首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During the Energy Balance EXperiment, the patch-by-patch, flood irrigation in a flat cotton field created an underlying surface with heterogeneous soil moisture, leading to a dry (warm)-to-wet (cool) transition within the cotton field under northerly winds. Moreover, the existence of an extremely dry, large bare soil area upstream beyond the cotton field created an even larger step transition from the bare soil region to the cotton field. We investigated the turbulence spectra and cospectra in the atmospheric surface layer (ASL) that was disturbed by large eddies generated over regions upstream and also influenced by horizontal advection. In the morning, the ASL was unstable while in the afternoon a stable internal boundary layer was observed at the site. Therefore, the turbulence data at 2.7 and 8.7 m are interpreted and compared in terms of interactions between large eddies and locally generated turbulence under two atmospheric conditions: the unstable ASL beneath the convective boundary layer (CBL) (hereafter the unstable condition) and the stable ASL beneath the CBL (hereafter the stable condition). We identified the influences of multiple sizes of large eddies on ASL turbulence under both stratifications; these large eddies with multiple sizes were produced over the dry patches and dry, large bare soil areas upstream. As a consequence of the disturbance of large eddies, the broadening, erratic variability, and deviation of spectra and cospectra, relative to those described by Monin–Obukhov similarity theory, are evident in the low- to mid-frequencies. Transfer of momentum, heat, and water vapour by large eddies is distinctly observed from the turbulence cospectra and leads to significant run-to-run variations of residuals of the surface energy balance closure. Our results indicate that these large eddies have greater influences on turbulence at higher levels compared to lower levels, and in the unstable ASL compared to the stable ASL.  相似文献   

2.
The dependence on atmospheric stability of flow characteristics adjacent to a very rough surface was investigated in a larch forest in Japan. Micrometeorological measurements of three-dimensional wind velocity and air temperature were taken at two heights above the forest, namely 1.7 and 1.2 times the mean canopy height h. Under near-neutral and stable conditions, the observed turbulence statistics suggest that the flow was likely to be that of the atmospheric surface layer (ASL) at 1.7h, and of the roughness sublayer (RSL) at 1.2h. However, in turbulence spectra, canopy-induced large coherent motions appeared clearly at both heights. Even under strongly stable conditions, the large-scale motions were retained at 1.2h, whereas they were overwhelmed by small-scale motions at 1.7h. This phenomenon was probably due to the enhanced contribution of the ASL turbulence associated with nocturnal decay of the RSL depth, because the small-scale motions appeared at frequencies close to the peak frequencies of well-known ASL spectra. This result supports the relatively recent concept that canopy flow is a superimposition of coherent motions and the ASL turbulence. The large-scale motions were retained in temperature spectra over a wider region of stability compared to streamwise wind spectra, suggesting that a canopy effect extended higher up for temperature than wind. The streamwise spacing of dominant eddies according to the plane mixing-layer analogy was only valid in a narrow range at near neutral, and it was stabilised at nearly half its value under stable conditions.  相似文献   

3.
Hurricane Wind Power Spectra, Cospectra, and Integral Length Scales   总被引:1,自引:0,他引:1  
Atmospheric turbulence is an important factor in the modelling of wind forces on structures and the losses they produce in extreme wind events. However, while turbulence in non-hurricane winds has been thoroughly researched, turbulence in tropical cyclones and hurricanes that affect the Gulf and Atlantic coasts has only recently been the object of systematic study. In this paper, Florida Coastal Monitoring Program surface wind measurements over the sea surface and open flat terrain are used to estimate tropical cyclone and hurricane wind spectra and cospectra as well as integral length scales. From the analyses of wind speeds obtained from five towers in four hurricanes it can be concluded with high confidence that the turbulent energy at lower frequencies is considerably higher in hurricane than in non-hurricane winds. Estimates of turbulence spectra, cospectra, and integral turbulence scales presented can be used for the development in experimental facilities of hurricane wind flows and the forces they induce on structures.  相似文献   

