首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
方斑东风螺养殖技术研究   总被引:2,自引:0,他引:2  
本工作对方斑东风螺亲螺培育及产卵、种苗培养、幼螺养成过程中的一系列技术进行了研究,并对其行为及生态习性进行了观察.实验结果表明,在方斑东风螺养殖过程中,不同饵料培养效果的优劣顺序为牡蛎 〉鱼 〉鲆饵 〉鳗饵.在培养密度较高时,玻璃缸流水培养效果要优于静水培养.但同为低密度培养时,静水与流水效果差异不大.水泥池养殖结果显示平面养殖每平方米可养壳高15mm以下幼螺1 000~2 000个,壳高15~20mm的1 000~1 200个,壳高20~30mm以上的600~800个.使用鲍笼立体养殖亦可获得很高的成活率与生长率,将壳高20mm以上的幼螺放入鲍笼,4~5层笼叠加立体养殖,每平方米可养1 667~2 333个,笼养60d的成活率达95%以上.  相似文献   

2.
方斑东风螺养殖方式的初步研究   总被引:17,自引:0,他引:17  
2003年5~11月,水温24.5~32℃,pH8.1~8.3,盐度21.2~32.0时,在湛江市东海岛分别利用室内水泥池、对虾高位池、自然海区砂滩以及水泥沉箱进行了方斑东风螺(Babylonia areolate Larnarck)人工养殖方式的研究。试验结果表明,方斑东风螺养殖的合适密度为:室内水泥池300~400个/m^2高位池和天然海区砂滩100~200个/m^2,水泥沉箱0.63m^3 200~250个/箱;方斑东风螺最佳饵料为蟹类,其次为虾类,然后是鱼类。经过3个月的人工养殖,生长最快的方斑东风螺由平均壳高0.7cm长至4.8cm。  相似文献   

3.
台湾东风螺人工繁殖及苗种生物学的初步研究   总被引:1,自引:0,他引:1  
对台湾东风螺(Babylonialutosa)进行人工繁育试验。试验结果表明,台湾东风螺亲螺在繁殖初期日摄食量为1.5%以上,最高可达3.0%,但繁殖盛期摄食量减少。在人工饲养条件下,利用水泥方砖采卵效果良好。在水温22.5~25.6℃和充气条件下,台湾东风螺受精卵在卵囊内完成胚胎发育破囊孵出的时间为7d,孵化率为95%以上。在水温为24.0~27.5℃、培育密度为0.10个/mL左右时,幼虫壳长生长速度可达18.1μm/d,其生长曲线显示中后期生长加速,成活率为60%以上;幼虫发育至附着变态的平均时间为22d,在铺砂与不铺砂条件下均可附着变态。在水温为25.1~26.5℃、培育密度为2000~2100个/m2时采用无铺砂培育台湾东风螺稚贝,其壳高由1.3mm长至5.5mm,生长速度为0.22mm/d,成活率为29.5%。  相似文献   

4.
研究了不同的海水温度、盐度、pH值和底质等主要环境因子对方斑东风螺(Babylonia areolata)稚螺生长与存活的影响。结果表明,方斑东风螺稚螺生存和生长的最高和最低临界水温分别为35℃和11℃,适宜水温为14~32℃,最适水温为26~29℃,适温范围内,稚螺的日生长率随着水温的升高而增加,在29℃时达到峰值,为262.5μm/d。方斑东风螺稚螺生存和生长的最高和最低临界盐度分别为38和11,适宜盐度为14~35,最适盐度为17~29,适宜盐度范围内,低盐海水有利于提高稚螺的日生长率,盐度对稚螺生长的影响不如温度的影响明显。方斑东风螺稚螺在pH为8.0时,有最高日生长率,为220.4μm/d,pH高于9.0、低于7.0时,日生长率与成活率显著降低。池底铺砂可显著提高稚螺的日生长率,但对稚螺的成活率无显著影响。  相似文献   

5.
本实验开展了疣荔枝螺(Thais clavigera Kuster)室内全人工繁育技术研究;具体包括亲螺人工促熟蓄养、卵囊采集、孵化、幼虫培育、变态和采苗等技术研究,同时,还开展了后期面盘幼虫对不同附着基的喜好选择性实验,以及不同饵料和光照对幼虫附着的影响研究。研究表明:雌螺分批产卵,单个雌螺平均每次产出受精卵为61 750粒;在水温27~29℃时,面盘幼虫经过20 d左右的生长发育,壳长达到约600 μm,此时开始附着变态,由浮游生活转变为底栖生活;附着后10 d左右变态为稚螺。后期面盘幼虫对附着基的选择性实验表明,固着牡蛎苗的栉孔扇贝壳和附有底栖硅藻的波纹板,是稚螺理想的附着基。不同饵料和光照对幼虫附着影响实验结果表明:在附着变态期间,自然光照有利于幼虫附着变态;同时,连续投喂糠虾肉糜可显著提高幼虫变态率和稚螺成活率。本研究结果为今后疣荔枝螺产业化繁育提供了重要的理论和技术支持。  相似文献   

