首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Yili Block is one of the Precambrian microcontinents dispersed in the Central Asian Orogenic Belt (CAOB). Detrital zircon U–Pb ages and Hf isotopic data of Neoproterozoic meta-sedimentary rocks (the Wenquan Group) are presented to constrain the tectonic affinity and early history of the Yili Block. The dating of detrital zircons indicates that both the lower and upper Wenquan Groups have two major populations with ages at 950–880 Ma and 1600–1370 Ma. Moreover, the upper Wenquan Group has two minor populations at ~ 1100 Ma and 1850–1720 Ma. According to the youngest age peaks of meta-sedimentary rocks and the ages of related granitoids, the lower Wenquan Group is considered to have been deposited during the early Neoproterozoic (900–845 Ma), whereas the upper Wenquan Group was deposited at 880–857 Ma. The zircon εHf (t) values suggest that the 1.85–1.72 Ga source rocks for the upper Wenquan Group were dominated by juvenile crustal material, whereas those for the lower Wenquan Group involved more ancient crustal material. For the 1.60–1.37 Ga source rocks, however, juvenile material was a significant input into both the upper and lower Wenquan Groups. Therefore, two synchronous crustal growth and reworking events were identified in the northern Yili Block at ca. 1.8–1.7 Ga and 1.6–1.3 Ga, respectively. After the last growth and reworking event, continuous crustal reworking took place in the northern Yili Block until the early Neoproterozoic. Comparing the age patterns and Hf isotopic compositions of detrital zircons from the Yili Block and the surrounding tectonic units indicates that the Yili Block has a close tectonic affinity to the Chinese Central Tianshan Block in the Precambrian. The Precambrian crustal evolution of the Yili Block is distinct from that of the Siberian, North China and Tarim Cratons. Such difference therefore suggests that the Yili Block and the Chinese Central Tianshan Block may have been united in an isolated Precambrian microcontinent within the CAOB rather than representing two different blocks rifted from old cratons on both sides of the Paleo-Asian Ocean.  相似文献   

2.
Owing to the lack of early Neoproterozoic geological and geochronological data, most Rodinia supercontinent reconstruction models do not include the Amuria Block in the Central Asian Orogenic Belt (CAOB), and the Amuria Block was varying attributed to the North China, Siberian or Tarim tectonic affinities. In this study, we identified one early Neoproterozoic granitic pluton (964–947 Ma) and one early Neoproterozoic sedimentary unit (<906 Ma) in the Erguna Terrane. The samples (964–947 Ma) are I-type granitoids, and show high zircon in-situ εHf(t) (−2.1–10.0) and whole-rock εHf(t) (1.4–4.8) and high εNd(t) (−2.3 to −0.8). These granitoids are characterized by high Zr saturation temperature (TZr) (701–835 °C) and no inherited zircons, suggesting high-degree of partial melting of their source rocks. The granites were likely formed by biotite-/muscovite dehydration melting of subalkaline mafic lower crust in a continental arc setting. Detrital zircons of the sandstone sample define an age peak at 923–906 Ma. Early Neoproterozoic age data compilation from the four Amuria microcontinents (i.e., Erguna, Xing'an, Songnen and Jiamusi terranes) in NE China indicate the presence of two major magmatic flare-ups at 964–880 Ma and 850–740 Ma. Considering that early Neoproterozoic magmatic rocks are absent in the Siberian and North China cratons but widespread in the Tarim Craton, we suggested that the Erguna Terrane was part of the Tarim Craton in the Early Neoproterozoic. The Erguna Terrane may have undergone a two-staged Neoproterozoic tectonic evolutionary history: (1) early Neoproterozoic arc accretion in response to the Rodinia assembly, and (2) middle Neoproterozoic break-away from the SW Tarim Craton associated with the Rodinia breakup.  相似文献   

