首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 645 毫秒
1.
《International Geology Review》2012,54(11):1040-1053
The Ordovician Famatinian-age magmatic cordierite-andalusite-bearing Capillitas batholith, in the Pampean Ranges of northwestern Argentina, encompasses a coarsely porphyritic to equigranular two-mica monzogranite with equigranular, fine-grained, late leucogranitic muscovite-rich facies. This batholith exhibits sharp, discordant contacts with low-pressure biotite-andalusite-cordierite schists of the La Cébila Formation, locally developing biotite-cordierite-muscovite-bearing contact hornfels aureoles.

The two-mica monzogranite contains cordierite, andalusite, and sillimanite, although cordierite and andalusite are more abundant in the leucogranitic equigranular facies. These minerals are not homogeneously distributed and the three minerals are found together only locally. The presence of biotite-rich xenoliths with a high amount of anhydrous aluminum silicates (andalusite, sillimanite) and cordierite, exhibiting textures similar to those of the host monzogranites, suggest that, at least in part, they have been incorporated into the magma and reequilibrated. The pressure during emplacement was probably 4 kbar under near-solidus temperature, thus preserving the anhydrous aluminum-silicate stability under high H2O activity.

The major-element data indicate a peraluminous calc-alkalic trend with compositional gaps. They attest to the existence of two distinct magma pulses. The chondrite-normalized REE patterns and multi-element spidergrams point to a probable origin by crustal (metasediment?) anatexis for both pulses. Peraluminous granitic magma cannot be a primary melt of metaluminous quartz-amphibolite, since there is a great geochemical homogeneity of all the granitoids. Igneous xenoliths are absent and the isotopic compositions of the granitoids correspond to those of metasedimentary sources. Both major and trace elements point to a collisional tectonic environment of an inner-continental magmatic arc.  相似文献   

2.
Garnet Sm–Nd and zircon U–Pb ages, and pressure–temperature–time paths elucidate Late Cretaceous crustal thickening which occurred within magmatic arc rocks of the Insular Superterrane. Voluminous tonalitic magma of the Mount Stuart batholith intruded at <3 kbar into upper crustal sedimentary rocks between 96 and 91 Ma, with initial intrusion prior to garnet growth in the metasedimentary rocks. Arc plutonism then shifted northward as crustal thickening commenced. Initial garnet growth, locally with kyanite and staurolite replacing andalusite, at c. 91 Ma was directly associated with intrusion of granodiorite to tonalite sheets at 7 kbar, north of the Mount Stuart batholith, within the Nason Ridge Migmatitic Gneiss. Subsequent heating and garnet growth, which postdates emplacement of large plutons, occurred between 88 and 86 Ma. This late garnet growth occurred at pressures of 6–8 kbar. The history of garnet growth and intrusion indicates that initial garnet zone and higher temperature metamorphism was restricted to contact aureoles. However, later widespread garnet growth at higher pressure probably resulted from heating as the orogenic wedge approached thermal equilibrium after crustal thickening. We conclude that metasedimentary rocks outside narrow contact aureoles remained at temperatures significantly below those of garnet growth and that the growth of garnet lasted <6 Myr. Heating to temperatures that stabilized garnet after pluton emplacement is compatible with intrusion of arc plutons into an accretionary wedge (Chiwaukum Schist) which was tectonically thickened and/or overthrust causing loading and thermal relaxation.  相似文献   

