首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In the light of progressive depletion of groundwater reservoir and water quality deterioration of the Neyveli basin, an investigation on dissolved major constituents in 25 groundwater samples was performed. The main objective was detection of processes for the geochemical assessment throughout the area. Neyveli aquifer is intensively inhabited during the last decenniums, leading to expansion of the residential and agricultural area. Besides semi-aridity, rapid social and economic development stimulates greater demand for water, which is gradually fulfilled by groundwater extraction. Groundwaters of the study area are characterized by the dominance of Na?+?K over Ca?+?Mg. HCO3 was found to be the dominant anion followed by Cl and SO4. High positive correlation was obtained among the following ions: Ca–Mg, Cl–Ca,Mg, Na–K, HCO3–H4SiO4, and F–K. The hydrochemical types in the area can be divided into two major groups: the first group includes mixed Ca–Mg–Cl and Ca–Cl types. The second group comprises mixed Ca–Na–HCO3 and Ca–HCO3 types. Most of the groundwater samples are within the permissible limit of WHO standard. Interpretation of data suggests that weathering, ion exchange reactions, and evaporation to some extent are the dominant factors that determine the major ionic composition in the study area.  相似文献   

2.
The present research aims to identify sources of ions and factors controlling the geochemical evolution of groundwater in an intermountain basin, comprising hill and valley fill region, of Outer Himalaya in Himachal Pradesh, India. The groundwater samples collected from 81 tubewells and handpumps are analyzed for major ions, trace metals and stable isotopes (δ18O and δD). Geochemically the dominant hydrochemical facies in the Una basin are Ca–HCO3, Ca–Mg–HCO3 and Na–Cl types at few locations. A relatively lower ionic concentration in the valley fills indicates dilution and low residence time of water to interact with the aquifer mass due to high porosity and permeability. The ionic ratios of 0.9, 0.8 and 3.8 to 5.7, respectively, for (Ca?+?Mg): HCO3, (Ca?+?Mg): (HCO3?+?SO4) and Na: Cl, suggests that ionic composition of groundwater is mainly controlled by rock weathering of, particularly by dissolution/precipitation of calcrete and calcite hosted in rock veins and Ca–Na feldspar hosted in conglomerate deposits derived from the Higher and Lesser Himalaya during the formation of Siwalik rocks. Although Na, K, NO3 and SO4 are introduced in the groundwater through agricultural practices, Na has also been introduced through ion exchange processes that have occurred during water–rock interaction, as indicated by negative CAI values. Factor analysis further suggests three major factors affecting the water chemistry of the area. The first two factors are associated with rock weathering while the third is anthropogenic processes associated with high nitrate and iron concentration. High concentrations of Fe and Mn ions that are exceeded that of WHO and BIS standards are also present at few locations. The recharge of groundwater in the Outer Himalaya is entirely through Indian Southwest Monsoon (ISM) and depleted ratios of δ18O/δD in valley region indicate infiltration from irrigation in recharging the groundwater and fractionation of isotopes of precipitation due to evaporation before infiltration. High d-excess values and inverse relation with δ18O are indicative of secondary evaporation of precipitation during recharge of groundwater.  相似文献   

3.
The chemical characteristics of surface, groundwater and mine water of the upper catchment of the Damodar River basin were studied to evaluate the major ion chemistry, geochemical processes controlling water composition and suitability of water for domestic, industrial and irrigation uses. Water samples from ponds, lakes, rivers, reservoirs and groundwater were collected and analysed for pH, EC, TDS, F, Cl, HCO3, SO4, NO3, Ca, Mg, Na and K. In general, Ca, Na, Mg, HCO3 and Cl dominate, except in samples from mining areas which have higher concentration of SO4. Water chemistry of the area reflects continental weathering, aided by mining and other anthropogenic impacts. Limiting groundwater use for domestic purposes are contents of TDS, F, Cl, SO4, NO3 and TH that exceed the desirable limits in water collected from mining and urban areas. The calculated values of SAR, RSC and %Na indicate good to permissible use of water for irrigation. High salinity, %Na, Mg-hazard and RSC values at some sites limit use for agricultural purposes.  相似文献   

