90% total dry deposition was due to gaseous species deposition. The contribution of dry deposition to the total (wet + dry) was at the level of 60–70% for sulfur and nitrogen (oxidized and reduced), whereas dry chloride deposition contributed 35% to the total. The dry-to-wet deposition ratio of all the studied species was found to be significantly associated with the precipitation amount, with nitrogen species being better and higher correlated. Wet, dry and total depositions measured in Thessaloniki, were compared with other countries of Europe, US and Asia.  相似文献   

9.
The formation of dew, deposition of frost and accumulation of snow mainly on the upper domes of a non-ventilated net radiometer seriously affect the measurement of available energy (net radiation). Net radiometers measure radiation, and energy balances and are widely used for estimation of evapotranspiration throughout the world. To study the effects of dew, frost, and snow on a non-ventilated net radiometer, a radiation station was set up which uses 2 CM21 Kipp & Zonen pyranometers (one inverted), 2 CG1 Kipp & Zonen pyrgeometers (one inverted), along with a Q7.1 net radiometer (Radiation & Energy Balance Systems, Inc.; REBS) in a semi-arid mountainous valley in Logan, Utah, U.S.A. The pyranometers and pyrgeometers were ventilated using 4 CV2 Kipp & Zonen ventilation systems. The net radiometer was not ventilated. The ventilation of pyranometers and pyrgeometers prevents dew and frost deposition and snow accumulation which otherwise would disturb measurements. All sensors were installed at about 3.0 m above the ground, which was covered with natural vegetation during the growing season (May–September). The incoming and outgoing solar or shortwave radiation, the incoming (atmospheric) and outgoing (terrestrial) longwave radiation, and the net radiation have been continuously measured by pyranometers, pyrgeometers and a net radiometer, respectively, since 1995. These parameters have been measured every 2 s and averaged into 20 min. To evaluate the effects of dew, frost, and snow, three days were chosen: 26 April 2004 with early morning dew, 6 January 2005 with an early morning frost, and the snowy day of 24 February 2005. Dew formation, frost deposition, and snow accumulation occurred mainly on the upper dome of the non-ventilated Q7.1 net radiometer on the related days, while the ventilated Kipp & Zonen system was free of dew, frost and snow. Net radiation measured by the non-ventilated net radiometer Rn,unvent. during dew and frost periods of the above-mentioned days was greater than ventilated ones Rn,vent. (− 0.2 MJ m− 2 vs. − 0.8 MJ m− 2 during almost 4 h on 26 April 2004, and − 0.2 MJ m− 2 vs. − 0.7 MJ m− 2 during almost 6.5 h on 6 January 2005). The reason for higher reading by the non-ventilated net radiometer during dew and frost periods was due to emission of additional longwave radiation from water and ice crystals formed mainly on the upper dome of the Q7.1 net radiometer. In contrast, during the snowy day of 24 February 2005, the Rn,unvent. was less than Rn,vent. (− 4.00 MJ m− 2 vs. 0.77 MJ m− 2, mainly from sunrise to sunset). The extremely low Rn,unvent. measured by the non-ventilated net radiometer on 24 February 2005 is due to blocking of the incoming solar radiation (mainly diffuse radiation) by the snow-covered upper dome.  相似文献   

10.
A high-volume cascade impactor, equipped with a PM10 inlet, was used to collect size-segregated aerosol samples during the summer of 2004 at two Portuguese locations: a coastal-rural area (Moitinhos) and an urban area (Oporto). Concentrations of airborne particulate matter (PM), total carbon (TC), organic carbon (OC), elemental carbon (EC), and water-soluble organic carbon (WSOC) were determined for the following particle size ranges: < 0.49, 0.49–0.95, 0.95–3.0, and 3.0–10 µm. The total PM mass concentrations at the urban and coastal-rural sites ranged from 22.8 to 79.6 μg m− 3 and 19.9 to 28.2 μg m− 3, respectively, and more than 56% of the total aerosol mass was found in the fractions below 3.0 μm. At both locations the highest concentrations of OC and EC were found in the submicrometer size range. The regional variability for the OC and EC concentrations, with the highest concentrations being found in the urban area, was related to the contribution of local primary sources (mostly traffic emissions). It was also verified an enrichment of the small size particles in WSOC, representing on average 37.3(± 12.4)% and 59.7(± 18.0)% of OC in the very fine aerosol at the coastal-rural and urban areas, respectively. The amount of secondary OC calculated by the minimum OC/EC ratio method indicates that secondary organic aerosol formation was important throughout the study at both sites. The obtained results suggest that long-range transport and favourable summer conditions for photochemical oxidation are key factors determining secondary OC formation in the coastal-rural and urban areas. The ultraviolet absorption properties of the chromophoric constituents of the WSOC fractions were also different among the different particle size ranges and also between the two sampling locations, thus suggesting the strong impact of the diverse emission sources into the composition of the size-segregated organic aerosol.  相似文献   