3.
In the Sanandaj-Sirjan zone of metamorphic belt of Iran, the area south of Hamadan city comprises of metamorphic rocks, granitic batholith with pegmatites and quartz veins. Alvand batholith is emplaced into metasediments of early Mesozoic age. Fluid inclusions have been studied using microthermometry to evaluate the source of fluids from which quartz veins and pegmatites formed to investigate the possible relation between host rocks of pegmatites and the fluid inclusion types. Host minerals of fluid inclusions in pegmatites are quartz, andalusite and tourmaline. Fluid inclusions can be classified into four types. Type 1 inclusions are high salinity aqueous fluids (NaCleq >12 wt%). Type 2 inclusions are low to moderate salinity (NaCleq <12 wt%) aqueous fluids. Type 3 and 4 inclusions are carbonic and mixed CO2-H2O fluid inclusions. The distribution of fluid inclusions indicate that type 1 and type 2 inclusions are present in the pegmatites and quartz veins respectively in the Alvand batholith. This would imply that aqueous magmatic fluids with no detectable CO2 were present during the crystallization of these pegmatites and quartz veins. Types 3 and 4 inclusions are common in quartz veins and pegmatites in metamorphic rocks and are more abundant in the hornfelses. The distribution of the different types of fluid inclusions suggests that CO2 fluids generated during metamorphism and metamorphic fluids might also contribute to the formation of quartz veins and pegmatites in metamorphic terrains.  相似文献   

4.
The calc-alkaline Ladakh batholith (NW Himalayas) was dated to constrain the timing of continental collision and subsequent deformation. Batholith growth ended when collision disrupted subduction of the Tethyan oceanic lithosphere, and thus the youngest magmatic pulse indirectly dates the collision. Both U-Pb ages on zircons from three samples of the Ladakh batholith and K-Ar from one subvolcanic dike sample were determined. Magmatic activity near Leh (the capital of Ladakh) occurred between 70 and 50 Ma, with the last major magmatic pulse crystallizing at ca. 49.8+/-0.8 Ma (2sigma). This was followed by rapid and generalized cooling to lower greenschist facies temperatures within a few million years, and minor dike intrusion took place at 46+/-1 Ma. Field observations, the lack of inherited prebatholith zircons, and other isotopic evidence suggest that the batholith is mantle derived with negligible crustal influence, that it evolved through input of fresh magma from the mantle and remelting of previously emplaced mantle magmatic rocks. The sedmimentary record indicates that collision in NW Himalaya occurred around 52-50 Ma. If this is so, the magmatic system driven by subduction of Tethys ended immediately on collision. The thermal history of one sample from within the Thanglasgo Shear Zone (TSZ) was determined by Ar-Ar method to constrain timing of batholith internal deformation. This is a wide dextral shear zone within the batholith, parallel to the dextral, N 30 degrees W-striking crustal-scale Karakoram Fault. Internal deformation of the batholith, taken up partly by this shear zone, has caused it to deviate from it regional WNW-ESE trend to parallel the Karakoram Fault. Microstructures and cooling history of a sample from the TSZ indicate that shearing took place before 22 Ma, implying that (1) the history of dextral shearing on NW-striking planes in northern Ladakh started at least 7 m.yr. before the <15 Ma Karakoram Fault, (2) shearing was responsible for deviation of the regional trend of the Ladakh batholith, and (3) dextral shearing occured within a zone apporximately 100 km wide that includes the Ladakh batholith and portions of the younger Karakoram batholith.  相似文献   

5.
We determined U–Pb ages on zircons from Ladakh granitoid samples of three previously undated plutons and deduced four distinct age groups between c. 67 and c. 45 Ma (66.6 ± 2.1, 57.6 ± 1.4, 53.4 ± 1.8, 52.50 ± 0.53 and 45.27 ± 0.56 Ma). This suggests that the Ladakh batholith grew by addition of at least four distinct subduction‐related magma pulses at c. 67, 58, 53 and 45 Ma, thus indicating that the belt was continuously active throughout the Palaeocene and the Middle Eocene (Lutetian). The 45.27 ± 0.56 Ma pluton at Daah‐Hanu is the last major calcalkaline arc magmatic pulse in the Ladakh batholith. Thereafter, the subduction‐related major plutonism gradually waned. The earlier estimate for the youngest pluton within the Ladakh batholith is 49.8 ± 0.8 Ma for the Leh pluton ( J. Geol., 2000, 108 , 303 ).  相似文献   