4.
Rapid population growth, industrialization, and agricultural expansion in the Khoy area (northwestern Iran) have led to its dependence on groundwater and degradation of groundwater quality. This study attempts to decipher the major processes and factors that degrade the groundwater quality of the Khoy plain. For this purpose, 54 groundwater samples from unconfined and confined aquifers of the plain were collected in July 2017 and analyzed for major cations and anions (Na, K, Ca, Mg, HCO3, SO4, and Cl), minor ions (NO3 and F), and Al. Magnesium and bicarbonate were identified as the dominant cation and anion, respectively. Several ionic ratios and geochemical modeling using PHREEQC indicated that the most important hydrogeochemical processes to affect groundwater quality in the plain were weathering and dissolution of evaporitic and silicate minerals, mixing, and ion exchange. There were smaller effects from evaporation and anthropogenic factors (e.g., industries). Results showed that the high salinity of the groundwater in the northeast area of the plain was due to the high solubility of the evaporitic minerals, e.g., halite and gypsum. Reverse ion exchange and the contribution of mineral dissolution were more significant than ion exchange in the northeastern part of the plain. Elevated salinity of the groundwater in the southeast was attributed mostly to reverse ion exchange and somewhat to evaporation.  相似文献   

5.
Teboursouk region, Northwestern Tunisia, is characterized by the diversity of its natural resources (petroleum, groundwater and minerals). It constitutes a particular site widely studied, especially from a tectonic stand point as it exhibits a complex architecture dominated by multi-scale synclinals and Triassic extrusions. It has typical karst landform that constitutes important water resources devoted for human consumption and agriculture activities, besides to the exploitation of the Mio-Plio-Quaternary aquifer (MPQ). Thus, hydrogeological investigations play a significant role in the assessment of groundwater mineralization and the evaluation of the used water quality for different purposes. Hence, the current study based on a combined geochemical–statistical investigation of 50 groundwater samples from the multilayered aquifer system in the study area give crucial information about the principal factors and processes influencing groundwater chemistry. The chemical analysis of the water samples showed that Teboursouk groundwater is dominantly of Ca–Mg–Cl–SO4 water type with little contribution of Ca–Mg–HCO3, Na–K–Cl–SO4 and Na–K–HCO3. The total dissolved solids (TDS) values range from 0.37 to 3.58 g/l. The highest values are located near the Triassic outcrops. Furthermore, the hydrogeochemistry of the studied system was linked with various processes such as carbonates weathering, evaporites dissolution of Triassic outcrops and anthropogenic activities (nitrate contamination). Additionally, the main processes controlling Teboursouk water system were examined by means of multivariate statistical analysis (PCA and HCA) applied in this study based on 10 physicochemical parameters (TDS, pH, SO4, HCO3, pCO2, Ca, Mg, Na, K, Cl and NO3). Two principal components were extracted from PCA accounting 61% of total variance and revealing that the chemical characteristics of groundwater in the region were acquired through carbonates and evaporite dissolution besides to nitrate contamination. Similarly, according to Cluster analysis using Ward’s method and squared Euclidean distance, groundwater from the studied basin belongs to five different groups suggesting that the geochemical evolution of Teboursouk groundwater is controlled by dissolution of carbonates minerals, chemical weathering of Triassic evaporite outcrops, cation exchange and anthropogenic activities (nitrate contamination).  相似文献   

6.
Muzaffarnagar is an economically rich district situated in the most fertile plains of two great rivers Ganga and Yamuna in the Indo-gangetic plains, with agricultural land irrigated by both surface water as well as groundwater. An investigation has been carried out to understand the hydrochemistry of the groundwater and its suitability for irrigation uses. Groundwater in the study area is neutral to moderately alkaline in nature. Chemistry of groundwater suggests that alkaline earths (Ca + Mg) significantly exceed the alkalis (Na + K) and weak acids exceed the strong acids (Cl + SO4), suggesting the dominance of carbonate weathering followed by silicate weathering. Majority of the groundwater samples (62%) posses Ca–Mg–HCO3 type of hydrochemical species, followed by Ca–Na–Mg–HCO3, Na–Ca–Mg–HCO3, Ca–Mg–Na–HCO3–Cl and Na–Ca–HCO3–SO4 types. A positive high correlation (r 2 = 0.928) between Na and Cl suggests that the salinity of groundwater is due to intermixing of two or more groundwater bodies with different hydrochemical compositions. Barring a few locations, most of the groundwater samples are suitable for irrigation uses. Chemical fertilizers, sugar factories and anthropogenic activities are contributing to the sulphate and chloride concentrations in the groundwater of the study area. Overexploitation of aquifers induced multi componential mixing of groundwater with agricultural return flow waters is responsible for generating groundwater of various compositions in its lateral extent.  相似文献   