11.
Black carbon relationships with emissions and meteorology in Xi'an, China   总被引:4,自引:0,他引:4  
Aerosol black carbon (BC) was measured every 5 min at Xi'an, China from September 2003 to August 2005. Daily BC concentrations ranged from 2 to 65 μg m− 3, averaging 14.7 ± 9.5 μg m− 3 and displayed clear summer minima and winter maxima. BC typically peaked between 0800 and 1000 LST and again between 2000 and 2200 LST, corresponding with morning and evening traffic combined with nighttime residential cooking and heating. The nocturnal peak was especially evident in winter, when more domestic heating is used and pollutant-trapping surface-inversions form earlier than in summer. BC frequency distributions the most commonly occurring concentrations occurred between 5 and 10 μg m− 3 in all four seasons. BC ranged from 1.6% and 15.6%, and averaged 8.3% of PM2.5. A clear inverse relationship between BC and wind speed (WS) was found when WS was below 2.5 to 3.0 m s− 1, implying a local origin for BC. Mixed layer depths (MLDs) were shallower during BC episodes compared to cleaner conditions.  相似文献   

12.
Measurements of positive and negative small atmospheric ion concentrations have been made regularly since 1968 at the National Observatory of Athens (NOA). In this paper the 17-year period 1968–1984 is summarized. The diurnal and annual variations are examined, and Fourier analysis is also used for the study of the diurnal variation. The concentrations of small ions follow a double diurnal course. The maxima occur near 3–5 h and 13–16 h local time (LT = GMT + 2 h). The minima are observed at 6–8 h and 21–23 h. The annual course of small ions presents maximum concentration values around the summer season. The mean of the small ion concentration (SIC) for the 17-year period (1968–1984) is n+ = 188.8 ions/cm3 for positive ions and n = 151.1 ions/cm3 for negative ions. Their ratio is equal to 1.25. The year-to-year variation of SIC for the examined period shows a negative trend. The results from multiple regression analysis show that wind speed and SIC are positively correlated, while relative humidity, smoke and sulphur dioxide are negatively correlated.  相似文献   

13.
This paper presents the development of a simple and precise analytical method for the determination of nitrogen dioxide in ambient air. In this method nitrogen dioxide is determined in the form of nitrite. The determination of nitrogen dioxide needs no reagents except for a solution of sodium hydroxide mixed with sodium arsenite (NaOH–Na2As2O3) which is used as an absorbing reagent for trapping the nitrogen dioxide from the atmosphere in the form of nitrite, i.e., a prior analysis step. The determination of submicrogram levels of nitrogen dioxide is based on the selection of a strong and sharp quantitative analytical peak at 1380 cm− 1 using diffuse reflectance infrared spectroscopy (DRS-FTIR). The limit of detection (LOD) and the limit of quantification of the method are found to be 0.008 μg g− 1 NO2 and 0.05 μg g− 1 NO2, respectively. The precision in terms of standard deviation and relative standard deviation value at a level of 2 μg NO2 / 0.1 g KBr for n = 10 is found to be 0.036 μg NO2 and 1.8%, respectively. The relative standard deviation (n = 10) for the determination of nitrogen dioxide in ambient air was observed to be in the range 2.6–3.8%. The method proposed is time-saving and eliminates the slow and cumbersome steps of pH maintenance of the reaction mixture and color formation of the EPA recommended spectrophotometric and other methods for quantitative determination of nitrogen dioxide.  相似文献   

14.
We present results of direct aerosol radiative forcing over a French Mediterranean coastal zone based on one year of continuous observations of aerosol optical properties during 2005–2006. Monthly-mean aerosol optical depth at 440 nm ranged between 0.1 and 0.34, with high Angstrom coefficient (α > 1.2). The single scattering albedo (at 525 nm) estimated at the surface ranged between 0.7 and 0.8, indicating significant absorption. The presence of aerosols over the Mediterranean zone during summer decreases the shortwave radiation reaching the surface by as much as 26 ± 3.9 W m− 2, and increases the top of the atmosphere reflected radiation by as much as 5.2 ± 1.0 W m− 2. The shortwave atmospheric absorption translates to an atmospheric heating of 2.5 to 4.6 K day− 1. Concerted efforts are needed for investigating the possible impact of the increase in heating rate on the maintenance of heat-waves frequently occurring over this coastal region during summer time.  相似文献   