6.
Summary The wiborgite and dark wiborgite rapakivi granite phases of the Wiborg batholith in southeastern Finland compose about 80% of the total batholith area. A new study of the dominant mafic silicate minerals, in comparison with mafic silicates from more evolved granite phases, hybridized granite and mafic magmatic enclaves provide insights into the overall petrogenesis of the Wiborg batholith. All of the mafic silicate minerals are iron-rich, reflective of the whole rock compositions. Biotite is annitic, calcic amphibole is ferro-edenite to hastingsite, and subsolidus Fe-Mg amphibole is found as accessory grunerite. Temperatures derived from amphibole-plagioclase thermometry suggest crystallization at about ∼ 740 °C. Pressure estimates derived from Al in amphibole barometry range between 2.5 and 5.4 kilobars. This is noticeably higher than the previous estimates of 1 kbar for the Wiborg batholith. Oxygen fugacity estimates from biotite suggest low fO2 initial values and increase from FMQ to above NNO for late stage granite phases. Received February 29, 2000; revised version accepted December 27, 2000  相似文献   

7.
Bismuth has been determined in 74 rocks from a differentiated tholeiitic dolerite, two calc-alkaline batholith suites and in 66 mineral separates from one of the batholiths. Average bismuth contents, weighted for rock type, of the Great Lake (Tasmania) dolerite, the Southern California batholith and the Idaho batholith are, 32, 50 and 70 ppb respectively. All three bodies demonstrate an enrichment of bismuth in residual magmas with magmatic differentiation. Bismuth is greatly enriched (relative to the host rock) in the calcium-rich accessory minerals, apatite and sphene, but other mineral analyses show that a Bi-Ca association is of little significance to the magmatic geochemistry of bismuth. Most of the bismuth, in the Southern California batholith at least, occurs in a trace mineral phase (possibly sulfides) present as inclusions in the rock-forming minerals.  相似文献   

8.
Data on the composition, inner structure, and magma sources of giant batholith in the Central Asian Orogenic Belt are analyzed with reference to the Khangai batholith. The Khangai batholith was emplaced in the Late Permian–Early Triassic (270–240 Ma) and is the largest accumulations (>150000 km2) of granite plutons in central Mongolia. The plutons are dominated by granites of normal alkalinity and contain subalkaline granites and more rare alkaline granites. The batholith is hosted in the Khangai zonal magmatic area, which consists of the batholith itself and surrounding rift zones. The zones are made up of bimodal basalt–trachyte–comendite (pantellerite) or basalt-dominated (alkaline basalt) volcanic associations, whose intrusive rocks are dominated by syenite and granite, granosyenite, and leucogranite. Both the batholith and the rift zones were produced within the time span of 270–240 Ma. Although the rocks composing the batholith and its rift surroundings are different, they are related through a broad spectrum of transitional varieties, which suggests that that the mantle and crustal melts could interact at various scale when the magmatic area was produced. A model is suggested to explain how the geological structure of the magmatic area and the composition of the magmatic associations that make up its various zones were controlled by the interaction between a mantle plume and the lithospheric folded area. The mantle melts emplaced into the lower crust are thought to not only have been heat sources and thus induced melting but also have predetermined the variable geochemical and isotopic characteristics of the granitoids. In the marginal portions of the zonal area, the activity of the mantle plume triggered rifting associated with bimodal and alkaline granite magmatism. The formation of giant batholiths was typical of the evolution of the active continental margin of the Siberian paleocontinent in the Late Paleozoic and Early Mesozoic: the Khangai, Angara–Vitim, and Khentei batholiths were formed in this area within a relatively brief time span between 300 and 190Ma. The batholiths share certain features: they consist of granitoids of a broad compositional range, from tonalite and plagiogranite to granosyenite and rare-metal granites; and the batholiths were produced in relation to rifting processes that also formed rift magmatic zones in the surroundings of the batholiths. The large-scale and unusual batholith-forming processes are thought to have occurred when the active continental margin of the Late Paleozoic Siberian continent overlapped a number of hotspots in the Paleo- Asian Ocean. This resulted in the origin of a giant anorogenic magmatic province, which included batholiths, flood-basalt areas in Tarim and Junggar, and the Central Asian Rift System. The batholiths are structural elements of the latter and components of the zonal magmatic areas.  相似文献   