7.
The study area is one of the most productive part of central Ganga Plain and fertile tract for sugarcane cultivation. Hydrogeochemical parameters of groundwater of the study area was evaluated to know the suitability of groundwater for domestic and irrigational purposes. Fifty-five groundwater samples from hand pumps in pre-monsoon 2007 were analyzed for physical and chemical groundwater parameters (electrical conductivity, pH, total dissolved solid, Na, K, Ca, Mg, HCO3, Cl, SO4, and NO3). Three major groups of groundwater with distinct chemical compositions had been identified on L–L diagram, i.e., Ca+Mg-HCO3 type, mixed type, and alkali bicarbonate type. All possible species, such as Na-Cl, K-Cl, Na-HCO3, Na-SO4, Ca-HCO3, Mg-HCO3, Ca-SO4, and Mg-SO4 occur in the groundwater system. Groundwater comes under the category of moderately hard to very hard, mildly acidic to slightly alkaline in nature. Majority of the sample are within the permissible limit when compared with drinking water standards in terms of electrical conductivity, pH, total dissolved solid, Na, K, Ca, Mg, HCO3, Cl, SO4, and NO3. According to Gibb’s ratio, most of groundwater samples fall in the rock dominance field. Assessing the domestic uses, all the samples are considered fit, as they are neither acidic nor strongly alkaline. Based on analytical results, irrigational quality parameters like sodium adsorption ratio, residual sodium carbonate, and permeability index were calculated which indicate that the groundwater is also suitable for irrigational uses.  相似文献   

8.
An attempt has been made to study the groundwater geochemistry in part of the NOIDA metropolitan city and assessing the hydrogeochemical processes controlling the water composition and its suitability for drinking and irrigation uses. The analytical results show that Na and Ca are the major cations and HCO3 and Cl are the major anions in this water. The higher ratios of Na+K/TZ+ (0.2–0.7), Ca+Mg/HCO3 (0.8–6.1); good correlation between Ca-Mg (0.75), Ca-Na (0.77), Mg-Na (0.96); low ratio of Ca+Mg/Na+K (1.6), Ca/Na (1.03), Mg/Na (0.64), HCO3/Na (1.05) along with negative correlation of HCO3 with Ca and Mg signify silicate weathering with limited contribution from carbonate dissolution. The hydro-geochemical study of the area reveals that many parameters are exceeding the desirable limits and quality of the potable water has deteriorated to a large extent at many sites. High concentrations of TDS, Na, Cl, SO4, Fe, Mn, Pb and Ni indicate anthropogenic impact on groundwater quality and demand regional water quality investigation and integrated water management strategy. SAR, %Na, PI and Mg-hazard values show that water is of good to permissible quality and can be used for irrigation. However, higher salinity and boron concentration restrict its suitability for irrigation uses at many sites.  相似文献   

9.
The study area Mettur forms an important industrial town situated NW of Salem district. The geology of the area is mainly composed of Archean crystalline metamorphic complexes. To identify the major process activated for controlling the groundwater chemistry an attempt has been made by collecting a total of 46 groundwater samples for two different seasons, viz., pre-monsoon and post-monsoon. The groundwater chemistry is dominated by silicate weathering and (Na + Mg) and (Cl + SO4) accounts of about 90% of cations and anions. The contribution of (Ca + Mg) and (Na + K) to total cations and HCO3 indicates the domination of silicate weathering as major sources for cations. The plot for Na to Cl indicates higher Cl in both seasons, derived from Anthropogenic (human) sources from fertilizer, road salt, human and animal waste, and industrial applications, minor representations of Na also indicates source from weathering of silicate-bearing minerals. The plot for Na/Cl to EC indicates Na released from silicate weathering process which is also supported by higher HCO3 values in both the seasons. Ion exchange process is also activated in the study area which is indicated by shifting to right in plot for Ca + Mg to SO4 + HCO3. The plot of Na-Cl to Ca + Mg-HCO3-SO4 confirms that Ca, Mg and Na concentrations in groundwater are derived from aquifer materials. Thermodynamic plot indicates that groundwater is in equilibrium with kaolinite, muscovite and chlorite minerals. Saturation index of silicate and carbonate minerals indicate oversaturation during pre-monsoon and undersaturation during post-monsoon, conforming dissolution and dilution process. In general, water chemistry is guided by complex weathering process, ion exchange along with influence of Cl ions from anthropogenic impact.  相似文献   