4.
We present the power spectra of wind velocity and the cospectra of momentum and heat fluxes observed for different wind directions over flat terrain and a large valley on the Loess Plateau. The power spectra of longitudinal (u) and lateral (v) wind speeds satisfy the −5/3 power law in the inertial subrange, but do not vary as observed in previous studies within the low frequency range. The u spectrum measured at 32 m height for flow from the valley shows a power deficit at intermediate frequencies, while the v spectrum at 32 m downwind of the valley reaches another peak in the low frequency range at the same frequency as the u spectrum. The corresponding peak wavelength is consistent with the observed length scale of the convective outer layer at the site. The v spectrum for flat terrain shows a spectral gap at mid frequencies while obeying inner layer scaling in its inertial subrange, suggesting two sources of turbulence in the surface layer. All the spectra and cospectra from the valley direction show a height dependency over the three levels.  相似文献   

5.
Spectra of CO2 and water vapour fluctuations from measurements made in the marine atmospheric surface layer have been analyzed. A normalization of spectra based on Monin–Obukhov similarity theory, originally developed for wind speed and temperature, has been successfully extended also to CO2 and humidity spectra. The normalized CO2 spectra were observed to have somewhat larger contributions from low frequencies compared to humidity spectra during unstable stratification. However, overall, the CO2 and humidity spectra showed good agreement as did the cospectra of vertical velocity with water vapour and CO2 respectively. During stable stratification the spectra and cospectra displayed a well-defined spectral gap separating the mesoscale and small-scale turbulent fluctuations. Two-dimensional turbulence was suggested as a possible source for the mesoscale fluctuations, which in combination with wave activity in the vertical wind is likely to explain the increase in the cospectral energy for the corresponding frequency range. Prior to the analysis the turbulence time series of the density measurements were converted to time series of mixing ratios relative to dry air. Some differences were observed when the spectra based on the original density measurements were compared to the spectra based on the mixing ratio time series. It is thus recommended to always convert the density time series to mixing ratio before performing spectral analysis.  相似文献   

6.
Observations of low-level jets (LLJs) at the Howland AmeriFlux site in the USA and the jet’s impact on nocturnal turbulent exchange and scalar fluxes over a tall forest canopy are discussed. Low-frequency motions and turbulent bursts characterize moderately strong LLJs, whereas low-frequency motions are suppressed during periods with strong LLJs and enhanced shear. An analysis based on the shear-sheltering hypothesis seeks to elucidate the effect of LLJs on flux measurements. In the absence of shear sheltering, large eddies penetrate the roughness sublayer causing enhanced mixing while during periods with shear sheltering, mixing is reduced. In the absence of the latter, ‘upside-down’ eddies are primarily responsible for the enhanced velocity variances, scalar and momentum fluxes. The integral length scales over the canopy are greater than the canopy height. The variance spectra and cospectra from the wavelet analysis indicate that large eddies (spatial scale greater than the low-level jet height) interact with active canopy-scale turbulence, contributing to counter-gradient scalar fluxes.  相似文献   

7.
The longitudinal (i.e., in the direction of the mean wind) spectra and cospectra of wind components and temperature fluctuations in the atmospheric surface layer during neutral conditions were carefully investigated by Kader (1984, 1987) for a broad range of wave numbers which included wavelengths far beyond the large-scale limit of the inertial subrange. At the same time, some direct measurements of spatial correlation functions of the longitudinal wind component and temperature were performed by Zubkovskii and Fedorov (1986) and Zubkovskii and Sushko (1987). Section 2 of the present paper gives a review of the available results on longitudinal spectra and cospectra of wind velocity and temperature fluctuations in neutral stratification and examines the consequences of these results related to the longitudinal autocorrelation and symmetrized cross-correlation functions of surface-layer turbulence. In Section 3 it is shown that the correlation equations of Section 2 agree satisfactorily with some recent measurements of the longitudinal correlation functions in the range of distances from 3 m to 100 m. Some measurements of the lateral correlation functions of atmospheric turbulence are also presented in Section 3. It is shown that these measurements lead to some predictions concerning the never-measured lateral space spectra of surface-layer turbulence.  相似文献   