9.
胡培远  李才  苏犁  张红雨 《地质通报》2012,31(6):843-851
本松错岩基是羌塘中部规模最大的花岗岩复合岩基,面积超过1800km2,由石炭纪、三叠纪和侏罗纪3个不同时代的花岗岩岩体组成,记录了羌塘中部不同时期的岩浆活动,是研究羌塘盆地构造演化的重要窗口。蜈蚣山花岗岩位于本松错复合岩基北部,前人认为其时代为侏罗纪,但是近期在蜈蚣山地区侏罗纪花岗岩中发现有少量印支期花岗岩出露,岩性主要为花岗片麻岩和二长花岗岩,可能为侏罗纪花岗岩的捕虏体。地球化学研究表明,二长花岗岩属高钾钙碱性过铝质花岗岩,形成于同碰撞环境,与区域内其它印支期中酸性岩浆岩类似,共同构成龙木错-双湖-澜沧江板块缝合带同碰撞—后碰撞岩浆弧。此外还对花岗片麻岩片麻理中的黑云母做了40Ar-39Ar测年,获得了175.8Ma±1.1Ma的定年结果,与其围岩侏罗纪花岗岩年龄相近,推测花岗片麻岩是印支期花岗岩受后期侵入的侏罗纪岩浆改造后的产物,本松错复合岩基应当是中酸性岩浆岩多期侵入的产物。  相似文献   

10.
Lead isotope ratios of ores of the Candelaria-Punta del Cobre iron oxide Cu-Au deposits and associated Early Cretaceous volcanic and batholithic rocks have been determined. For the igneous rocks, a whole-rock acid attack technique based on the separate analyses of a leachate and the residual fraction of a sample was used. The lead isotope systematics of leachate–residue pairs are significantly different for unaltered and altered igneous rocks of the Candelaria-Punta del Cobre district. Residues of unaltered igneous rocks likely represent the common lead. In contrast, residues of all the altered igneous rocks except two samples have higher Pb isotope ratios than those of unaltered magmatic rocks and cannot represent common lead. We suggest that this is a result of the hydrothermal alteration suffered by these rocks and that the common lead composition of the altered igneous (volcanic and plutonic) rocks must have been similar to that of the unaltered batholith rocks. The conclusion that the altered volcanic rocks originally had a similar common lead isotope composition as the batholith is consistent with geological and geochemical arguments (e.g., setting, regional geologic evolution, ages and relative distribution of volcanic and intrusive rocks, magmatic affinities), which indicate that these rocks were derived from similar Early Cretaceous parent magmas. The modification of the leachate–residue pair lead isotope systematics of most altered igneous rocks is consistent with a selective removal of lead and uranium from these rocks by an oxidized hydrothermal fluid. The result of the hydrothermal leaching has been to alter magmatic rocks in a way that (1) their leachable fraction is presently a mix of common lead similar to that of the ore event and of radiogenic lead evolved from a source with a consistently high Th/U, and that (2) their residual fraction has less common lead than unaltered rocks. The outcrop area with altered volcanic rocks displaying anomalously high lead isotope ratios extends over 25 km along the eastern margin of the batholith. Since lead of the ores in the Candelaria-Punta del Cobre district has the same isotopic composition as the common lead of unaltered magmatic rocks of the area, the lead isotope data are consistent with a derivation of the ore lead (and by inference of other metals like Cu) both directly from a magmatic fluid exsolved during crystallization of the batholith and/or from hydrothermal leaching of the volcanic rocks originally having similar isotopic compositions as the batholith.Editorial handling: B. Lehmann  相似文献   