10.
11.
The study area is located in the southwestern part of Bangladesh. Twenty-six groundwater samples were collected from both shallow and deep tube wells ranging in depth from 20 to 60 m. Multivariate statistical analyses including factor analysis, cluster analysis and multidimensional scaling were applied to the hydrogeochemical data. The results show that a few factors adequately represent the traits that define water chemistry. The first factor of Fe and HCO3 is strongly influenced by bacterial Fe (III) reduction which would raise both Fe and HCO3 concentrations in water. Na, Cl, Ca, Mg and PO4 are grouped under the second factor representing the salinity sources of waters. The third factor, represented by As, Mn, SO4 and K is related to As mobilization processes. Cluster analysis has been applied for the interpretation of the groundwater quality data. Initially Piper methods have been employed to obtain a first idea on the water types in the study area. Hierarchical cluster analysis was carried out for further classification of water types in the study area. Twelve components, namely, pH, Fe, Mn, As, Ca, Mg, Na, K, HCO3, Cl, SO4 and NO3 have been used for this purpose. With hierarchical clustering analysis the water samples have been classified into 3 clusters. They are very high, high and moderately As-enriched groundwater as well as groundwater with elevated SO4.  相似文献   

12.
The groundwater quality detoriation due to various geochemical processes like saline water intrusion, evaporation and interaction of groundwater with brines is a serious problem in coastal environments. Understanding the geochemical evolution is important for sustainable development of water resources. A detailed investigation was carried out to evaluate the geochemical processes regulating groundwater quality in Cuddalore district of Tamilnadu, India. The area is entirely underlined by sedimentary formations, which include sandstone, clay, alluvium, and small patches of laterite soils of tertiary and quaternary age. Groundwater samples were collected from the study area and analyzed for major ions. The electrical conductivity (EC) value ranged from 962 to 11,824 μS/cm, with a mean of 2802 μS/cm. The hydrogeochemical evolution of groundwater in the study area starts from Mg-HCO3 type to Na-Cl type indicating the cation exchange reaction along with seawater intrusion. The Br/Cl ratio indicates the evaporation source for the ion. The Na/Cl ratios indicate groundwater is probably controlled by water-rock interaction, most likely by derived from the weathering of calcium-magnesium silicates. The plot of (Ca+Mg) versus HCO3 suggests ions derived from sediment weathering. The plot of Na+K over Cl reflects silicate weathering along with precipitation. Gibbs plot indicates the dominant control of rock weathering. Factor analysis indicates dominance of salt water intrusion, cation-exchange and anthropogenic phenomenon in the study.  相似文献   

13.
Hydrogeochemistry of groundwater in hard rock terrain are mainly governed by lithology and land use practices. A study area near Madurai region of central Tamil Nadu was selected with various litho-units and a hard rock sedimentary contact with an unconformity. Land use practices in these regions are also varied with lithology. The study was conducted by collecting 54 groundwater samples spatially covering the major litho-units. Collected samples were analyzed for electrical conductivity, pH, total dissolved solids (TDS), temperature, Ca, Mg, Na, K, Cl, HCO3, NO3, H4SiO4, PO4, and SO4. The results of the samples analyzed found to vary spatially. Dominance of ion shows that the alkalies are predominant and HCO3 is the dominant anion. Piper facies show that the samples are alkali-carbonate type indicating the predominance of weathering. Most of the parameters exceed the drinking water permissible limit. Standard plots and statistical analysis also indicate weathering as the major process governing the hydrogeochemistry of the groundwater in the region. Relative mobility of cations indicates that the rate of liberation of alkalies from the lithology is more prominent.  相似文献   

14.
Extensive agricultural, residential, and industrial activities have increased demand for water supplies, which can lead to groundwater quality degradation. The integration of geochemical methods, multivariate statistical analysis, and geostatistical approaches were carried out on 169 groundwater samples to elucidate the regional factors and processes that influencing the geochemical composition of groundwater in coastal shallow aquifer of Terengganu, Malaysia. Hydrochemical modelling revealed that the abundance of Ca and Mg was contributed by carbonate and silicate weathering while higher HCO3 and Cl were resulted from reverse ion exchange reaction. Therefore, the dominant hydrogeochemical facies of groundwater was Ca-Mg-HCO3-Cl type. The influence of salinization resulting from seawater mixing to the groundwater was corroborated by Cl/HCO3 ratio, which affected around 50.9% of the groundwater samples slightly or moderately. Spatial mapping using ordinary kriging found that the threat of sea water intrusion is more prominent in the major river confluence especially around Terengganu and Marang River in the northeast and Dungun and Kemaman River confluence in southeast of study area. Moreover, factor analyses concluded that salinization, anthropogenic activities, reverse ion exchange, weathering processes, agricultural impact, and seasonal variations were the factors that regulate 63% of the major ion chemistry in study area. Finally, these findings showed the importance of understanding the hydrochemical characteristics for effective utilization, aquifer protection, and prediction of changes to minimize the effects of salinization and reduce human pollution such as agriculture and urbanization. It is essential steps in order to safeguard the utilization of groundwater resources for future generations.  相似文献   

