首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of ochre to remove Pb(II) and Cu(II) from aqueous media has been studied by batch sorption studies varying the contact time, initial metal concentration, initial solution pH and temperature to understand the adsorption behaviour of these metals through adsorption kinetics and isotherms. The pH of the solution and the temperature controlled the adsorption of metal ions by ochre and rapid uptake occurred in the first 30 min of reaction. The kinetics of adsorption followed a pseudo-second-order rate equation (R 2 > 0.99) and the isotherms are well described by the Freundlich model. Adsorption of metals onto ochre is endothermic in nature. Between the two metals, Pb(II) showed more preference towards the exchangeable sites on ochre than Cu(II). This study indicates that ochre is a very effective adsorbent in removing Pb(II) and Cu(II) from the aqueous environment with an adsorptive capacity of 0.996 and 0.628 mg g?1 and removal efficiency of 99.68 and 62.80 %, respectively.  相似文献   

2.
Reducing heavy metal concentrations to allowable levels in landfill leachate before discharge is an extremely important process to prevent environmental pollution. Iron oxide-coated gravel was used in order to remove Cd(II), Cu(II), Pb(II), Fe(III) and Al(III) simultaneously in high-strength synthetic leachate samples. Batch and column studies were performed to determine the kinetics and mechanism of adsorption process. The experimental data obtained from batch study satisfactorily fitted to the Freundlich model indicating surface heterogeneity and multilayer adsorption process. The data obtained from kinetic studies followed the pseudo-second-order kinetics indicating adsorption governed by chemisorption. The metal adsorption order observed in the batch study was Pb(II)(99.72%) ≈ Cu(II)(99.61%) ≈ Cd(II)(99.51%) ≈ Fe(III)(99.3%) > Al(III)(93.3%) at pH 7. Average metal removals in the fixed-bed column were found to be 96.5% for Cu(II), 94.8% for Pb(II), 90% for Cd(II), 84% for Fe(III) and 67% for Al(III). Iron oxide-coated gravel column adsorption capacity ranged from 0.56 to 66.82 mg/g. Recovery efficiency of adsorbed metals via desorption was between 5–97.75% in first cycle and 2–80.3% in second cycle.  相似文献   

3.
Heavy metals are a threat to human health and ecosystem. These days, great deal of attention is being given to green technologies for purification of water contaminated with heavy metal ions. Biosorption is one among such emerging technologies, which utilizes naturally occurring waste materials to sequester heavy metals from wastewater. Cadmium has hazardous impact on living beings; therefore, its removal through green and economical process is an important task. The aim of the present study was to utilize the locally available Portulaca oleracea plant biomass as an adsorbent for cadmium removal from aqueous solution. The biomass was obtained after drying and grinding the portulaca leaves and stem. No chemical treatment was done on the adsorbent so that it remained green in a true sense. Batch experiments were performed at room temperature. The critical parameters studied were effects of pH, contact time, initial metal ion concentration and adsorbent dose on the adsorption of cadmium. The maximum adsorption was found to be 72 %. The kinetic data were found to best fit the pseudo-second-order equation. High adsorption rates were obtained in the initial 45 min, and adsorption equilibrium was then gradually achieved in about 100 min. Adsorption increased with increase in pH for a range 2 and 6. The equilibrium adsorption results closely followed both the Langmuir and Freundlich isotherms. The values of constants were calculated from isotherms. Results indicated that portulaca plant biomass could be developed as a potential material to be used in green water treatment devices for removal of metal ions.  相似文献   

4.
A zinc oxide-coated nanoporous carbon sorbent was prepared by acid modification and ZnO functionalization of mesoporous carbon. The synthesized materials, such as mesoporous carbon, oxidized mesoporous carbon and zinc oxide-coated nanoporous carbon, were characterized by nitrogen adsorption–desorption analysis, Fourier transform infrared spectra, scanning electron microscopy, and transmission electron microscopy. ZnO on oxidized mesoporous carbon gradually increased with increase in the number of cycles. Furthermore, the effects of agitation time, initial metal ions concentration, adsorbent dose, temperature and pH on the efficiency of Pb(II) ion removal were investigated as the controllable factors by Taguchi method. The value of correlation coefficients showed that the equilibrium data fitted well to the Langmuir isotherm. Among the adsorbents, zinc oxide-coated nanoporous carbon showed the largest adsorption capacity of 522.8 mg/g (2.52 mmol/g) which was almost close to that of the zinc oxide-coated (2.38 mmol/g), indicating the monolayer spreading of ZnO onto the oxidized mesoporous carbon. The results of the present study suggest that ZnO-coated nanoporous carbon can be effectively used for Pb(II) adsorption from aqueous solution, whereas a part of acidic functional groups may be contributed to binding the Pb(II) for the oxidized mesoporous carbon and mesoporous carbon. Kinetic studies indicated that the overall adsorption process of Pb(II) followed the pseudo-second-order model. The ZnO-coated nanoporous carbon was regenerated and found to be suitable of reuse of the adsorbent for successive adsorption–desorption cycles without considerable loss of adsorption capacity.  相似文献   