8.
This paper reports power spectra and cospectra of windspeed and several scalars measured at two heights nearthe base of an advective inversion. The inversion hadformed over a paddy field downwind of an extensive dryregion. Winds over the paddy field were variable instrength and direction, as a result of convectivemotions in the atmospheric boundary layer passing overfrom the dry region upwind. Fetch over the rice waslarge enough that advective effects on the transportprocesses were small at the upper level and negligibleat the lower level. Results from the lower level areinterpreted in terms of a horizontally homogeneous,but disturbed, surface layer.Power spectra of longitudinal and lateral velocitywere substantially enhanced at low frequencies. Theresulting vertical motions added only a small amountto the spectrum of vertical velocity but this stronglyaffected scalar power spectra and cospectra. Thesewere all substantially enhanced over a range of lowfrequencies. We also found that differences in lowerboundary conditions cause differences among scalarspectra at low frequencies.Our analysis shows that the spectra and cospectra havethree components, characterized by different scalingregimes. We call these the ILS (inner-layer scaling),OLS (outer-layer scaling) and CS (combined scaling)components. Of these, the CS component had notpreviously been identified. We identify CS componentsof spectra by their independence of height andfrequency. Spectra with these characteristics had beenpredicted by Kader and Yaglom for a layer of theatmosphere where spectral matching between ILS and OLSwas proposed. However, we find that the velocity andscalar scales used by Kader and Yaglom do not fit ourresults and that their concept of a matching layer isincompatible with our application. An alternativebasis for this behaviour and alternative scales areproposed.We compare our decomposition of spectra into ILS, CSand OLS components with an extended form of Townsend'shypothesis, in which wind and scalar fluctuations aredivided into active and inactive components. Wefind the schemes are compatible if we identify all OLSspectral components as inactive, and all CS and ILScomponents as active.By extending the implications of our results toordinary unstable daytime conditions,we predict that classical Monin–Obukhovsimilarity theory should be modified. We find that theheight of the convective boundary layer is animportant parameter when describing transportprocesses near the ground, and that the scalar scalein the ILS part of the spectrum, which includes theinertial subrange, is proportional to observationheight times the local mean scalar gradient, and notthe Monin–Obukhov scalar scale parameter. The formerdepends on two stability parameters: the Monin–Obukhovstability parameter and the ratio of the inner-layerand outer-layer velocity scales. The outer-layer scalecan reflect disturbances by topographically-inducededdying as well as by convective motions.  相似文献   

9.
Attached Eddies and Production Spectra in the Atmospheric Logarithmic Layer   总被引:1,自引:0,他引:1  
We investigate the production components of turbulent spectra within logarithmic layers over flat ground. This assumes that the turbulence giving rise to these spectra consists of active coherent structures (eddies) that are attached to the ground, and whose properties display perfect statistical self-similarity under inner scaling. That is, we take the extreme view that active coherent structures not only contribute to turbulence production spectra but explain the whole of them, so that neither detached eddies nor unstructured motions make any significant contribution. Perfect self-similarityis held to apply only to eddies that are themselves formed totally within the log layer, so the theory applies in the limit of spectra obtained at the hearts of very deep log layers. The model predicts that spectral variance and covariance should become independent of wavenumber at small wavenumbers. This asymptotic behaviour is observed in all neutral spectra from the Kansas experiment. The model also interprets the various positions of the spectral peaks observed at Kansas and in aircraft flights over the sea as consequences of the eddies being aggregated into files aligned with the wind. The observed spectra are therefore consistent with large-scale wedge-like structures being the principal component of active turbulence in the neutral atmospheric surface layer.  相似文献   

10.
The structure of the turbulence in the atmospheric surface layer over a monsoon trough region has been studied using structural analysis based on wavelet transform. The observational site is located at the eastern (wet) end of the monsoon trough region, characterized by high moisture in the atmospheric surface layer. On the average relative humidity varied from 70% to 100% during the experiment. The wind and temperature data, collected at Kharagpur (22°25' N, 87°18' E) at six observational hours of a day in June 1990 during the Monsoon Trough Boundary Layer Experiment (MONTBLEX), have been utilized in the study. The wind and instantaneous momentum flux time series were decomposed into 12 scales using the Haar wavelet transform. The eddies exhibited a large temporal variability generating intermittency in the energy and flux distributions. A criterion based on the isotropy has been suggested for separating the large eddies from the small eddies. At the separation scale the isotropy coefficient drops sharply. It is shown that the intermittency in the small eddies resulted from the spatial variation of energy, and deviation of velocity statistics from the Gaussian distribution known as flatness. The deviation from the -5/3 power law has been attributed to the increased mean values of, (i) the coefficient of variation of energy, and (ii) the flatness factor, in the inertial subrange. The decomposition of the instantaneous momentum flux time series reveals that the major contribution to the total flux arises from the large eddies. The quadrant analysis of the momentum flux shows that ejections and sweeps account for a substantial part of the total flux, and quantifies the relative importance of the various spatial scales that contribute to the transport of momentum.  相似文献   