11.
The Tastil batholith (Eastern Cordillera, NW Argentina) holds relevant keys for interpreting the tectonic evolution of the Central Andes basement since it has always been interpreted as the subcrop of the Cambrian and Lower Ordovician basins in the Eastern Cordillera. However, in the Angosto de la Quesera section, the batholith intrudes sandstones underlying a fossiliferous Lower Tremadocian conglomerate containing Tastil granite pebbles. The precise assignation of the sandstones intruded by the granite to Cambrian Mesón Group or to the Uppermost Cambrian–Lower Tremadocian Santa Victoria Group is a key for refining the relationships between magmatic and sedimentary units. The ages of 526 Ma and 517 Ma (U/Pb, zircons) obtained from two facies of the batholith are coherent with the proposal of including these sandstones in the Mesón Group. However, the lithologic features and fossil content point to an affinity with the basal units of the Santa Victoria Group according to sedimentologic and stratigraphic studies ruled out by other authors. The intrusive relationships between the Tastil batholith and the Lower Paleozoic sandstones indicates the batholith is coeval with the Mesón and/or Santa Victoria groups basins instead of being its subcrop, which strongly contradicts previous proposals about basement evolution along the Lower Paleozoic margin of Gondwana. Therefore, the genesis and emplacement of the Tastil batholith must be related to the development of the Lower Paleozoic shelf basins rather than with the final stages of Puncoviscana-type basin evolution. The basement of central and northern Argentina records a wide spectrum of sedimentary, deformational, magmatic and metamorphic processes at a variety of crust levels during the Early Paleozoic. Tastil batholith emplacement and exhumation in the Eastern Cordillera represent shallower crustal expressions of the plutonic and high-T–low-P metamorphic events at deeper levels in the basement now exposed mainly in eastern Puna and Pampean Ranges.  相似文献   

12.
本松错岩基是羌塘中部规模最大的花岗岩复合岩基,面积超过1800km2,由石炭纪、三叠纪和侏罗纪3个不同时代的花岗岩岩体组成,记录了羌塘中部不同时期的岩浆活动,是研究羌塘盆地构造演化的重要窗口。蜈蚣山花岗岩位于本松错复合岩基北部,前人认为其时代为侏罗纪,但是近期在蜈蚣山地区侏罗纪花岗岩中发现有少量印支期花岗岩出露,岩性主要为花岗片麻岩和二长花岗岩,可能为侏罗纪花岗岩的捕虏体。地球化学研究表明,二长花岗岩属高钾钙碱性过铝质花岗岩,形成于同碰撞环境,与区域内其它印支期中酸性岩浆岩类似,共同构成龙木错-双湖-澜沧江板块缝合带同碰撞—后碰撞岩浆弧。此外还对花岗片麻岩片麻理中的黑云母做了40Ar-39Ar测年,获得了175.8Ma±1.1Ma的定年结果,与其围岩侏罗纪花岗岩年龄相近,推测花岗片麻岩是印支期花岗岩受后期侵入的侏罗纪岩浆改造后的产物,本松错复合岩基应当是中酸性岩浆岩多期侵入的产物。  相似文献   

13.
锆石Ge含量和年龄对云南临沧锗矿床物质来源的约束   总被引:1,自引:0,他引:1  
云南临沧锗矿床产在以临沧花岗岩为基底的中新世断陷盆地中。已有研究表明,成矿元素Ge来自基底花岗岩,但临沧花岗岩是复式岩基,具有多期次的岩浆活动,而Ge来自哪期岩浆活动并不清楚。文章对采自晓街、临沧、勐库和勐海的7个花岗岩样品(纵贯临沧岩基)进行了LA-ICP-MS锆石原位Ge元素含量分析和U-Pb年代学研究。研究结果表明,岩基主体岩浆活动时代与前人研究成果一致,为(215.6±2.7)Ma~(236.9±3.7)Ma,同时也有少量继承锆石(303~2533 Ma);w(Ge)在主岩浆期的锆石中为0.23×10-6~4.21×10-6,平均0.53×10-6,在继承锆石中为0.34×10-6~3.43×10-6,平均1.18×10-6;而在本次研究中新发现的年龄为106.5 Ma和87.7 Ma的年轻锆石中w(Ge)高达102×10-6。因此,推测临沧锗矿床中Ge来源于晚期岩浆或热液作用。这个结果为成矿理论的深入研究提供了新依据。  相似文献   