6.
栉江珧人工育苗试验   总被引:3,自引:0,他引:3  
报道了栉江珧(Pinna(Alrina)peclinala Linncaus)人工育苗的试验结果。结果表明采用变温刺激法、阴干流水刺激法及阴干流水升温刺激法催产亲贝效果较好。在水温20.6~24.7℃,密度1.018~1.023水体申经50d培育后幼虫附着变态成稚贝,变态率10%-20%,10d后最大幼贝长达6mm。  相似文献   

7.
两种东风螺幼虫附着和变态的化学诱导研究   总被引:15,自引:1,他引:15  
在持续24h作用下,12×10-3mol/dm3 K+可有效地诱导台湾东风螺(Babylonia formosae)和方斑东风螺(B.aerolata)的浮游幼虫90%以上完全变态.持续作用24h,15×10-3mol/dm3 K+对方斑东风螺幼虫有毒害作用,但作用12h可取得较好的诱导效果.增加K+诱导变态的稚贝能正常活动和摄食.增加K+诱导的幼虫变态率随幼虫平均壳高的增大而提高.L-多巴、肾上腺素和去甲肾上腺素在5.5×10-6~5.5×l0-5mol/dm3时对方斑东风螺幼虫的变态无诱导活性,而多巴胺在10-4mol/dm3时可诱导较12×10-3mol/dm3 K+约少一半的变态率.钾通道阻滞剂TEA对K+诱导两种东风螺幼虫变态无阻抑作用.根据添加KCl诱导幼虫变态试验结果,初步认为幼虫获得变态能力时的壳高,在台湾东风螺是860.2~1009.8μm,在方斑东风螺是849.6~956.0μm.两种东风螺的浮游幼虫均有变态延迟现象.  相似文献   

8.
分别用pH6.32~9.76和盐度16.7~40.9共8个梯度的海水进行方斑东风螺(Babyloniaare Lamarck)卵囊的孵化试验。结果表明,卵囊孵化最适pH范围在8.23~9.35之间,孵化率均在80%以上,pH8.81时高达93.7%;卵囊孵化适宜盐度范围为30.3~37.0,盐度40.9时仍有67.0%的孵化率,表现出耐高盐的特性,盐度低于27.6,孵化率明显下降。幼虫在15d的培育过程中,通过投喂不同的饵料,结果显示投喂单胞藻比投喂人工配合饵料、酵母效果好,单独投喂扁藻(Platymonas subcondiformis (Wille)Hazen)幼虫生长发育最快,体长增长倍数达1.90倍;投喂扁藻、小球藻(Chdorella spp.)、扁藻 金藻(Isochrysis galbana Palbana)、扁藻 小球藻幼虫的成活率相差不明显,分别为58.5%、54.3%、63.3%和50.3%,而投喂人工配合饵料虾片、螺旋藻粉幼虫成活率则较低,只有3.6%和12.8%,投喂酵母第9天全部死亡。  相似文献   

9.
研究了脉红螺(Rapana venosa(Valenciennes)在室内人工投喂条件下的亲螺交配、卵袋产出、孵化、幼虫培育、采苗。结果为:亲螺促熟培育的适宜饵料是四角蛤蜊,在人工促熟条件下每只雌螺产卵量44.57万粒,胚胎孵化率平均为87.4%;在育苗期间,幼虫前期密度为0.2个/mL,后期0.1个/mL,投喂金藻、小球藻、角毛藻,当平均壳高达到1200μm以上时,投放附有底栖硅藻的聚乙烯波纹板采苗效果最好。本文在稚螺培育中主要研究了脉红螺稚螺食性转换和变态过程中的适宜动物性饵料,以及不同处理方法的附着基对稚螺附着的影响,结果表明:经亲螺爬过和附有底栖硅藻的波纹板,附苗效果好;刚附着变态后稚螺除了投喂牡蛎肉糜外,定期向池内投放活的牡蛎受精卵,可以促进稚螺变态和食性顺利转化,成功培育出壳高1.0cm以上苗种。  相似文献   

