首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Ultraviolet (UV) solar radiation has a significant influence on human health, the environment and climate. A series of measurements, including UV radiation (290 400 nm) and global solar radiation (Rs), were continuously recorded from August 2004 at the Lhasa and Haibei sites on the Tibetan Plateau. Both observation sites' altitudes are above 3000 m and have similar meteorological conditions. The data from 2005 2006 was used to identify the varying characteristics of UV radiation. It's relation to the clearness index Ks, the relative optical mass mr, and Rs were established. The annual mean values of total daily UV radiation are 0.92 and 0.67 MJ m^-2 at Lhasa and Haibei, respectively. The UV radiation in Lhasa represented 4.6% of the global solar radiation while in Haibei this percentage was 4.2%. In the case of clear days (Ks 〉 0.8), these percentages ranged between 4.0% and 4.5% in Lhasa and between 5.1% and 5.5% in Haibei. In the case of cloudy days (Ks 〈 0.4), these percentages ranged from 4.4% to 6.8% in Lhasa and from 5.1% to 5.5% in Haibei. The maximum values of UV radiation for each relative optical mass diminished exponentially with mr. Thus, for Lhasa and Haibei, UV=46.25mr-129, and UV=51.76mr-142, respectively. The results of this study can be used to obtain more UV radiation data for the study of UV climate characteristics, the effects of UV on ecological processes and the feedback of the thinning of the stratospheric ozone, from more routine measurements Rs data.  相似文献   

2.
The performance of two models,Jam and Baig,based on the modified version of Gaussian distribution function in estimating the daily total of global solar radiation and its distribution through the hours of the day from sunrise to sunset al any clear day is evaluated with our own measured data in the period from June 1992 to May 1993 in Qena Egypt The results show a high relative deviation of calculated values from measured ones,especially for Jain model,in the most hours of the day,except for those near to local noon.This misfit behavior is quite obvious in the early morning and late afternoon A new approach has been proposed in this paper to estimate the daily and hourly global solar radiation This model performs with very high accuracy on the recorded data in our region.The validity of this approach was verified with new measurements in some clear days in June and August 1994.The resultant very low relative deviation of the calculated values of global solar radiation from the measured ones confirms the  相似文献   

3.
In this study,the clear sky hourly global and net solar irradiances at the surface determined using SUNFLUX,a simple parameterization scheme,for three stations(Gaize,Naqu,and Lhasa) on the Tibetan Plateau were evaluated against observation data.Our modeled results agree well with observations.The correlation coefficients between modeled and observed values were > 0.99 for all three stations.The relative error of modeled results,in average was < 7%,and the root-mean-square variance was < 27 W m 2.The solar irradiances in the radiation model were slightly overestimated compared with observation data;there were at least two likely causes.First,the radiative effects of aerosols were not included in the radiation model.Second,solar irradiances determined by thermopile pyranometers include a thermal offset error that causes solar radiation to be slightly underestimated.The solar radiation absorbed by the ozone and water vapor was estimated.The results show that monthly mean solar radiation absorbed by the ozone is < 2% of the global solar radiation(< 14 W m 2).Solar radiation absorbed by water vapor is stronger in summer than in winter.The maximum amount of monthly mean solar radiation absorbed by water vapor can be up to 13% of the global solar radiation(95 W m 2).This indicates that water vapor measurements with high precision are very important for precise determination of solar radiation.  相似文献   

4.
In situ measured data of broadband solar radiation (Rs) and ultraviolet (Uv) radiation were used to investigate the spa- tiotemporal variation properties of Uv radiation and the ratio of Uv radiation to Rs over the North China Plain (NCP). Based on the analysis, an empirical model for estimating Uv radiation under all weather conditions in this region was developed. The results showed that the annual Uv radiation over the NCP ranges from 0.38-0.52 MJ m^-2 d^-1. The highest value during the study period was recorded at the Changwu site, which is located near the margin of the Loess Plateau, while the lowest value appeared at the station in Beijing. The seasonal variation pattern of the ratio of Uv radiation to Rs is similar to that of Uv radiation; namely, the highest value appears in August and then decreases gradually until the lowest value appears in November. A small increasing trend in the Uv radiation levels and the ratio of Uv radiation to Rs was observed over the NCP. The evaluation results showed that the empirical estimation model can be widely used to estimate Uv radiation under all atmospheric conditions. The relative error between the modeled and measured daily values were within ± 15%.  相似文献   