5.
Analysis was carried out using tangerine peel aiming its use as a potential adsorbent of eight heavy metal ions (Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn) from aqueous solution. This agricultural waste was tested both in its untreated and also chemically modified form. Based on Fourier transformation infrared spectra, a comparison of biosorbent structure before and after chemical treatment was made. Batch adsorption tests were conducted at different pH and mass of sorbent to examine the influence on the effectiveness of simultaneous removal of tested ions. Kinetic studies were conducted at optimum pH 5.0 and sorbent dosage 300 mg. The pseudo-second-order kinetic model best fit the experimental data with high correlation coefficients (r2 > 0.9997). By optimizing listed parameters, high removal efficiencies (> 89%) were achieved. According to the results obtained in this study, the remediation of water polluted with heavy metals could be done using modified tangerine peel as an agricultural waste material.  相似文献   

6.
Biofilms wasted from biotrickling filters was dried and used as biosorbent for Cd(II) removal from aqueous solutions. The adsorption condition and effect, adsorption isotherms and kinetics of Cd(II) removal were investigated, and the effects of competitive metal ions on Cd(II) removal were also examined. Results showed that the dry waste biofilms reached the maximum adsorption capacity of 42 mg/g of Cd(II) at 25 °C for 120 min when the initial concentration of Cd(II) and their pH were 50 mg/L and 6.0, respectively. Under these conditions, the removal efficiency of Cd(II) reached to 89.3% when the biosorbent dosage was 2.0 g/L. The Langmuir isotherm model correlated with the isotherm data better than the Freundlich isotherm model, and the pseudo-second-order model fitted the kinetic data better than the pseudo-first-order model. These results indicated that the adsorption was monolayer accompanied with chemical adsorption. In the presence of other metal ions, divalent metal ions of Ca and Zn inhibited the performance of Cd(II) biosorption significantly, while Na(I), K(I) and Fe(III) which had a higher or lower valence than Ca(II) affected slightly when containing 50 mg/L Cd(II), 0.5 g/L adsorbent dosage and pH 6.0. The analyses of scanning electron microscopy and Fourier transform infrared spectroscopy illuminated that the biosorbent had porous structures and the amide group was the majorly responsible for Cd(II) removal. Dry biofilms were novel sorbents for effective removal Cd(II), and it could be reused and recycled if necessary.  相似文献   

7.
Adsorptive separation of Pb(II) and Cu(II) using modified waste Lyocell fiber adsorbent was investigated in this research. The waste Lyocell fiber was functionalized through carboxymethylation of the hydroxyl moieties using sodium chloroacetate as modifying agent and was crosslinked with epichlorohydrin to provide water stability. The maximum equilibrium batch uptake in single metal system was 353.45 mg/g for Pb(II) and 98.33 mg/g for Cu(II), according to the Langmuir isotherm model. The adsorption rates were very fast and reached equilibrium within 3 and 5?10 min for Cu(II) and Pb(II), respectively. In competitive binary metal system, the uptake of Cu(II) largely decreased to 38.40 mg/g, and Pb(II) selectivity was observed. Elemental and functional characterization suggested that the adsorption proceeded by ion exchange between the adsorbent and metal ions. In a flow-through column system, adsorption followed by desorption aided in effectively eluting ~260 mg of Pb(II) (out of ~300 mg total adsorbed) from the Pb(II)–Cu(II) binary solution. Finally, the adsorbent was very effective in four successive adsorption–desorption cycles with over 99 % uptake and 94 % desorption efficiencies. The present study may provide an alternative option for waste fiber recycling and could be useful in recovering heavy metal ions from aqueous sources to complement their depleting reserves.  相似文献   