10.
杨章武 《台湾海峡》2007,26(4):583-589
本文报道了4种微藻不同浓度对方斑东风螺幼虫生长和变态的影响.结果表明,幼虫对4种微藻都能摄食,当投喂不同浓度的牟氏角毛藻、湛江叉鞭金藻时,摄食角毛藻(20×104cells/cm3)生长最快达77.9μm/d、变态率52.5%;摄食金藻(20×104cells/cm3)变态率最高达59.0%、生长速度70.4μm/d,随金藻浓度的上升,幼虫生长速度和变态率都上升.投喂不同浓度的青岛大扁藻时,最高变态率是24.4%(1×104cells/cm3),最快生长速度是59.3μm/d(7×104cells/cm3),随扁藻浓度的上升,幼虫的生长速度上升而变态率下降.摄食云微型藻幼虫生长缓慢,浮游期全部死亡.幼虫单独摄食角毛藻、金藻和扁藻,其首次出现变态个体的日龄分别是10、11、14d,而完成变态的日龄分别是22~23d、21~23d和26~28d.比较上述4种微藻,角毛藻和金藻是方斑东风螺幼虫的最适饵料,根据大水体人工育苗的具体条件,合适浓度应为角毛藻(5~10)×104cells/cm3,金藻(10~15)×104cells/cm3.而扁藻不宜单独投喂,作为辅助饵料较合适.  相似文献   

11.
In order to assess the impact of deep-sea mining on the in situ benthic life, we measured the microbial standing stock and concentration of organic nutrients in the deep-sea sediments of the Central Indian Ocean Basin in the Indian pioneer area. Sediments were collected using box core and grab samples during September 1996. The total bacterial numbers ranged from 10 10 -10 11 cells per g -1 dry weight sediment. There was a marginal decrease in the number of bacteria from surface to 30 cm depth, though the subsurface section registered a higher number than did the surface. The highest numbers were encountered at depths of 4-8 cm. The retrievable number of bacteria were two orders less in comparison with the direct total counts of bacteria. An almost homogeneous distribution of bacteria, total organic carbon, living biomass, and lipids throughout the depth of cores indicates active microbial and benthic processes in the deep sea sediments. On the other hand, a uniform distribution of total counts of bacteria, carbohydrates, and total organic carbon in all the cores indicates their stable nature and suggests that they can serve as useful parameters for long-term monitoring of the area after the benthic disturbance. Further studies on temporal variability in this region would not only verify the observed norms of distribution of these variables but would also help to understand restabilization processes after the simulated benthic disturbance.  相似文献   

12.
This article reviews information recently available from existing marine and coastal mining for responses to environmental issues affecting marine mining at different depths. It is particularly but not exclusively concerned with those issues affecting seabed biodiversity impact and recovery. Much information has been gathered in the past 10 years from shallow mining operations for construction aggregate, diamonds, and gold, from coastal mines discharging tailings to shallow and deep water, and from experimental deep mining tests. The responses to issues identified are summarized in a series of eight tables intended to facilitate site-specific consideration. Since impacts can spread widely in the surface mixing layer SML, and can affect the biologically productive euphotic zone, the main issues considered arise from the depth of mining relative to the SML of the sea. Where mining is below the SML, the issue is whether it is environmentally better to bring the extraction products to the surface vessel for processing (and waste discharge), or to process the extraction products as much as possible on the seabed. Responses to the issues need to be sitespecific, and dependent on adequate preoperational environmental impact and recovery prediction. For deep tailings disposal from a surface vessel, there are four important environmental unknowns: (1) the possible growth of "marine snow" (bacterial flocs) utilizing the enormous quantities of fine tailings particles (hundreds or thousands of metric tons per day) as nuclei for growth, (2) the possibility that local keystone plankton and nekton species may migrate diurnally down to and beyond the depth of deep discharge and hence be subjected to tailings impact at depth, (3) the burrow-up capability of deep benthos and their ability to survive high rates of tailings deposition, and (4) the pattern and rate of dispersion of a tailings density current through the deep water column from discharge point to seabed. Actions to obtain relevant information in general and site-specifically are suggested.  相似文献   

13.
Particle fluxes were measured 7 m above the sea bottom during the predisturbance, disturbance, and postdisturbance periods by using time series sediment traps attached to seven deep-sea moorings deployed in the INDEX experiment site in the Central Indian Basin. The predisturbance particle fluxes varied between 22.3 to 55.1 mg m -2 day -1 . Increased and variable particle fluxes were recorded by the sediment traps during the disturbance period. The increase observed was 0.5 to 4 times more than the background predisturbance fluxes. The increases in particle fluxes (~4 times) recorded by the sediment trap located in the southwestern direction (DMS-1) were the greatest, which could be the result of preferential movement of resuspended particles generated during the deep-sea benthic disturbance along the general current direction prevailing in this area during the experimental period. Also, the traps located closer to the disturbance area recorded greater fluxes than did the traps far away, across the Deep Sea Sediment Resuspension System path. This variability in recorded particle fluxes by the traps around the disturbance area clearly indicates that physical characteristics such as grain size and density of the resuspended particles produced during the disturbance had an important effect on particle movement. The postdisturbance measurements during ~5 days showed a reduction in particle fluxes of ~50%, indicating rapid particle settlement.  相似文献   