5.
The impacts of solar activity on climate are explored in this two-part study.Based on the principles of atmospheric dynamics,Part I propose an amplifying mechanism of solar impacts on winter climate extremes through changing the atmospheric circulation patterns.This mechanism is supported by data analysis of the sunspot number up to the predicted Solar Cycle 24,the historical surface temperature data,and atmospheric variables of NCEP/NCAR Reanalysis up to the February 2011 for the Northern Hemisphere winters.For low solar activity,the thermal contrast between the low-and high-latitudes is enhanced,so as the mid-latitude baroclinic ultra-long wave activity.The land-ocean thermal contrast is also enhanced,which amplifies the topographic waves.The enhanced mid-latitude waves in turn enhance the meridional heat transport from the low to high latitudes,making the atmospheric "heat engine" more efficient than normal.The jets shift southward and the polar vortex is weakened.The Northern Annular Mode(NAM) index tends to be negative.The mid-latitude surface exhibits large-scale convergence and updrafts,which favor extreme weather/climate events to occur.The thermally driven Siberian high is enhanced,which enhances the East Asian winter monsoon(EAWM).For high solar activity,the mid-latitude circulation patterns are less wavy with less meridional transport.The NAM tends to be positive,and the Siberian high and the EAWM tend to be weaker than normal.Thus the extreme weather/climate events for high solar activity occur in different regions with different severity from those for low solar activity.The solar influence on the midto high-latitude surface temperature and circulations can stand out after removing the influence from the El Nin o-Southern Oscillation.The atmospheric amplifying mechanism indicates that the solar impacts on climate should not be simply estimated by the magnitude of the change in the solar radiation over solar cycles when it is compared with other external radiative forcings that do not influence the climate in the same way as the sun does.  相似文献   

6.
On the basis of analyzing observational data on solar radiation, meteorological parameters, and total ozone amount for the period of January 1990 to December 1991 in the Beijing area, an empirical calculation method for ultraviolet radiation (UV) in clear sky is obtained. The results show that the calculated values agree well with the observed, with maximum relative bias of 6.2% and mean relative bias for 24 months of 1.9%. Good results are also obtained when this method is applied in Guangzhou and Mohe districts. The long-term variation of UV radiation in clear sky over the Beijing area from 1979 to 1998 is calculated, and the UV variation trends and causes are discussed: direct and indirect UV energy absorption by increasing pollutants in the troposphere may have caused the UV decrease in clear sky in the last 20 years. With the enhancement of people‘s quality of life and awareness of health, it will be valuable and practical to provid UV forecasts for typical cities and rural areas. So, we should develop and enhance UV study in systematic monitoring, forecasting, and developing a good and feasible method for UV radiation reporting in China,especially for big cities.  相似文献   

7.
The Beijing 325-m Meteorological Tower (325MT) is used to observe the vertical variation of solar radiation. Results of the experiments indicate that the automatic radiation monitoring system, including a sun tracker and data collection system, works well and all the specifications meet WMO observation standards. The measurement data show that there is a significant radiation decrease from 320m to the surface, where the difference is only about 30Wm^-2 on light air-pollution days, while the maximum reaches about 110Wm^-2 when heavy pollution appears near the ground. The global UV radiation decreases on heavy air-pollution days and under poor visibility conditions, and the difference between 300m and 8m is larger than on clear days.  相似文献   