3.
《Gondwana Research》2014,26(4):1627-1643
The Tianshan Orogenic Belt, which is located in the southwestern part of the Central Asian Orogenic Belt (CAOB), is an important component in the reconstruction of the tectonic evolution of the CAOB. In order to examine the evolution of the Tianshan Orogenic Belt, we performed detrital zircon U–Pb dating analyses of sediments from the accretionary mélange from Chinese southwestern Tianshan in this study. A total of 542 analyzed spots on 541 zircon grains from five samples yield Paleoarchean to Devonian ages. The major age groups are 2520–2400 Ma, 1890–1600 Ma, 1168–651 Ma, and 490–390 Ma. Provenance analysis indicates that, the Precambrian detrital zircons were probably mainly derived from the paleo-Kazakhstan continent formed before the Early Silurian by amalgamation of the Kazakhstan–Yili microplate, the Chinese central Tianshan terrane and the Kyrgyz North and Middle Tianshan blocks, while detrital zircons with Paleozoic ages mainly from igneous rocks of the continental arc generated by the northward subduction of the south Tianshan paleocean. The age data correspond to four tectono-thermal events that took place in these small blocks, i.e., the continental nucleus growth during the Late Neoarchean–early Paleoproterozoic (~ 2.5 Ga), the evolution of the supercontinents Columbia (2.1–1.6 Ga) and Rodinia (1.3–0.57 Ga), and the arc magmatism related with the Phanerozoic orogeny. The Precambrian zircons show a similar age pattern as the Tarim and the Cathaysia cratons and the Eastern India–Eastern Antarctica block but differ from those of Siberia distinctly. Therefore, the Tianshan region blocks and the Kazakhstan–Yili microplate have a close affinity to the eastern paleo-Gondwana fragments, but were not derived from the Siberia craton as proposed by some previous researchers. These blocks were likely generated by rifting accompanying Rodinia break-up in late Precambrian times.The youngest ages of the detrital zircons from the subduction mélange show a maximum depositional age of ca. 390 Ma. It is coeval with the end of an earlier arc magmatic pulse (440–390 Ma) but a bit older than a younger one at 360–320 Ma and nearly 70–80 Ma older than the HP–UHP metamorphism in the subduction zone (320–310 Ma).  相似文献   

4.
本文对巴仑台地区中天山南北边缘的变形花岗岩体进行了详细的锆石LA-ICP-MS-U-Pb年代学研究。中天山北缘花岗质片麻岩中岩浆锆石结晶年龄为630.0±5.0 Ma,代表了中天山微陆基底的新元古代岩浆事件年龄;其变质增生锆石边的年龄为440.9±3.3 Ma,精确限定了中天山北缘洋盆闭合与碰撞造山作用的时代为早志留世。中天山南缘糜棱岩化花岗闪长岩中岩浆锆石结晶年龄为389.5±3.2 Ma,指示出中天山南缘洋壳在中泥盆世向北俯冲形成陆缘岩浆弧;其变质增生锆石边的年龄为362.1±4.3 Ma,精确限定了中天山南缘洋盆闭合与碰撞造山作用的时代为晚泥盆世末期。研究结果还表明中天山微陆块具有年龄为2.5Ga和1.8Ga的古老结晶基底。  相似文献   

5.
The continental fragments in Northwest China are key to revealing the tectonic and crustal evolution of the Central Asian Orogenic Belt (CAOB). However, their tectonic correlation, affinity and implications have not been well defined. The early to mid-Paleozoic sediments in the northern Alxa area can help to understand this question. These sediments were deposited in a deep to shallow marine environment during a regression. The southeast paleocurrent attributes their provenance to the northwest. Detrital zircons from the collected sandstones record peak ages of approximately 1726 Ma, 1462 Ma, 915 Ma and 438 Ma. The zircon εHf(t) values are negative to positive at 1726 Ma, 915 Ma and 438 Ma, but only positive at 1462 Ma. The detrital zircon U–Pb ages and Hf isotopes suggest the provenance to be the blocks in Central Tianshan and Southern Beishan or their analogs, rather than the Tarim Craton. The source blocks show no tectonic affinity to the Tarim Craton but might be accreted to it in the Neoproterozoic Rodinia. The provenance analyses show tectonic correlation among the northern Alxa, Tianshan and Beishan orogenic belts. The Late Devonian molasse deposits, geochemical shifting to continental margins and suddenly increased early Paleozoic zircons indicate an arc-continent collision. The discovery of more indicators for continental fragments advocates a multiterrane model and dominant crustal reworking/contamination for the tectonocrustal evolution of the CAOB at least during the early to mid-Paleozoic.  相似文献   