14.
云南大坪金矿床是哀牢山金矿带中最重要的金矿之一,主要赋存在受到强烈剪切和水-岩反应的闪长岩中,是典型的喜马拉雅期造山型金矿。本文对大坪金矿床赋矿闪长岩中锆石进行了SHRIMP U-Pb定年,得出闪长岩围岩的年龄为773±12Ma,为晚元古代,显示该岩体为华南地区晋宁-澄江期大规模基性到酸性岩浆活动的产物,是Rodinia 超大陆形成、裂解后冈瓦纳大陆形成过程的响应,而不是前人普遍认为的加里东期岩体。该岩体侵入年龄与大坪金矿脉石英流体包裹体40Ar-39Ar 年龄测定给出的高温坪年龄(765.5±7.0Ma)基本一致,显示大坪金矿床具有多期成矿的特征,其主体形成于喜马拉雅期碰撞造山运动,但早在晋宁造山运动中就有金的初步富集。在闪长岩中还发现了年龄为33.7±1.1Ma的锆石,其时代与大坪金矿床含金石英脉中热液绢云母的40Ar-39Ar定年结果(33.76Ma)基本一致,显示它们很可能为该区强烈的韧性剪切和局部岩浆部分熔融作用的产物。  相似文献   

15.
《International Geology Review》2012,54(16):2046-2064
ABSTRACT

The Jebel Ja’alan and Qalhat inliers of Oman represent the easternmost exposures in the Arabian peninsula of the Neoproterozoic basement associated with the East African Orogen (EAO) and the assembly of East and West Gondwana. These inliers expose tonalitic gneisses and metasediments intruded by granodiorites and granites of the Ja’alan batholith. Zircons from the gneisses yield U–Pb SIMS ages of ca. 900–880 Ma, which are interpreted as crystallization ages. These represent the oldest magmatic events associated with the closure of the Mozambique Ocean reported to date. Zircon of this age is also the dominant component in the metasediments. The Ja’alan batholith yields ages of ca. 840–825 Ma. Nd isotopes indicate that both the gneisses and the batholith range from juvenile to slightly more evolved, with εNd(t) of +6 to +1.5 interpreted to reflect variable contamination by older, evolved continental material; this is also indicated by >900 Ma detrital zircon from the metasediments. The Nd data also contrast with the uniformly juvenile signature of younger, ca. 840 Ma, rocks of the Marbat region of southern Oman that lie structurally to the west. The Ja’alan and Qalhat inliers thus document eastward increasing age and continental influence, consistent with the progressive development of arc rocks onto the western margin of East Gondwana, although the location and nature of the eastern continental block remain elusive.  相似文献   

16.
The 1200 km2, Early Devonian (395 Ma) Wilsons Promontory batholith is a post-tectonic, high-level, composite body of S-type granites exposed on Wilsons Promontory and its offshore islands. Four plutons and six members are mapped and described. The rocks commonly contain magmatic garnet and cordierite, in addition to biotite, and biotite–quartz pseudomorphs after orthopyroxene. Planar fabrics abound in the batholith, which is characterised by emplacement of shallow-dipping granitic sheets, on a variety of scales. Particle size and density separation occurred during magma flow, and produced a wide variety of structures including layering, pipes and whorls rich in mafic minerals, K-feldspar phenocryst alignments and a notable swarm of enclaves. Local filter pressing may have played a role in the production of accumulations of K-feldspar crystals and the formation of late, tourmaline-bearing leucogranites and quartz veins. Batholith zonation and the distribution of component plutons are inferred to have been formed through sequential intrusion of separate magma batches rather than in situ differentiation. Overall, the batholith appears to consist of saucer-shaped plutons, and it is tilted gently to the east.  相似文献   