8.
The characteristics of net radiation (Rn)(0.3--10 μm) in Lhasa and Haibei in the Tibetan Plateau were analyzed based on long-term in-situ measurements of surface radiation data. The monthly average of daily Rn reached a minimum during the winter period followed by an increase until May and then a decline until January. This variation is consistent with solar activity. The annual mean daily total Rn values were 0.92 MJ m-2 d-1 and 0.66 MJ m-2d-1 in Lhasa and Haibei, respectively. A relationship between Rn and broadband solar radiation (Rs) was demonstrated by a good linear correlation at the two sites. Rn can be an accurate estimate from Rs. The estimated Rn values were similar to the observed values, and the relative deviations between the estimates and measurements of Rn were 2.8% and 3.8% in Lhasa and Haibei, respectively. The application of the Rn estimating model to other locations showed that it could provide acceptable estimated Rn values from the Rs data. Furthermore, we analyzed the influence of clouds on Rn by different clear index (Ks), defined as the ratio of Rs to the extraterrestrial solar irradiance on a horizontal surface. The results indicate that more accurate results are associated with increased cloudy conditions. The influence of the albedo was also considered, but its inclusion in the model resulted in only a slight improvement. Because surface albedo is not usually measured, an expression based solely on global solar radiation could be of more extensive use.  相似文献   

9.
Based on the parallel air temperature data of automatic sounding and manual observations at 16 weather stations in Hainan province from 2004 to 2005, a comparative analysis and evaluation is made for validity according to relevant standards. The results indicate that there are daily and seasonal differences between temperature observations recorded by automatic weather stations (AWSs) and with conventional methods. The reasons for the differences are the systematic error, the sensitivity of the two types of instruments to the environmental temperature change, the difference of the observation time and the effect of solar radiation. Because the long-range data were obtained from manual observation, an empirical conversion formula between the temperature records obtained by the instruments is provided for continuous use of the climate data after the changes in instruments.  相似文献   

10.
The SME satellite data of solar UV radiation and mesospheric ozone during solar flare in 1982are analyzed.The results show that the Ha line index used in the solar flare classification is not aproper parameter for studying the effects of solar activity on the photochemical process in themiddle atmosphere.  相似文献   

11.
Based on the analysis of one year of observation data of solar radiation at the ground in Beijing in 1990, a simple empirical formula for calculating UV radiation in overcast sky is established. The formula is Qlw/Quvo = A1S Ao, where Quv and Quvo are monthly mean daily sums of UV exposure in overcast sky and clear sky, respectively. S is the daily sunshine hours. The calculated results agree well with the observed. The maximum and minimum relative biases are 9.9% and 0.1%, respectively, and the yearly relative bias is 2.9%. The ratio of ultraviolet radiation of overcast sky to clear sky in 1990 is between 44.6% and 61.8%, and the yearly average is 53.9%. Thus, almost half of the UV energy is lost in the atmosphere in overcast sky in 1990.  相似文献   

12.
Surface solar radiation(SSR) is a key component of the energy budget of the Earth’s surface, and it varies at different spatial and temporal scales. Considerable knowledge of how and why SSR varies is crucial to a better understanding of climate change, which surely requires long-term measurements of high quality. The objective of this study is to introduce a value-added SSR dataset from Oct 2004 to Oct 2019 based on measurements taken at Xianghe, a suburban site in the North China Plain; two va...  相似文献   

13.
From 1983 to 1984,14 solar radiation observation stations which are located in different climate zoneswere chosen for the simultaneous observation of natural illumination with the hourly observation of insola-tion every day.In this paper,according to the data the light equivalent of total solar radiation (LEOTSR)has been given.A multivariate regression equation is employed to calculate the annual and monthly meanvalues of the LEOTSR at 14 observation stations.The variables of the equation include latitude,elevation,surface mean absolute humidity and sunshine duration.The results show that the relative errors are lessthan 10%.The LEOTSR for 464 observation stations was calculated by means of the multivariate regression equationswhich were obtained by the data of 14 observation stations.The total illumination is given by the LEOTSRmultiplying the total radiation.The climatological values of total illumination for each station are alsocalculated according to its LEOTSR and solar radiation.Finally,the climatological charts of total illuminationin China have been drawn.  相似文献   