6.
Located between the Turpan-Hami, Junggar and Tarim blocks, the Central Tianshan zone is an important component of the Central Asian Orogenic Belt (CAOB) and crucial linkage between the Siberian, Kazakhstan, Junggar, Turpan-Hami and Tarim blocks. The Hongliujing granite associated with Nb–Ta mineralization in the Central Tianshan zone, dated at ca. 740 Ma using zircon LA-ICP-MS dating, is the first reported Neoproterozoic intrusion with a reliable and precise age in the Chinese Central Tianshan. The Hongliujing granite shares all the characteristics of A-type granites. It contains predominant alkali feldspar, and is characterized by high contents of SiO2, Na2O + K2O, K2O and high field strength elements (such as Nb, Ta, Zr, Ga and Y), and low contents of CaO, MgO, Ba and Sr, with high FeOt/(FeOt + MgO) and Ga/Al ratios typical of A-type granites. Based on the geochemistry and zircon Hf isotope data, we propose that the Hongliujing granite was most likely produced by partial melting of basic rocks in the lower crust which may have been derived from mantle magmas. The Hongliujing granite belongs to A1-type granites, which indicate a rifting formation environment, suggesting that like the Tarim Block, the Central Tianshan zone recorded Neoproterozoic rift-related igneous events related to the breakup of the Rodinia supercontinent. Our study verifies that not only the Tarim Block is related to the breakup of the Rodinia supercontinent, but also it is true for some key blocks in CAOB such as the Central Tianshan. Our new geochemical and geochronologic data also support and strengthen the notion that the Central Tianshan zone may be a part of the Tarim Block.  相似文献   

7.
伊犁盆地南缘中-下侏罗统碎屑岩的物源特征,可为南天山造山带的演化提供重要证据。对其碎屑岩锆石U-Pb定年研究结果表明,伊犁盆地南缘坎乡下侏罗统八道湾组砂岩的碎屑锆石年龄集中在290~260 Ma,而下侏罗统三工河组的碎屑锆石年龄集中在350~290 Ma和460~390 Ma,中侏罗统西山窑组的碎屑锆石年龄集中在370~320 Ma和450~390 Ma。所有测试样品中前寒武纪的年龄记录非常少。这些特征表明,伊犁盆地南缘中生代碎屑沉积物主要来自于伊犁-中天山地块南部。测试样品中几乎不存在晚二叠世-中三叠世的碎屑锆石,与南天山造山带的岩浆岩记录一致,暗示在晚二叠世-中三叠世南天山地区并没有发生强烈的与碰撞或后碰撞相关的岩浆活动。该结果不支持塔里木克拉通与伊犁-中天山地块在晚二叠世-中三叠世碰撞的观点。结合高压-超高压变质岩的数据和地层记录,认为塔里木克拉通与伊犁-中天山地块的碰撞发生在晚石炭世。同时,样品中最年轻锆石的年龄数据从早侏罗世到中侏罗世逐渐增大,显示了揭顶沉积的特点。对伊犁盆地南部中生代的锆石年龄数据与同时代南天山地区的锆石年龄数据进行综合对比表明在早-中侏罗世发生构造沉积夷平的特征。  相似文献   