14.
The interdependence between the seismo-acoustic properties of a marine sediment and its geotechnical/physical parameters has been known for many years, and it has been postulated that this should allow the extraction of geotechnical information from seismic data. Though in the literature many correlations have been published for the surficial layer, there is a lack of information for greater sediment depths. In this article, a desktop study on a synthetic seafloor model illustrates how the application of published near-surface prediction equations to subsurface sediments (up to several tens of meters burial depth) can lead to spurious predictions. To test this further, acoustic and geotechnical properties were measured on a number of sediment core samples, some of which were subjected to loading in acoustically-equipped consolidation cells (oedometers) to simulate greater burial depth conditions. For low effective pressures (representing small burial depths extending to around 10 meters subsurface), the general applicability of established relationships was confirmed: the prediction of porosity, bulk density, and mean grain size from acoustic velocity and impedance appears generally possible for the investigated sedimentary environments. As effective pressure increases through, the observed relationships deviate more and more from the established ones for the near-surface area. For the samples tested in this study, in some instances increasing pressure even resulted in decreasing velocities. There are several possible explanations for this abnormal behavior, including the presence of gas, overconsolidation, or bimodal grain size distribution. The results indicate that an appropriate depth correction must be introduced into the published prediction equations in order to obtain reliable estimates of physical sediment properties for greater subsurface depths.  相似文献   

15.
An acoustic inversion method using a wide-band signal and two near field receivers is proposed and applied to multiple layered seabed models including a manganese sediment. The inversion problem can be formulated into a probabilistic model comprised of signals, a forward model, and additive noise. The forward model simulates wide-band signals, such as chirp signals, and is chosen to be the source-waveletconvolution plane wave modeling method. The wavelet matching technique, using weighted least-squares fitting, estimates the sediment sound-speed and thickness on which determination of the possible numerical ranges for a priori uniform distribution is based. The genetic algorithm is applied to a global optimization problem to find a maximum a posteriori solution for determined a priori search space. Here the object function is defined by an L 2 norm of the difference between measured and modeled signals. Not only the marginal pdf but also its statistics are calculated by numerical evaluation of integrals using the samples selected during importance sampling process of the genetic algorithm.  相似文献   

16.
海上大直径钢管桩打桩过程中,桩周土体受到强烈扰动而发生强度弱化,掌握桩周土体强度弱化规律对于准确预测打桩过程、保证工程安全具有重要意义。为研究土体强度弱化规律,开展了环剪试验模拟打桩对桩周土体的扰动,测试土体强度随剪切速率的变化规律,建立了描述土体强度弱化规律的拟合公式,引入到打桩分析软件中。研究结果表明:土体的强度折减程度不仅与土体本身的性质有关还受到土体的埋深和剪切速率的影响,埋深越深土体强度折减程度越低,剪切速率越高土体强度折减越高,在打桩分析中可采用这里推荐的线性折减方法来模拟不同深度处土体强度的折减规律。  相似文献   

17.
The advanced piston corer (APC) has been used by the Ocean Drilling Program since 1985 for recovering soft sediments from the ocean floor. The pullout force measured on extracting the core barrel from the sediment is shown to correlate with the average shear strength of the sediment core measured in the ship's laboratory. A simple rule of thumb is derived relating the shear strength of the sediment to the pullout force. Multiple APC holes at individual sites allow the consistency of the pullout measurements to be assessed. The effects of different operational procedures during APC coring are also explored. Although generally applicable, the correlation between pullout force and laboratory measurements of shear strength breaks down for some APC holes, possibly because of the disturbance of some sediment types during the APC coring process. A better understanding of the physical process of APC coring, and its effect on the properties of the sediment both inside and immediately outside the core barrel, would indicate what confidence can be put on the measurement of pullout force as a way of evaluating the in situ shear strength of deep sea sediments.  相似文献   

18.
Specific properties of the interannual sea level variations and annual tides in the Northwestern Pacific were studied. Several tide stations were monitored. The monthly mean sea level for the year of 1995 was analyzed at each tide station. A seismic event in 1995, some tectonic activity around the subject area, and the Kuroshio (the oceanic western boundary current) may possibly contaminate results which would have occurred from the astronomical annual tide alone.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号