14.
The long-term trends of total surface solar radiation(SSR),surface diffuse radiation,and surface air temperature were analyzed in this study based on updated 48-yr data from 55 observational stations in China,and then the correlation between SSR and the diurnal temperature range(DTR) was studied.The effect of total solar radiation on surface air temperature in China was investigated on the basis of the above analyses.A strong correlation between SSR and DTR was found for the period 1961-2008 in China.The highest correlation and steepest regression line slope occurred in winter,indicating that the solar radiation effect on DTR was the largest in this season.Clouds and water vapor have strong influences on both SSR and DTR,and hence on their relationship.The largest correlations between SSR and DTR occurred in wintertime in northern China,regardless of all-day(including clear days and cloudy days) or clear-day cases.Our results also showed that radiation arriving at the surface in China decreased significantly during 1961-1989(dimming period),but began to increase during 1990-2008(brightening period),in agreement with previous global studies.The reduction of total SSR offset partially the greenhouse warming during 1961-1989.However,with the increase of SSR after 1990,this offsetting effect vanished;on the contrary,it even made a contribution to the accelerated warming.Nonetheless,the greenhouse warming still played a controlling role because of the increasing of minimum and mean surface temperatures in the whole study period of 1961-2008.We estimated that the greenhouse gases alone may have caused surface temperatures to rise by 0.31-0.46℃(10 yr) 1 during 1961-2008,which is higher than previously estimated.Analysis of the corresponding changes in total solar radiation,diffuse radiation,and total cloud cover indicated that the dimming and brightening phenomena in China were likely attributable to increases in absorptive and scattering aerosols in the atmosphere,respectively.  相似文献   

15.
The impact of orbital parameters on the climate of China in the Holocene is simulated from 11kaBP to 0kaBP with an interval of 1ka using National Center for Atmospheric Research (NCAR) Community Atmosphere Model version 2 (CAM2). The geographic distributions of summer precipitation around both 9kaBP and 4kaBP were realistically captured by CAM2, compared to the proxy data collected from 80 stations. Among all orbital parameters, the precession plays a major role in computing solar radiation, which dominates the variations of summer precipitation over China during the Holocene. The summers around 9kaBP were the wettest in China. Later on, the precipitation gradually reduced to the minimum around 0kaBP by about 10%. This tremendous change occurred from the Northeast China and the eastern Inner Mongolia extending southwestwards to the Qinghai-Tibet Plateau, especially over the Qinghai-Tibet Plateau.  相似文献   

16.
The seasonal cycle of the climate of 9000 years before present was simulated with the IAP two-level atmospheric general circulation model. The incoming solar radiation was specified from the orbital parameters for 9000 years ago. The boundary conditions of that time were prescribed to the present value because of the small differences between the two. The change in radiation makes temperature to be higher in summer and lower in winter over large areas of the land; and the increased temperature contrast between the land and the ocean strengthens the summer monsoon circulation and increases the precipitation over there. The asymmetry of temperature change between the Northern Hemisphere and the Southern Hemisphere and between summer and winter still exists, which agrees with that get from the previous perpetual experiments.  相似文献   

17.
Long-term,ground-based daily global solar radiation (DGSR) at Zhongshan Station in Antarctica can quantitatively reveal the basic characteristics of Earth’s surface radiation balance and validate satellite data for the Antarctic region.The fixed station was established in 1989,and conventional radiation observations started much later in 2008.In this study,a random forest (RF) model for estimating DGSR is developed using ground meteorological observation data,and a highprecision,long-term DGSR dataset is constructed.Then,the trend of DGSR from 1990 to 2019 at Zhongshan Station,Antarctica is analyzed.The RF model,which performs better than other models,shows a desirable performance of DGSR hindcast estimation with an R~2 of 0.984,root-mean-square error of 1.377 MJ m~(-2),and mean absolute error of 0.828 MJ m~(-2).The trend of DGSR annual anomalies increases during 1990–2004 and then begins to decrease after 2004.Note that the maximum value of annual anomalies occurs during approximately 2004/05 and is mainly related to the days with precipitation (especially those related to good weather during the polar day period) at this station.In addition to clouds and water vapor,bad weather conditions (such as snowfall,which can result in low visibility and then decreased sunshine duration and solar radiation) are the other major factors affecting solar radiation at this station.The high-precision,longterm estimated DGSR dataset enables further study and understanding of the role of Antarctica in global climate change and the interactions between snow,ice,and atmosphere.  相似文献   