8.
Amorphous tin(VI) hydrogen phosphate (ATHP) was synthesized using the liquid phase precipitation method and served as an adsorbent to remove Pb(II), Cu(II), and Zn(II) from aqueous solutions. The ATHP was characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption–desorption techniques. Adsorption properties were evaluated as a function of pH, reaction time, concentration of reactants, and salinity. Their equilibrium adsorption data were modeled using Freundlich, Langmuir, and Dubinin–Kaganer–Radushkevich isotherms, respectively. The results revealed that adsorption equilibrium reached within 180 min. ATHP indicated good adsorption even below the pHZPC, and best adsorption at pH 5 for Pb(II) and Cu(II) and at pH 5.5 for Zn(II) was observed. Equilibrium data fitted better to the Langmuir model for Pb(II) and Cu(II) and fitted better to the Freundlich model for Zn(II). The saturated adsorption capacities deduced from the Langmuir model were 2.425, 1.801, and 0.600 mmol/g for Cu(II), Pb(II), and Zn(II), respectively, indicating an adsorption affinity order of Cu > Pb > Zn. There is a negative correlation between the concentration of NaCl and adsorption capacity of ATHP, yet ATHP still exhibited excellent adsorption having an adsorption capacity of 19.35, 15.16, 6.425 mg/g when the concentration of NaCl was 0.6 mol/L. The free energy (E) was 12.33, 10.70, and 14.74 kJ/mol for Pb(II), Cu(II), and Zn(II), respectively. An adsorption mechanism based on ion exchange between heavy metal ions and H+ in the ATHP is proposed. Furthermore, the used ATHP was regenerated by HCl solution and the adsorbent was used repeatedly.  相似文献   

9.
A novel two-dimensional carbon material using phytic acid-functionalized graphene oxide was successfully synthesized by a simple hydrothermal method. Properties of the material were characterized by SEM, FT-IR, FITR-Rama and BET. Some factors like contact time, pH, and temperature were studied to investigate the adsorption characteristics on Cu(II) ions of the material. Experiment results showed that the material can reach equilibrium adsorption in 20 min and get maximum adsorption capacity (316.586 mg g) under the condition of pH 4.0, 304 K. The adsorption of Cu(II) ions was an exothermic and spontaneous process, and could be better simulated by the pseudo-second-order kinetics and Freundlich isotherm model.  相似文献   

10.
Ruppia maritima and Echinodorus amazonicus were prepared in a dehydrated powder form. The characteristics and mechanisms of adsorption of heavy metals were studied under various pH values, reaction times, and heavy metal ion concentrations. The results showed that under different pH and reaction time conditions, heavy metal adsorption was lead > cadmium > zinc > copper. The adsorption of lead increased linearly with the lead concentration. For cadmium, zinc and copper, the adsorption was saturated when metal ion concentration exceeded 200 mg/L. When a Freundlich model was applied, R 2 values for the heavy metal adsorption by the aquatic plants mostly exceeded 0.9. The adsorption of heavy metal ions by these two aquatic plant powders was better explained by the Lagergren second-order equation than the first-order equation. From the Fourier Transform Infrared spectra, there was an adsorption peak at 2,115 cm?1 for R. maritima. The peak shape did not change with metal affiliation except there was a shift of peak wavelength before adsorption. The results indicate that the mechanism of heavy metal adsorption by the two species is not simply on the mono-molecular layer level, and that intra-particulate dispersal is the dominant process. Heavy metal pollution does not affect the basic chemical components, and major substances involved in heavy metal adsorption including carbohydrates, cell wall pectin, and protein functional groups.  相似文献   

11.
Landfill leachate is a high-strength wastewater. If it is not managed properly, it can pollute surrounding environment. The aim of this study is to determine the simultaneous adsorption capacity of iron oxide-coated gravel for metals such as Cd(II), Cu(II), Fe(II), Ni(II) and Zn(II) in high-strength leachate sample. Different operating conditions such as pH, time, and dosages were investigated to determine the kinetics and mechanism of adsorption process. Coating with iron oxide changed the external surface of gravel. The adsorption capacities increased with increased pH, and the optimum pH was found to be 7. High removal rates were observed in a short period of time. The Freundlich model fitted reasonably well to the experimental data, indicating multilayer adsorption process and the heterogeneity of the surface (R 2 ranging 0.57–0.94). The Temkin model fitted well to the experimental data as well (R 2 ranging 0.67–0.98), indicating that the adsorption is an exothermic process. The adsorption of ions was found to obey second-order kinetics, indicating one-step, surface-only adsorption process. The degree of metal adsorption on iron oxide-coated gravel at pH 7 was in the order Cu(II) > Cd(II) > Fe(II) > Zn(II) > Ni(II).  相似文献   