11.
杨礼荣  任阵海 《高原气象》1990,9(4):382-387
本文利用100m~3系留气艇携带超声风温仪在复杂的盆地地形上空对1000m以下大气进行观测所获得的资料,研究小风稳定条件下大气边界层湍流结构特征。结果表明,在双对数坐标中,纵向速度u谱,垂直速度w谱,温度T谱在惯性区均遵循Kolmogorov的-2/3次律;横向速度V谱有其特殊的情形;协谱uw,wT及近地层的uT协谱在惯性区服从-4/3次律。和平坦、均一、开阔下垫面不同的是谱的峰值频率向高频移动,且没有发现近地层具有的谱峰随高度的明显变化关系。  相似文献   

12.
Observations obtained over a glacier surface in a predominantlykatabatic flow and with a distinctwind maximum below 13-m height are presented. The data werecollected using a 13-m high profilemast and two sonic anemometers (at about 2.5-m and 10-m heights).The spectra at frequencies belowthat of the turbulence range appear to deviate considerably fromthe curves obtained by Kaimal andco-workers during the 1968 Kansas experiment. The characteristicsof these deviations are compared tothe observations of others in surface-layers disturbed by anykind of large-scale outer-layer (orinactive) turbulence. In our case the disturbances arelikely to be induced by the highmountain ridges that surround the glacier. Moreover, the deviationsobserved in the cospectra seemto result from an, as yet, unspecified interaction between theinactive outer-layer turbulenceand the local surface-layer turbulence. Near the distinctwind maximum turbulence production ceasedwhile turbulence itself did not, probably the result ofturbulence transport from other levels. Consequently, we studied thelocal similarity relations using w instead of u* as an alternative velocity scale. Wellbelow the wind maximum, and for relatively low stability(0< Rig <0.2), the flow behaves accordingto well established local-scaling similarity relationshipsin the stable boundary layer. For higherstability (Rig > 0.2), and near or above the wind maximum, the boundary-layer structure conforms tothat of z-less stratification suggesting that the eddy sizeis restricted by the local stability ofthe flow. In line with this we observed that the sensibleheat fluxes relate remarkably well to thelocal flow parameters.  相似文献   

13.
A warm on-ice air flow from the open water over the Arctic sea ice in the Fram Straitwas, for the first time, systematically measured on 12 March 1998 by aircraft in thelowest 3 km over a 300-km long distance. The air mass modification and the processesinvolved are discussed.Over the water, air temperature was lower than water temperature so that a convectiveboundary layer (CBL) was present as initial condition. As soon as the CBL passed theice edge, a shallow stable internal boundary layer (IBL) was formed. In the residual CBL, turbulence and pre-existing convective clouds dissolved within about 20 km. Within about the same distance, due to the transition from unstable to stable stratification, the influence of surface friction increased in the IBL and decreased above the IBL with consequent generation of a low-level jet at IBL top. The IBL was strongly stratified with respect to both temperature and wind. The wind shear was around 0.1 s-1 so that the Richardson number in the IBL was subcritical and turbulence was generated. The IBL top grew to about 145 m over 230 km distance. The growth of the IBL was not monotonic and was influenced by (a) inhomogeneous ice surface temperatures causedby both different ice thickness and changes in the cloud conditions, and (b) leads in theice deck. At the front side of the on-ice flow, the air mass boundary between the warmair and the cold Arctic air was sharp (12 K over 10 km) at low levels and tilted withheight. Observations suggest that the stratified IBL was lifted as a slab on top of thecold air.  相似文献   