8.
Neoproterozoic sedimentary sequences in the South China Block provide great opportunity to examine the tectonic evolution and crustal accretion during this period. This study presents U–Pb ages and Hf isotope composition of detrital zircons and Nd isotope composition of whole rocks of the Neoproterozoic sequences from the Yangtze Block, part of the South China Block. Age patterns of detrital zircons imply that the source area experienced three major periods of magmatic activity at 2,300–2,560, 1,900–2,100 and 770–1,000?Ma and two major episodes of juvenile crust accretion at 2,600–3,400 and 770–1,000?Ma. The maximum age of the Gucheng glaciation can be restricted at?~768?Ma from the youngest detrital zircon ages, probably corresponding to the Kaigas glaciation rather than to the Sturtian glaciation. High La/Sc ratio and low Cr/Th, Sc/Th and Co/Th ratios of the sedimentary rocks point to a derivation from dominantly felsic upper continental crustal sources, whereas large variation of εNd(t) and εHf(t) values indicates that mantle-derived magmatic rocks also provided material to the sedimentary sequences in different degrees. The shift in εNd(t) values of whole rocks and U–Pb age spectra of detrital zircons records the evolution from a back-arc to retro-arc foreland to a rift basin. Age distribution of detrital zircons from the Neoproterozoic sequences, compared with those of the major crustal blocks of Rodinia, implies that the position of the Yangtze Block was probably adjacent to northern India rather than between Australia and Laurentia before the breakup of the Rodinia supercontinent.  相似文献   

9.
《International Geology Review》2012,54(16):2036-2056
ABSTRACT

The Chinese Southwest Tianshan Orogenic Belt is located along the boundary between the Central Asian Orogenic Belt (CAOB) and the Tarim Block (TB), NW China. It records the convergence of the Tarim Block and the Middle Tianshan, and is, therefore, a crucial region for understanding the Eurasia continental growth and evolution. The Wulagen (geographical name) metasedimentary rocks of the Wuqia area (mainly metamorphic sandstones and mica schists) form one of the metamorphic terranes in the Southwestern Tianshan Orogenic Belt. The geochronology of these rocks is poorly known, which hampers our understanding of the tectonic evolution of the belt. We analyzed 517 zircon grains for detrital zircon U–Pb dating and 93 zircon grains for in situ Lu–Hf isotopic compositions from the Wulagen metasedimentary rocks. The analyzed zircon grains yield Neoarchean to late Paleozoic U–Pb ages with major age peaks at ~2543 Ma, 1814 Ma, 830 Ma, 460 Ma, and the youngest cluster of zircon (magmatogene) ages is 395 Ma. The zircon U–Pb data show that the late Paleozoic (Early Devonian) is the maximum depositional age of the Wulagen metasedimentary rocks, rather than the previously considered Precambrian period. The zircons with Paleozoic ages yield εHf(t) values of ?22.0 to +11.3 and two-stage model ages (TDM2) of 3.95 to 1.30 Ga, suggesting that the parental magmas were formed from partial melting of pre-existing crustal rocks. Our zircon U–Pb geochronology and Hf isotopic data indicate the major source regions for the Wulagen metasedimentary rocks was the Kyrgyzstan North Tianshan. The zircon age population of 600–400 Ma (peak at ~460 Ma) has negative εHf(t) values (?15.0 to ?0.6) and Mesoproterozoic two-stage model ages, suggesting that the early Paleozoic magmatism resulted mainly from the melting of ancient crust, which played an important role in crustal evolution in the southern CAOB.  相似文献   