15.
A hydrogeochemical investigation was conducted in a coastal region of Cuddalore district to identify the influence of saltwater intrusion and suitability of groundwater for domestic and agricultural purposes. The geology of the study area comprises of sandstone, clay, alluvium, and laterite soils of Tertiary and Quaternary age. A total of 18 groundwater samples were analyzed for 14 different water quality parameters and the result indicates higher concentrations of ions like Cl (3,509 mg/l), Na (3,123 mg/l), and HCO3 (998 mg/l) when compared with WHO, BIS, and ISI standards. A positive correlation (r 2?=?0.82) was observed between Na and Cl, indicating its sources from salt water intrusion. Three factors were extracted with a total variance of 64% which indicates the sources of salinization, cation exchange, and anthropogenic impact to the groundwater. The Piper trilinear diagram indicates both Na–Cl and mixed Na–HCO3–Cl-type, indicating that groundwater was strongly affected by anthropogenic activities. The plot of (Ca?+?Mg)/(K?+?Na) indicates evidences of cation exchange and salt water intrusion. The (Ca–0.33*HCO3)/ SO4 plot indicates salt water intrusion for elevated SO4 levels rather than gypsum dissolution. The spatial distribution of total dissolved solid indicates the saline water encroachment along the SW part of the study area. As per sodium adsorption ratio (SAR), 50% of the samples with <10 SAR are suitable for irrigation and >10 SAR indicates that water is unsuitable for irrigation purposes. The residual sodium carbonate classification indicates that 50% of the samples fall in safe and 50% of the samples fall in bad zones and prolonged usage of this water will affect the crop yield. The Chloro Alkaline Index of water indicates disequilibrium due to a higher ratio of Cl?>?Na–K, indicating the influence of salt water intrusion. The Permeability Index of the groundwater indicates that the groundwater from the study area is moderate to good for irrigation purposes.  相似文献   

16.
The alluvial aquifer of the Guadalquivir River comprises shallow Quaternary deposits located in the central-eastern part of the Province of Jaén in southern Spain, where groundwater resources are used mainly for crop irrigation in an important agricultural area. In order to establish the baseline hydrochemical conditions and processes determining the groundwater quality, groundwater and river water samples were collected as part of an integrated investigation that coupled multivariate statistical analysis with hydrochemical methods to identify and interpret the groundwater chemistry of the aquifer system. Three main hydrochemical types (Mg–Ca–HCO3, Ca–Mg–SO4–HCO3–Cl and Na–Ca–Mg–Cl–SO4) were identified. Further interpretation, using R-mode principal components analysis (PCA) conducted with 13 hydrochemical variables, identified two principal components which explain ⅔ of the variance in the original data. In combination with the hydrochemical interpretation, mineralogical analyses of the aquifer sediment together with inverse geochemical modelling using NETPATH showed that dedolomitization (calcite precipitation and dolomite dissolution driven by gypsum dissolution) is the principal hydrochemical process controlling the regional groundwater chemistry. Other processes such as silicate weathering, ion exchange, mixing between river water and groundwater, and agricultural practices also affect the groundwater chemistry.  相似文献   

17.
Eighty-seven groundwater samples have been collected from a mountainous region (Alvand, Iran) for hydrochemical investigations to understand the sources of dissolved ions and assess the chemical quality of the groundwater. Most water quality parameters are within World Health Organization acceptable limits set for drinking water. The least mineralized water is found closest to the main recharge zones and the salinity of water increased towards the north of the basin. The most prevalent water type is Ca–HCO3 followed by water types Ca–NO3, Ca–Cl, Ca–SO4 and Mg–HCO3. The Ca–NO3 water type is associated with high nitrate pollution. Agricultural and industrial activities were associated with elevated level of NO3. Mineral dissolution/weathering of evaporites dominates the major element hydrochemistry of the area. Chemical properties of groundwater in Alvand region are controlled both by natural geochemical processes and anthropogenic activities.  相似文献   