17.
Abstract In the contact metamorphic aureole of the Tinaroo Batholith (north Queensland, Australia), mylonitic rocks were metamorphosed during a regional folding/crenulation event (D2) synchronous with the emplacement of muscovite-bearing granitoids. Prismatic and skeletal andalusite porphyoblasts grew in carbonaceous schists, mainly from the dissolution of staurolite. Muscovite, quartz and biotite played a dual role in this reaction, acting in a catalytic capacity as well as reactants or products. Staurolite was replaced by coarse-grained muscovite ± biotite, whereas andalusite locally replaced quartz ± muscovite ± biotite, with diffusion of H, Al, Si, Mg, Fe and K ionic species linking sites of dissolution and growth. Graphite contributed to the reaction mechanism in a number of ways. Accumulations of graphite in front of advancing andalusite crystal faces led to skeletal growth and the formation of chiastolite structure, where incremental growth occurred on adjacent {110} faces, with subsequent filling in and inclusion of graphite along the diagonal zones. The presence of graphite in some layers in the schist matrix prevented recrystallization of strained muscovite grains. The muscovite grains in these layers, in contrast to adjacent thin non-graphitic layers, were preferentially replaced by quartz. This resulted in muscovite-depletion haloes in graphitic layers around andalusite porphyroblasts. Somewhat arcuate zones of graphite, concentrated during dissolution of quartz along a crenulation cleavage, occur on some andalusite faces. Reactivation of the mylonitic foliation during the formation of D2 crenulations led to a preferential dissolution of quartz in zones of progressive shearing localized near andalusite porphyroblasts and hence the accumulation of graphite. Lack of deflection of the pre-existing mylonitic foliation and anastomosing of the axial planes of D2 crenulations around andalusite porphyroblasts demonstrate not only the timing of growth, but also that growing porphyroblasts do not push aside existing foliations.  相似文献   

18.
Undeformed felsic to mafic igneous rocks, dated by U–Pb zircon geochronology between 311 and 255 Ma, intrude different units of the Oaxacan and Acatlán metamorphic complexes in southwestern Mexico. Rare earth element concentrations on zircons from most of these magmatic rocks have a typical igneous character, with fractionated heavy rare earths and negative Eu anomalies. Only inherited Precambrian zircons are depleted in heavy rare earth elements, which suggest contemporaneous crystallization in equilibrium with metamorphic garnet during granulite facies metamorphism. Hf isotopic signatures are, however, different among these magmatic units. For example, zircons from two of these magmatic units (Cuanana pluton and Honduras batholith) have positive εHf values (+3.8–+8.5) and depleted mantle model ages (using a mean crustal value of 176Lu/177Hf = 0.015) (T DMC) ranging between 756 and 1,057 Ma, whereas zircons from the rest of the magmatic units (Etla granite, Zaniza batholith, Carbonera stock and Sosola rhyolite) have negative εHf values (?1 to ?14) and model ages between 1,330 and 2,160 Ma. This suggests either recycling of different crustal sources or, more likely, different extents of crustal contamination of arc-related mafic magmas in which the Oaxacan Complex acted as the main contaminant. These plutons thus represent the magmatic expression of the initial stages of eastward subduction of the Pacific plate beneath the western margin of Gondwana, and confirm the existence of a Late Carboniferous–Permian magmatic arc that extended from southern North America to Central America.  相似文献   

19.
安仁长江红柱石矿床地质特征及找矿前景   总被引:3,自引:0,他引:3  
安仁长江红柱石矿床位于南岭成矿带中段北缘,五峰仙花岗岩体东部外接触带,属产于二叠系上统龙潭组泥质碎屑岩中的热接触变质角岩型矿床。地层岩性、岩浆活动、岩体与地层接触带形态等因素联合控矿,红柱石矿床的成生与角岩化蚀变关系密切。  相似文献   

20.
五垛山复式岩基位于北秦岭构造带东段,地处朱阳关—夏馆断裂和乔端—瓦穴子断裂之间,整体呈NWW向展布,由多个岩体复合组成,具多期次岩浆活动特征,岩性主要为黑云母二长花岗岩。本文在其解体出来的石门序列和五垛山序列中,采集5件样品进行了锆石U-Pb年龄值测定。测定结果对该区岩浆活动、构造背景及区域构造演化、地层时代确定等具有一定的地质意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号