10.
The Great Xing’an Range in Northeast China is located in the eastern part of the Central Asian Orogenic Belt. From north to south, the Great Xing’an Range is divided into the Erguna, Xing’an, and Songliao blocks. Previous U–Pb zircon geochronology results have revealed that some ‘Precambrian metamorphic rocks’ in the Xing’an block have Phanerozoic protolith ages, questioning whether Precambrian basement exists in the Xing’an block. We present laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) U–Pb dating results for zircons from suspected Precambrian metamorphic rocks in the Xing’an block. Meta-rhyolites of the Xinkailing Group in Nenjiang yield magmatic ages of 355.8 Ma. Detrital zircons from phyllites of the Xinkailing Group in Duobaoshan yield populations of ca. 1505, ca. 810, and ca. 485 Ma, with the youngest peak constraining its depositional age to be <485 Ma. Zircons from amphibolitic gneisses of the Xinkailing Group in Nenjiang have magmatic ages of 308.6 Ma. Mylonitic granites of the Xinkailing Group in Nenjiang have zircon magmatic ages of 164 Ma. Detrital zircons from two-mica quartz schists of the Luomahu Group in the Galashan Forest yield ca. 2419, ca. 1789, ca. 801, ca. 536, ca. 480, and ca. 420 Ma, with the youngest peak indicating its depositional age as <420 Ma. Detrital zircons from mylonitized sericite–chlorite schist of the Ergunhe Formation in Taerqi yield populations of 982–948, ca. 519, and ca. 410 Ma, with the youngest peak demonstrating that its depositional age is <410 Ma. These zircon ages for a range of lithologies show that the Great Xing’an Range metamorphic rocks formed during the Phanerozoic (164–485 Ma) and that this crust is mostly Palaeozoic. Based on these results and published data, we conclude that there is no evidence of Precambrian metamorphic basement in the Xing’an block. In summary, the age data indicate that Precambrian metamorphic basement may not exist in the Xing’an region.  相似文献   

11.
A typical feature of the Precambrian complexes of the Kokshetau, Ishkeolmess, Erementau-Niyaz, and Aktau-Dzhungaria massifs of Northern and Central Kazakhstan is the presence of the end Mesoproterozoic-beginning of the Neoproterozoic quartzite-schist sequences in these sections. The lower and upper parts of these sequences are mostly composed of schists with interlayers of quartzites and marbles and of quartzitic sandstones, respectively. It is suggested that the quartzite-schist sequences represent the sub-platform cover of a large continental block and were formed in the regressive basin with widely abundant facies of submarine deltas and a littoral shoal. The presence of horizons and the lenses enriched in zircon-rutile heavy concentrate with the amount of accessory minerals of 10-70% characterizes the quartzite-schist sections of the Kokshetau and Erementau-Niyaz massifs. The U-Pb age of zircons from one such locality in the central part of the Erementau-Niyaz massif was analyzed by LA-ICP-MS. The Concordia ages of zircons are in the intervals 1041 ± 13-1519 ± 14, 1623 ± 14-1931 ± 14, and 2691 ± 14-2746 ± 14 Ma. One age was 2850 ± 14 Ma. The age distribution is characterized by clear peaks of 1.08, 1.20. 1.34, 1.46, 1.65, 1.89, and 2.70 Ga and weak peaks of 1.13 and 1.68 Ga. The age of the majority of zircons ranges from 1309 ± 14 to 1519 ± 14 Ma. Our data indicate that mostly Neoproterozoic rocks with a subordinate role of Paleoproterozoic and Neoarchean complexes served the feeding sources for the quartzite-schist sequence of the Erementau-Niyaz massif. The Mesoproterozoic and Paleoproterozoic events identified for the detrital zircons of the Erementau-Niyaz massif are completely manifested only in Laurentia. In the first approximation, these events coincide with the assembly and breakup of the Columbia/Nuna supercontinent (~1650–1580 and 1450–1380 Ma) and assembly of the Rodinia supercontinent (1300–900 Ma).  相似文献   