18.
Geochemical processes that take place in the aquifer have played a major role in spatial and temporal variations of groundwater quality. This study was carried out with an objective of identifying the hydrogeochemical processes that controls the groundwater quality in a weathered hard rock aquifer in a part of Nalgonda district, Andhra Pradesh, India. Groundwater samples were collected from 45 wells once every 2 months from March 2008 to September 2009. Chemical parameters of groundwater such as groundwater level, EC and pH were measured insitu. The major ion concentrations such as Ca2+, Mg2+, Na+, K+, Cl, and SO4 2− were analyzed using ion chromatograph. CO3 and HCO3 concentration was determined by acid–base titration. The abundance of major cation concentration in groundwater is as Na+ > Ca2+ > Mg2+ > K+ while that of anions is HCO3  > SO4 2− > Cl > CO3 . Ca–HCO3, Na–Cl, Ca–Na–HCO3 and Ca–Mg–Cl are the dominant groundwater types in this area. Relation between temporal variation in groundwater level and saturation index of minerals reveals the evaporation process. The ion-exchange process controls the concentration of ions such as calcium, magnesium and sodium. The ionic ratio of Ca/Mg explains the contribution of calcite and dolomite to groundwater. In general, the geochemical processes and temporal variation of groundwater in this area are influenced by evaporation processes, ion exchange and dissolution of minerals.  相似文献   

19.
The alluvial aquifer of the Ghatprabha River comprises shallow tertiary sediment deposits underlain by peninsular gneissic complex of Archean age, located in the central–eastern part of the Karnataka in southern India. In order to establish the baseline hydrochemical conditions and processes determining the groundwater quality, groundwater samples were collected as part of an integrated investigation that coupled multivariate statistical analysis with hydrochemical methods to identify and interpret the groundwater chemistry of the aquifer system. Three main hydrochemical types (Ca–Mg–Cl, Ca–Mg–HCO3, and Na–SO4) were identified. Gibbs plots indicate that the evolution of water chemistry is influenced by water–rock interaction followed by evapotranspiration process. The results of factor analysis indicated the total variance explained by the extracted factor 79.9% and 87.1% for both pre- and post-monsoon, respectively. And other processes such as silicate weathering, ion exchange, and local anthropogenic activities affect the groundwater chemistry.  相似文献   

20.
Analyses of 72 samples from Upper Panjhara basin in the northern part of Deccan Plateau, India, indicate that geochemical incongruity of groundwater is largely a function of mineral composition of the basaltic lithology. Higher proportion of alkaline earth elements to total cations and HCO3>Cl + SO4 reflect weathering of primary silicates as chief source of ions. Inputs of Cl, SO4, and NO3 are related to rainfall and localized anthropogenic factors. Groundwater from recharge area representing Ca + Mg–HCO3 type progressively evolves to Ca + Na–HCO3 and Na–Ca–HCO3 class along flow direction replicates the role of cation exchange and precipitation processes. While the post-monsoon chemistry is controlled by silicate mineral dissolution + cation exchange reactions, pre-monsoon variability is attributable chiefly to precipitation reactions + anthropogenic factors. Positive correlations between Mg vs HCO3 and Ca + Mg vs HCO3 supports selective dissolution of olivine and pyroxene as dominant process in post-monsoon followed by dissolution of plagioclase feldspar and secondary carbonates. The pre-monsoon data however, points toward the dissolution of plagioclase and precipitation of CaCO3 supported by improved correlation coefficients between Na + Ca vs HCO3 and negative correlation of Ca vs HCO3, respectively. It is proposed that the eccentricity in the composition of groundwater from the Panjhara basin is a function of selective dissolution of olivine > pyroxene followed by plagioclase feldspar. The data suggest siallitization (L < R and R k) as dominant mechanism of chemical weathering of basalts, stimulating monosiallitic (kaolinite) and bisiallitic (montmorillonite) products. The chemical denudation rates for Panjhara basin worked out separately for the ground and surface water component range from 6.98 to 36.65 tons/km2/yr, respectively. The values of the CO2 consumption rates range between 0.18 × 106 mol//km2/yr (groundwater) and 0.9 × 106 mol/km2/yr (surface water), which indicates that the groundwater forms a considerable fraction of CO2 consumption, an inference, that is, not taken into contemplation in most of the studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号