14.
Applications of Kolmogorov's universal equilibrium hypothesis and the Taylor transform to velocity spectra derived from measurements within the low frequency portion of the atmospheric surface layer (ASL) inertial subrange are examined. The measured ratios of lateral to longitudinal velocity component spectra exhibit considerable scatter, but suggest convergence towards 1.0 rather than towards the 4/3 expected from theory. Shear and buoyancy introduce anisotropy to the inertial subrange, thereby contributing to the observed scatter. The apparent discrepancy between the 4/3 velocity component spectrum ratio expected from theory and the measurements could arise as a consequence of the processing used to produce spectra. These processing effects must be considered from the perspective of the propagating eddy. Spectral averaging used with sonic anemometer data is done over time periods that are large with respect to inertial subrange eddy correlation decay times. This averaging causes energy from larger scale eddies to appear as `local convection' that dominates the Taylor transform. Spectrum ratio convergence and cospectra approaching zero are necessary, but not sufficient, conditions for onset of local isotropy. Measurements of spectrum ratios and cospectra over the entire inertial subrange are needed to determine whether or not local isotropy might occur within the ASL.  相似文献   

15.
Simultaneous measurements of wind velocity, air humidity and sea surface wave-elevation fluctuations obtained on a platform in the open Caspian Sea are analyzed.It is shown that wave noises exist in the spectra and cospectra of the lower part of the atmospheric boundary layer, not only for the frequency of the main energy transporting component of the sea waves, but also in other parts of the spectra, at both lower and higher frequencies. The high frequencies are noncoherent with the sea waves and could be considered as measurement errors due to the existence of the waves. A method of elimination of the coherent wave noises from the spectra and cospectra is suggested and the effectiveness of its application is demonstrated.The essential difference between cases of developing and decaying wind waves is demonstrated.  相似文献   

16.
Predictions from a new theory for high Reynolds number turbulent boundary layers during near-neutral conditions are shown to agree well with measurements of atmospheric surface-layer variances and spectra. The theory suggests surface-layer turbulence is determined by detached eddies that largely originate in the shearing motion immediately above the surface layer; as they descend into this layer, they are strongly distorted by the local shear and impinge onto the surface. Because the origin of these eddies is non-local, they are similar to those described in previous studies as `inactive' turbulence. However, they are, in fact, dynamically highly active, supplying the major mechanism for the momentum transport, including upward bursting on the time scale of the larger eddies. The vertical velocity results show that the variance and the low frequency parts of spectra increase with height in the surface layer, while in the self similar (k1 -1) range the streamwise low frequency components are approximately constant with height. These large-scale longitudinal eddies extend to a length s, which is equal to the boundary-layer height near the surface andincreases linearly to a maximum of about three times the boundary-layer height at roughly 15 m and decreases in the upper parts of the surface layer. This lower part of the surface layer, the eddy surface layer, is the region in which the eddies impinging from layers above are strongly distorted. This new result for the atmospheric boundary layer has practical application for calculating fluctuating wind loads on structures and lateral dispersion of pollution from local sources.  相似文献   

17.

The nocturnal low-level jet (LLJ) and orographic (gravity) waves play an important role in the generation of turbulence and pollutant dispersion and can affect the energy production by wind turbines. Additionally, gravity waves have an influence on the local mixing and turbulence within the surface layer and the vertical flux of mass into the lower atmosphere. On 25 September 2017, during a field campaign, a persistent easterly LLJ and gravity waves were observed simultaneously in a coastal area in the north of France. We explore the variability of the wind speed, turbulent eddies, and turbulence kinetic energy in the time–frequency and space domain using an ultrasonic anemometer and a scanning wind lidar. The results reveal a significant enhancement of the turbulence-kinetic-energy dissipation (by?50%) due to gravity waves in the LLJ shear layer (below the jet core) during the period of wave propagation. Large magnitudes of zonal and vertical components of the shear stress (approximately 0.4 and 1.5 m2 s?2, respectively) are found during that period. Large eddies (scales of 110 to 280 m) matching the high-wind-speed regime are found to propagate the momentum downwards, which enhances the mass transport from the LLJ shear layer to the roughness layer. Furthermore, these large-scale eddies are associated with the crests while comparatively small-scale eddies are associated with the troughs of the gravity wave.