12.
As an important part of South China Old Land, the Jiangnan Orogenic Belt plays a significant role in explaining the assembly and the evolution of the Upper Yangtze Block and Cathaysia, as well as the structure and growth mechanism of continental lithosphere in South China.The Lengjiaxi and the Banxi groups are the base strata of the west section of the Jiangnan Orogenic Belt.Thus, the research of geochronology and tectonic evolution of the Lengjiaxi and the Banxi groups is significant.The maximum sedimentary age of the Lengjiaxi Group is ca.862 Ma, and the minimum is ca.822 Ma.The Zhangjiawan Formation, which is situated in the upper part of the Banxi Group is ca.802 Ma.The Lengjiaxi Group and equivalent strata should thus belong to the Neoproterozoic in age.The Jiangnan Orogenic Belt consisting of the Lengjiaxi and the Banxi groups as important constituents is not a Greenville Orogen Belt(1.3 Ga–1.0 Ga).The Jiangnan Orogenic Belt is a recyclic orogenic belt, and the prototype basin is a foreland basin with materials derived from the southwest and the sediments belong to the active continental sedimentation.By combining large amounts of dating data of the Lengjiaxi and the Banxi groups as well as equivalent strata, the evolutionary model of the western section of the Jiangnan Orogenic Belt is established as follows: Before 862 Ma, the South China Ocean was subducted beneath the Upper Yangtze Block, while a continental island arc was formed on the side near the Upper Yangtze Block.The South China Ocean was not closed in this period.From 862 Ma to 822 Ma, the Upper Yangtze Block was collided with Cathaysia; and sediments began to be deposited in the foreland basin between the two blocks.The Lengjiaxi Group and equivalent strata were thus formed and the materials might be derived from the recyclic orogenic belt.From 822 Ma to 802 Ma, Cathaysia continued pushing to the Upper Yangtze Block, experienced the Jinning-Sibao Movement(Wuling Movement); as result, the folded basement of the Jiangnan Orogenic Belt was formed.After 802 Ma, Cathaysia and the Upper Yangtze Block were separated from each other, the Nanhua rift basin was formed and began to receive the sediments of the Banxi Group and equivalent strata.These large amounts of dating data and research results also indicate that before the collision of the Upper Yangtze Block with Cathaysia, materials of the continental crust became less and less from the southwest to the east in the Jiangnan Orogeneic Belt; only island arc and neomagmatic arc were developed in the eastern section.Ocean-continent subduction or continent-continent subduction took place in the western and southern sections, while intra-oceanic subduction occurred in the eastern section.Comprehensive analyses on U-Pb ages and Hf model ages of zircons, the main provenance of the Lengjiaxi Group is Cathaysia.  相似文献   

13.
The widely distributed high-grade gneisses in the East Kunlun Orogenic Belt (EKOB) are keys to understand the Precambrian tectonic evolution of the Northern Tibetan Plateau. In this study, new LA-ICP-MS zircon U–Pb ages from paragneiss and schist of the Proterozoic Jinshuikou Group and quartzite of the Proterozoic Binggou Group are reported in an attempt to evaluate the Neoproterozoic and Paleozoic tectono-thermal events of the EKOB. These geochronologic data can be classified into 4 groups: Group 1 ages ranging from 2243 Ma to 3701 Ma are represented by inherited zircons from protolith and confirm the existence of Eoarchean to Paleoproterozoic continental nucleus in the source region of the Jinshuikou Group. Group 2 ranging from 928 Ma to 1849 Ma yields lower intercept ages of 0.9–1.0 Ga which represent the Neoproterozoic tectono-thermal event. This event, similar to that of the northern margin of Qaidam, might be a response to the assembly of Rodinia. Group 3 ranges from Neoproterozoic to early Paleozoic with lower intercept ages which are identical to the weighted mean ages of Group 4. These two age groups confirm the tectono-thermal event related to Paleozoic oceanic subduction. Moreover, based on the youngest age of 2.2 Ga in Group 1 and the upper intercept age of 1.8 Ga in Group 2, the depositional timing of the Jinshuikou and Binggou groups can be defined as Paleoproterozoic and Mesoproterozoic, respectively.  相似文献   

14.
The paleoposition of North China Craton in Rodinia has long been in controversial. This paper mainly focuses on the U–Pb geochronological studies of detrital zircons obtained from Bayan Obo Group exposed in the Shangdu area, Inner Mongolia, aiming to provide more information for interprating this problem. Based on the acquired data, this paper comes to the following conclusions. Firstly, the depositional age of Bayan Obo Group might be from Meso– to Neoproterozoic according to the zircons U–Pb dating results. The lower succession of this group, namely Dulahala and Jianshan formations deposited between 1800 and 1650 Ma. The Halahuogete and Bilute formations deposited between 1500 and 1350 Ma. For Baiyinbaolage and Hujiertu formations, their depositional age was 1250–900 Ma. Secondly, for the provenance of Bayan Obo Group, this paper believes detrital zircons with age of 2.51–2.71 Ga and 2.00–2.48 Ga were from Guyang, Xi Ulanbulang and Zhuozi area; the Khondalite Belt provided detrital zircons with age of 1.95–1.80 Ga; zircons with age of 1.60–1.75 Ga might come from granitic rocks in Miyun Area. The magmatism after 1.60 Ga was rarely recorded in the NCC, therefore those zircons with ages younger than 1.60 Ga might come from outside of NCC. The magmatism with the same age existed in Baltic, Amazonia and Laurentia. Based on previous paleomagnetic researches, this paper proposes that NCC might receive detritus from Baltic during 1560–1350 Ma and had affinity with Laurentia and Amazonia at ~0.9 Ga in Rodinia. Baltic, Amazonia and Laurentia might be potential provenances for non–NCC detritus in Bayan Obo Group.  相似文献   