15.
In this paper warm cloud microphysical parameters including cloud droplet number concentration (Nc), liquid water content (ql) and effective radius (re) from 75 flights around the Beijing area during 2005 and 2006 are summarized. Average Nc (cm− 3) for Cu, Sc, Ac, As and Ns are 376 ± 290, 257 ± 226, 147 ± 112, 60 ± 35 and 60 ± 84, respectively. Many records of high Nc above 1000 cm− 3 are observed. The large standard deviations indicate a large variation of Nc and ql in this region. The maxima of ql reach 1.4 g m− 3 in Cu and 1.0 g m− 3 in Sc, respectively. Different parameterizations of effective radius are examined with the in-situ data in this area. There are different ways to obtain the prefactor representing the relationship between effective radius and mean volume radius. Significant systematic errors are found to be at the large sizes when the prefactor is expressed with relative dispersion under the Gamma Distribution. Fixed prefactor of 1, which was widely used, even produces much larger error. A prefactor of 1.22 is found to be better than the former two methods by fitting with the observed data. The effective radius is further parameterized as functions of mean volume radius, liquid water content and cloud droplet number concentration. We suggest that the effective radius can be parameterized as re,p ≈ 1.20rv + 0.22–1.28/rv2, which is a practical and more accurate scheme without too much computation complexity.  相似文献   

16.
Shanghai is the largest industrial and commercial city in China, and its air quality has been deteriorating for several decades. However, there are scarce researches on the level and seasonal variation of fine particle (PM2.5) as well as the carbonaceous fractions when compared with other cities in China and around the world. In the present paper, abundance and seasonal characteristics of PM2.5, organic carbon (OC) and elemental carbon (EC) were studied at urban and suburban sites in Shanghai during four season-representative months in 2005–2006 year. PM2.5 samples were collected with high-vol samplers and analyzed for OC and EC using thermal-optical transmittance (TOT) protocol. Results showed that the annual average PM2.5 concentrations were 90.3–95.5 μg/m3 at both sites, while OC and EC were 14.7–17.4 μg/m3 and 2.8–3.0 μg/m3, respectively, with the OC/EC ratios of 5.0–5.6. The carbonaceous levels ranked by the order of Beijing > Guangzhou > Shanghai > Hong Kong. The carbonaceous aerosol accounted for  30% of the PM2.5 mass. On seasonal average, the highest OC and EC levels occurred during fall, and they were higher than the values in summer by a factor of 2. Strong correlations (r = 0.79–0.93) between OC and EC were found in the four seasons. Average level of secondary organic carbon (SOC) was 5.7–7.2 μg/m3, accounting for  30% of the total OC. Strong seasonal variation was observed for SOC with the highest value during fall, which was about two times the annual average.  相似文献   

17.
The changing chemical composition of cloud water and precipitation in the Western Sudety Mountains are discussed against the background of air-pollution changes in the Black Triangle since the 1980s until September 2004. A marked reduction of sulphur dioxide emissions between the early 1990's and the present (from almost 2 million tons to around 0.2 million tons) has been observed, with a substantial decline of sulphate and hydrogen concentration in cloud water (SO42− from more than 200 to around 70 μmol l− 1; H+ from 150 to 50 μmol l− 1) and precipitation (SO42− from around 80 to 20–30 μmol l− 1; H+ from around 60 to 10–15 μmol l− 1) samples. At some sites, where fog/cloud becomes the major source of pollutants, deposition hot spots are still observed where, for example, nitrogen deposition can exceed 20 times the relevant critical load. The results show that monitoring of cloud water chemistry can be a sensitive indicator of pollutant emissions.  相似文献   

18.
The study of fog dynamics in the island of Tenerife began in 1993 at six sites. The analysis of the relationship between fog and several meteorological parameters was conducted at the site located at Anaga. Anaga is located at the summit of a mountain range, at an altitude of 842 m and 3.5 km away from the north-western coastline of the island. The study uses hourly data of the three summer months (June, July and August) that were collected over a period of nine years — from 1996 to 2005. The mean summer (June–August) rainfall was found to be 21.2 mm whilst the total volume of fog water collected was 879.9 l m− 2; the daily average fog water collection was 9.5 l m− 2 day− 1, and the hourly average about 0.4 l m− 2 h− 1. Although these amounts were recorded with wind speeds of between 8 and 12 m s− 1, the correlation between water collected and wind speed is not statistically significant. In spite of this, the volume of fog water collected and wind speed showed a very distinct daily behavioural pattern, their frequency and speed reaching their minimum at 12 a.m. and their maximum from 7 p.m. to 8 a.m. GMT. The importance of this research is that it shows that the fog in the Canary Islands occurs more frequently and makes a more significant contribution to the growth of vegetation in the summer (the dry season) than in the winter, when fog accompanies rainfall.  相似文献   