  相似文献   

18.
Temperature variance and temperature power spectra in the unstable surface layer have always presented a problem to the standard Monin-Obukhov similarity model. Recently that problem has intensified with the demonstration by Smedman et al. (2007, Q J Roy Meteorol Soc 133: 37–51) that temperature spectra and heat-flux cospectra can have two distinct peaks in slightly unstable conditions, and by McNaughton et al. (2007, Nonlinear Process Geophys 14: 257–271) who showed that the wavenumber of the peak of temperature spectra in a convective boundary layer (CBL), closely above the surface friction layer (SFL), can be sensitive to the CBL depth, z i. Neither the two-peak form at slight instability nor the dependence of peak position on z i at large instability is compatible with the Monin-Obukhov model. Here we examine the properties of temperature spectra and heat-flux cospectra from between these extremes, i.e. from within the unstable SFL, in two experiments. The analysis is based on McNaughton’s model of the turbulence structure in the SFL. According to this model, heat is transported through most of the SFL by sheet plumes, created by the action of impinging outer eddies. The smallest and most effective of these outer eddies have sizes that scale on SFL depth, z s. The z s-scale eddies and plumes are organised within the overall convection pattern in the CBL, and in turn they organise the motion of smaller eddies within the SFL, whose sizes scale on height, z. The main experimental results are: (1) the peak amplitudes of the temperature spectra in the SFL are collapsed with a scaling factor (zsz)1/3eo2/3{(z_{\rm s}z)^{1/3}\varepsilon_{\rm o}^{2/3}} divided by the square of the surface temperature flux, where eo{\varepsilon_{\rm o}} is the dissipation rate of turbulent energy in the outer CBL (above the SFL); (2) the peak wavenumbers of the temperature spectra are collapsed with the mixed length scale (z i z s)1/2; (3) the peak wavenumbers of the heat-flux cospectra are collapsed with the doubly-mixed length scale (z i z s)1/4 z 1/2; (4) for z/z s < 0.03, the peak in the cospectrum is replaced by another peak at a wavenumber about a magnitude larger. This peak’s position scales on z; (5) all these findings are consistent with the observations of Smedman et al.  相似文献   

19.
Results of a large-eddy simulation of a decaying convective mixed layer over land are presented. The time evolution of the mixed layer is forced by the surface heat flux gradually decreasing with time. The results obtained show that the decay of the turbulent kinetic energy is governed by two scales, the external time scale controlling the surface heat flux changes, and the convective time scale. During the simulation, large eddies persist even when the heat flux at the surface becomes negative. A decoupled residual layer of active turbulence is developed above the stable surface layer. The residual layer is marked by large-scale updrafts that are able to penetrate the capping inversion layer and induce entrainment.  相似文献   

20.
The processes influencing turbulence in a deciduous forest and the relevant length and time scales are investigated with spectral and cross-correlation analysis. Wind velocity power spectra were computed from three-dimensional wind velocity measurements made at six levels inside the plant canopy and at one level above the canopy. Velocity spectra measured within the plant canopy differ from those measured in the surface boundary layer. Noted features associated with the within-canopy turbulence spectra are: (a) power spectra measured in the canopy crown peak at higher wavenumbers than do those measured in the subcanopy trunkspace and above the canopy; (b) peak spectral values collapse to a relatively universal value when scaled according to a non-dimensional frequency comprised of the product of the natural frequency and the Eulerian time scale for vertical velocity; (c) at wavenumbers exceeding the spectral peak, the slopes of the power spectra are more negative than those observed in the surface boundary layer; (d) Eulerian length scales decrease with depth into the canopy crown, then increase with further depth into the canopy; (e) turbulent events below crown closure are more correlated with turbulent events above the canopy than are those occurring in the canopy crown; and (f) Taylor's frozen eddy hypothesis is not valid in a plant canopy. Interactions between plant elements and the mean wind and turbulence alter the processes that produce, transport and remove turbulent kinetic energy and account for the noted observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号