15.
中亚造山带西南缘东天山觉罗塔格造山带广泛发育石炭纪火山岩,这些石炭纪火山岩的成因和构造历史一直是该区域地质问题争论的焦点.通过对东天山觉罗塔格造山带石炭纪基性火山岩详细的岩石学、地球化学、锆石U-Pb年代学和Sr-Nd同位素研究,获得了如下认识:(1)东天山觉罗塔格造山带石炭纪基性火山岩分为两期爆发,早期爆发时间为336 Ma,晚期爆发时间为320 Ma.早期336 Ma基性火山岩由玄武岩、玄武安山岩及同成分的火山碎屑岩组成,显示出弧火山岩属性;晚期320 Ma基性火山岩主要由玄武岩和玄武安山岩组成,包括Ⅰ型火山岩和Ⅱ型火山岩,Ⅰ型显示出大洋中脊玄武岩属性,Ⅱ型显示出弧玄武岩特征.(2)石炭纪基性火山岩中发现的大量捕获锆石(371~3 106 Ma)年龄谱系与中天山地块显示为相似的特征,表明它们在石炭纪之前可能同属一个板块,也指示早古生代地壳可能参与了成岩过程.(3)该区域石炭纪火山岩与现今存在的Okinawa Trough和Mariana Trough弧后盆地玄武岩(BABB)很相似,从弧玄武岩向洋中脊玄武岩的演变,反映了石炭纪中天山北部弧后盆地的发展.因此推断早石炭世火山岩为弧后盆地初始裂开阶段的产物,而晚石炭世火山岩为弧后盆地弧后扩张阶段的产物.早石炭世晚期的初始裂开和晚石炭世早期的弧后扩张表明天山洋的俯冲最终结束于晚石炭世末期,包括主大洋和弧后盆地最终关闭,而最终关闭的位置很可能位于中天山以南.   相似文献   

16.
New and compiled detrital zircon U–Pb ages from the southern Neoproterozoic–Cambrian Ribeira Belt, SE Brazil, demonstrate Laurentian affinity of the Embu Terrane which is statistically distinct from the adjoining Apiaí and São Roque terranes with cratonic affinity (e.g., São Francisco Craton). Zircon provenance results indicate that the type-area of the Embu Terrane is dominated by detrital zircon age modes at ca. 1200 Ma, 1400 Ma, and 1800 Ma, with maximum depositional age of ca. 1000 Ma. In contrast, the Apiaí and São Roque terranes are dominated by Paleoproterozoic detrital zircon ages (ca. 2200–2000 Ma age dominant component), with maximum depositional ages of ca. 1400 Ma and 1750 Ma, respectively. Multidimensional scaling (MDS) analysis of non-parametric similarity measurements on zircon age populations indicates for the first time that the Embu Terrane encompass two statistically distinct detrital zircon age spectra, which is also reflected in the metamorphic zircon age record. The statistical characterization of the Embu Terrane through populational metrics allow a quantitative comparison with surrounding tectonic domains and rock samples classified such as Embu-type. Our results clearly highlight the distinction between the statistically differentiated Embu Terrane from the Apiaí and São Roque terranes, supporting an allochthonous interpretation. In addition, we demonstrate that rocks samples previously classified as Embu-type are significantly dissimilar to the definition of Embu Terrane, failing to support alternative tectonic models (e.g., intracontinental evolution). Detrital zircon age spectra reveal that the Apiaí and São Roque terranes have similar zircon provenance to domains sourced from the São Francisco Craton, whereas detrital zircon populations from the Embu Terrane have greater affinity with SW Laurentia basins (and their inferred sediment sources), consistent with previous findings. Therefore, we interpret the Embu Terrane as a Rodinia descendant developed along the active margin of the SW Laurentia that collided with the Ribeira Belt during early Neoproterozoic (810–760 Ma).  相似文献   