12.
The kinetics of Co(II) ions adsorption on thermally activated dolomite was studied with respect to the calcination temperature of natural dolomite. The sorption of Co(II) onto all samples is reasonably fast: The first 30–35 min accounts for approximately 70–80 % of Co(II) removal from feed solutions. In order to select the main rate-determining step in the overall uptake mechanism, a series of experiments were performed and data obtained were interpreted in terms of film diffusion control, intraparticle diffusion, pseudo-first-order and pseudo-second-order models. From the modeling of kinetic data, it can be concluded that adsorption of Co(II) ions from aqueous solution by heat-treated dolomite is a complex phenomenon and occurs in a mixed diffusion mode—the kinetic data are well described by the pseudo-second-order equation. The possible multistage sorption mechanism involving film diffusion and intraparticle diffusion control steps as well as chemical interaction between Co(II) ions and calcined dolomite is proposed.  相似文献   

13.
In the present research, the removal of lead(II) and copper(II) from aqueous solutions is studied, using SnO2 nanowires as new adsorbent on solid-phase extraction disk and compared with pine core and buttonwood as biosorbents. Batch adsorption experiments were performed as a function of pH, adsorption time, solute concentration and adsorbent dose for biosorbents. Also, the pH, transfer rate of solution and metal concentration were selected as experimental parameters for the removal of heavy metals by SnO2 nanowires. All of the parameters were optimized by experimental design method for sorbents. The experimental equilibrium adsorption data are tested for the Langmuir and Freundlich equations. Results indicate the following order to fit the isotherms: Langmuir > Freundlich, in case of lead and copper ions. The removal of Cu(II) and Pb(II) was performed by selected sorbents in the presence of interferences ions. This led to no remarkable decrease in the removal efficiency of SnO2 nanowires. Using the SnO2 nanowires in the wastewater treatment indicated 96.8 and 85.28% removal efficiency in only 7 min for Pb(II) and Cu(II), respectively. SnO2 nanowires were found as reusable sorbent. Therefore, SnO2 nanowires have a good potential for application in environmental protection.  相似文献   

14.
Batch sorption system using co-immobilized (activated carbon and Bacillus subtilis) beads as adsorbent was investigated to remove Cr(VI) from aqueous solution. Fourier transform infrared spectroscopy analysis showed the functional groups of both bacteria and activated carbon in co-immobilized beads. Experiments were carried out as a function of contact time (5–300 min), initial metal concentration (50–200 mg L?1), pH (2–8), and adsorbent dose (0.2–1 g L?1). The maximum percentage of removal was found to be 99 %. Langmuir model showed satisfactory fit to the equilibrium adsorption data of co-immobilized beads. The kinetics of the adsorption followed pseudo-second-order rate expression, which demonstrates that chemisorption plays a significant role in the adsorption mechanism. The significant shift in the Fourier transform infrared spectroscopy peaks and a Cr peak in the scanning electron microscope–energy dispersive spectroscopy spectra further confirmed the adsorption. The results indicate that co-immobilized beads can be used as an effective adsorbent for the removal of Cr(VI) from the aqueous solution.  相似文献   

15.
Peganum harmala seeds were assessed as biosorbent for removing Pb2+, Zn2+and Cd2+ ions from aqueous solutions. The effects of various parameters such as the aqueous solution pH, the contact time, the initial metal concentration and the amount of adsorbent in the process were investigated. The adsorption efficiencies increased with pH. It was found that about 95 % of lead, 75 % of zinc and 90 % of cadmium ions could be removed from 45 ml of aqueous solution containing 20 mg l?1 of each cation with 2 g of adsorbent at pH 4.5 after 15 min. The quantitative desorption of cadmium from adsorbent surface was achieved using 10 ml of a 0.5 M nitric acid solution. This condition was attained for lead and zinc ions with 10 ml of 1 M hydrochloric acid solution. Kinetic investigation of the process was performed by considering a pseudo-second-order model. This model predicts the chemisorption mechanism of the process. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich models were tested for describing the equilibrium data. It was found that the Freundlich model describes the experimental data resulting from the adsorption of lead ions. However for cadmium and zinc ions, the adsorption equilibria were interpreted with the Langmuir model.  相似文献   