19.
Esmaiel Malek   《Atmospheric Research》2008,88(3-4):367-380
An automated-ventilated radiation station has been set up in a mountainous valley at the Logan Airport in northern Utah, USA, since mid-1995, to evaluate the daily and annual radiation budget components, and develop an algorithm to study cloudiness and its contribution to the daily and annual radiation. This radiation station (composed of pyranometers, pyrgeometers and a net radiometer) provides continuous measurements of downward and upward shortwave, longwave and net radiation throughout the year. The surface temperature and pressure, the 2-m air temperature and humidity, precipitation, and wind at this station were also measured. A heated rain gauge provided precipitation information. Using air temperature and moisture and measured downward longwave (atmospheric) radiation, appropriate formula (among four approaches) was chosen for computation of cloudless-skies atmospheric emissivity. Considering the additional longwave radiation during the cloudy skies coming from the cloud in the waveband which the gaseous emission lacks (from 8–13 μm), an algorithm was developed which provides continuous 20-min cloud information (cloud base height, cloud base temperature, percent of skies covered by cloud, and cloud contribution to the radiation budget) over the area during day and night. On the partly-cloudy day of 3 February, 2003, for instance, cloud contributed 1.34 MJ m− 2 d− 1 out of 26.92 MJ m− 2 d− 1 to the daily atmospheric radiation. On the overcast day of 18 December, 2003, this contribution was 5.77 MJ m− 2 d− 1 out of 29.38 MJ m− 2 d− 1. The same contribution for the year 2003 amounted to 402.85 MJ m− 2 y− 1 out of 9976.08 MJ m− 2 y− 1. Observations (fog which yielded a zero cloud base height and satellite cloud imaging data) throughout the year confirmed the validity of the computed data. The nearby Bowen ratio station provided the downward radiation and net radiation data. If necessary, these data could be substituted for the missing data at the radiation station. While the automated surface observing systems (ASOS) ceilometer at the Logan airport provides only the overhead cloud information, the proposed algorithm provides this information over the valley. The proposed algorithm is a promising approach for evaluation of the cloud base temperature, cloud base height, percent of skies covered by cloud, and cloud contribution to the daily and annual radiation budget at local and regional scales.  相似文献   

20.
Major ion concentrations and strontium isotopic ratios (87Sr/86Sr) were measured in rainwater samples collected at the urban site of Lanzhou, a city located on the Loess Plateau in the arid and semi-arid areas of northwest China. The rainwater samples possessed alkaline pH, at a reference level of 5.6, with a range of 6.82 to 8.28 and a volume-weighted mean (VWM) pH value of 7.70. The alkaline character of rainwater in Lanzhou is due to the result of neutralization caused by the alkaline soil dusts which contain large amount of CaCO3. It was observed that Ca2+ was the most abundant cation with a VWM value of 886 µeq l− 1 (115–2184 µeq l− 1), accounting for 87.8% of the total cations. Without considering HCO3, SO42− and NO3 were dominant among the anions, accounting for 64.2% and 23.0%, respectively, of the total measured anions. Using Na as an indicator of marine origin and Al for terrestrial inputs, the proportions of sea salt and non-sea-salt elements were estimated from elemental ratios. The precipitation in this region has typical continental characteristics. The Sr concentrations varied from 0.004 to 0.885 µmol l− 1, and strontium isotopic ratios (87Sr/86Sr) lay in the range of 0.71025–0.71302, with an average of 0.71143. The 87Sr/86Sr ratios of Lanzhou rainwater are higher than that of seawater, which reflects contributions from the radiogenic Sr sources of the aerosols. The most suitable candidate for the source would be the soil dust originating from local and distant loess and desert areas. The 87Sr/86Sr ratios were used to characterize different sources of base cations in rainwater, suggesting that the samples could be interpreted in terms of combinations of at least three components: soil dust derived from the Loess Plateau and desert areas in northwest China (with 87Sr/86Sr ~ 0.7130), seawater (with 87Sr/86Sr ~ 0.70917), and anthropogenic inputs (with 87Sr/86Sr ~ 0.7103). The high 87Sr/86Sr ratio and Ca and Sr content in the rainwater from Lanzhou can be attributed to the dissolution of calcium carbonate in soil dust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号