18.
This paper uses Dobson spectrometer total ozone data,Total Ozone Mapping Spectrometer(TOMS) data and radiosonde reports from Kunming,which is located in southwest China,from 1980 to 2008 to analyze the total ozone-climate relationship.The total ozone decadal long-term trend and abrupt change were studied using enhanced Dobson data whose missing data were amended by the TOMS data.Stepwise linear regression was used for the selection of the key factors that influence total ozone,including temperatures,geopotential heights,depressions of the dew point,wind velocities,and total solar radiation.The relationship between the selected factors and total ozone was analyzed using the methods of stepwise regression and partial least squares regression(PLSR).Results showed that although the PLSR method was slightly better and more reasonable to study the relationship than stepwise regression,while the two regression results were only slightly different.It was also suggested that local climate,especially local circulation and temperature,were important for the variations in total ozone,and the local climate could almost linearly explain 80% of the variance of total ozone.The relationship also indicated that the abrupt change of total ozone in the year 1994 may be related to abrupt local climate change.  相似文献   

19.
The trace gases (O3, HCl, CH4, H2O, NO, NO2) in the stratosphere play an important role, not only in the photochemical processes in which the ozone layer destroyed, but also in the radiative processes. In this paper, we review the works on the distribution and variation of the trace gases in the stratosphere and their impact on climate, which have been carried out at the University of Science and Technology of China in the recent 20 years. The Halogen Occultation Experiment (HALOE) data were used to analyse the distribution and variation of the mixing ratio of these trace gases and the temperature trends in the stratosphere in the most recent decade. And the reanalyzed National Centers of Environmental Prediction (NCEP)/NCAR data were also used to give the temperature trends and compared with the results from HALOE data. Numerical simulations were also carried out to study the impact of ozone depletion on the global climate. In this review, the distributions of the trace gases, especially those over the Qinghai-Xizang Plateau, are discussed, and the variations and trends for the trace gases in various levels in the stratosphere have been given for the most recent decade. The temperature variation and the cooling trend obtained from HALOE data in the middle and lower stratosphere for the last 13 years are significant, which agree well with the results from NCEP/NCAR data. While the temperature trend in the upper stratosphere in this period do not seem to have much cooling. The numerical simulations show that either the Antarctic ozone hole or the ozone valley over Qinghai-Xizang Plateau affect not only the temperature and circulation in the stratosphere, but also the temperature, pressure and wind fields in the troposphere, then lead to the global climate change.  相似文献   

20.
Yangbajing (YBJ) is located in the Tibetan Plateau, China. The characteristics of solar radiation and its relationship with clouds at YBJ from April 2009 to April 2010 were analyzed in this paper. The annual mean solar radiation was 478.4 W m 2 , and the annual mean transmittance was 0.713. The atmospheric mean trans- mittance of clear skies reaches 0.828 when the solar elevation angle (SEA) is greater than 10 degrees. Comparisons with numerical simulations show that the atmosphere of YBJ is clean. Impacts from atmospheric conditions on solar radiation are similar for clear skies during the year because the standard deviation of transmittance in clear skies was less than 0.05 when the SEA was greater than 10 degrees. It is important to understand the impact of clouds on solar radiation without considering other impact factors. In the last part of this article, the authors analyzed and established a statistical quantitative relationship between surface solar radiation and cloud fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号