16.
In this study, the adsorption behavior of Ni(II) in an aqueous solution system using natural adsorbent Peganum harmala-L was measured via batch mode. The prepared sorbent was characterized by scanning electron microscope, Fourier transform infrared spectroscopy, N2 adsorption–desorption and pHzpc. Adsorption experiments were carried out by varying several conditions such as contact time, metal ion concentration and pH to assess kinetic and equilibrium parameters. The equilibrium data were analyzed based on the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms. Kinetic data were analyzed using the pseudo-first-order, pseudo-second-order and intra-particular diffusion models. Experimental data showed that at contact time 60 min, metal ion concentration 50 mg/L and pH 6, a maximum amount of Ni(II) ions can be removed. The experimental data were best described by the Langmuir isotherm model as is evident from the high R 2 value of 0.988. The adsorption capacity (q m) obtained was 68.02 mg/g at an initial pH of 6 and a temperature of 25 °C. Kinetic studies of the adsorption showed that equilibrium was reached within 60 min of contact and the adsorption process followed the pseudo-first-order model. The obtained results show that P. harmala-L can be used as an effective and a natural low-cost adsorbent for the removal of Ni(II) from aqueous solutions.  相似文献   

17.
Heavy metal ions (Pb2+, Cd2+, Ni2+, and Zn2+) were biosorbed by brown seaweed (Hizikia fusiformis), which was collected from Jeju Island of South Korea. The metal adsorption capacity of H. fusiformis improved significantly by washing with water or by base or acid treatments. The maximum sorption by NaOH-pretreated biomass was observed near a slightly acidic pH (pH 4?6) for Pb2+, Cd2+, Ni2+, and Zn2+. This result suggests that the treatment of H. fusiformis biomass with NaOH helped increase the functional forms of carboxylate ester units. Kinetic data showed that the biosorption occurred rapidly during the first 60 min, and most of the heavy metals were bound to the seaweed within 180 min. The maximum metal adsorption capacities assumed by a Langmuir model were on the order of Pb2+ > Cd2+ > Ni2+ > Zn2+. Equilibrium adsorption data for the heavy metal ions could fit well in the Langmuir model with regression coefficients R 2 > 0.97.  相似文献   

18.
In recent years, the need for safe and economical methods to eliminate heavy metals from contaminated waters has necessitated research on the production of low-cost alternatives to commercially available activated carbon. In the present work, in order to enhance the removal of heavy metals from contaminated water, Zizyphus vulgaris wastes were modified chemically to produce an adsorbent rich in carboxylic groups to enhance the removal of heavy metals from contaminated water. Adsorption of Zn(II) ions on the produced adsorbent was then optimized. The optimal ratio for esterification involved the treatment of Z. vulgaris wastes (1 g) with 0.0037 mmol malic acid in the presence of a very small amount of water for 2 h at 140 °C. The maximum values for adsorption capacity, q max, were 28.7 and 164.6 mg/g on native and modified Z. vulgaris wastes, respectively, at pH 5 and 30 °C with a contact time 2 h and an initial metal ion concentration of 400 mg/L. The equilibrium data were well fitted by the Langmuir and Freundlich adsorption models and demonstrated the significant capacity for Z. vulgaris wastes in the removal of Zn(II) ions from aqueous solutions.  相似文献   

19.
Liners are commonly used in engineered waste disposal landfill to minimize the potential contamination of the aquatic environment. The adsorption behavior of Cu(II) from aqueous solution onto clay admixed with various mix ratios of quarry fines was investigated. The amount of Cu(II) adsorption increases with increase in contact time. The copper removal efficiencies of the composite mixture gradually decrease from 94.53 % (raw clay) to 85.59 % (20 % of quarry fines with clay), and appreciable decrease in percent removal 75.61 % was found with 25 % of quarry fines with clay. The kinetic adsorption data were analyzed by pseudo-first-order, pseudo-second-order, Bhattacharya–Venkobachar and Natarajan–Khalaf kinetic models to classify adsorption process mechanisms. Kinetic experimental data were good agreement with pseudo-second-order kinetic model with the degree of fitness of the data (R 2) 0.9999 for the adsorption of Cu(II). The results revealed that quarry fines can be used with optimum of 20 % replacement of natural clay for removal of Cu(II) as a liner material in landfills.  相似文献   

20.
The batch removal of copper(II) ions from aqueous solution under different experimental conditions using alkali-leached silica and activated charcoal was investigated in this study. The copper(II) uptake was dependent on varying time, pH, copper concentration and temperature. Copper sorption was found fast reaching equilibrium within 1 h with better performance for alkali-leached silica than charcoal. Copper sorption was low at low pH values and increased with rise in initial pH-value until 6.7. Sorption fits well the Langmuir and Freundlich equations with higher uptake by increasing temperature. According to Langmuir equation, the maximum uptake of Cu(II) ions by alkali-leached SiO2 and charcoal was found to be 242.5 and 94.4 mmol/g at temperature 60 °C and pH 6. Thermodynamic studies confirm that the process was spontaneous and endothermic nature. Kinetic data for Cu(II) sorption was found to follow pseudo-second-order model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号