17.
中天山地块南缘两类混合岩的成因及其地质意义   总被引:1,自引:1,他引:0  
王信水  江拓  高俊  高强  李继磊  张喜 《岩石学报》2019,35(10):3233-3261
中天山地块是位于中亚造山带西南缘的西天山造山带的重要组成块体,其基底演化和构造亲缘性对恢复西天山的增生造山方式和大地构造格局具有重要意义。混合岩在中天山地块的高级变质地体中广泛分布,是揭示中天山地块基底演化和构造属性的窗口。本文通过开展锆石U-Pb年代学和Hf同位素及岩石地球化学研究,确定了中天山地块南缘乌瓦门杂岩的两类条带状混合岩的原岩性质和形成时代以及混合岩化作用时代和成因机制。第一类条带状混合岩的原岩为中基性岩屑砂岩,混合岩化时代为~1. 8Ga,是在同期角闪岩相变质过程中通过变质分异形成的。第二类条带状混合岩的古成体包括黑云角闪斜长片麻岩和黑云斜长角闪片麻岩,原岩均形成于~2. 5Ga,并叠加~1. 8Ga角闪岩相变质作用,是洋陆俯冲背景下由俯冲洋壳或岩石圈地幔部分熔融形成。侵入古成体的变基性岩墙形成于~1. 72Ga,具有Fe-Ti玄武岩的地球化学特征,起源于后碰撞伸展背景下的软流圈地幔。该类混合岩的浅色体同时穿插古成体和变基性岩墙,呈现突变的野外接触关系,与区域内约787~785Ma混合岩化同期,即混合岩化作用是外来岩浆注入的结果,可能是造山带垮塌引发地壳深熔作用的产物。乌瓦门杂岩记录的~2. 5Ga岩浆活动、~1. 8Ga变质作用和~790Ma混合岩化作用可以和塔里木北缘进行对比,暗示中天山地块是一个具有确切新太古代-古元古代结晶基底的微陆块,并且和塔里木克拉通存在构造亲缘性。  相似文献   

18.
塔里木盆地东南缘的阿尔金山被认为是塔里木克拉通变质基底的主要出露地区之一。 本文通过阿尔金山北坡不整合在太古代-古元古代变质基底之上的安南坝群中的碎屑岩和中南阿尔金中深变质岩石(原定为阿尔金岩群)的锆石U-Pb年代学研究,来确定塔里木盆地东南缘变质基底的性质及所经历的多期构造热历史。研究结果显示,塔里木盆地东南缘的安南坝群中含砾砂岩的碎屑锆石年龄集中在1.92Ga左右,少量在2.0~2.4Ga,表明其碎屑物质主要来源于下伏的太古代-早元古代米兰岩群和相关的深成侵入体。在中阿尔金地块和南阿尔金俯冲碰撞杂岩带的深变质岩石中,锆石U-Pb年代学数据表明其记录有新元古代早期(920~940Ma)、新元古代晚期(760Ma左右)和早古生代(450~500Ma)三期构造热事件,新元古代早期的构造热事件与塔里木(或晋宁)造山作用有关,它普遍存在于塔里木盆地周缘的和南中国地块(扬子克拉通)的变质基底岩石中,与Rodinia超级大陆汇聚相关;新元古代晚期的构造热事件也同样广泛存在于塔里木盆地周缘和扬子克拉通之中,被认为与Rodinia超大陆的裂解作用有关。因此,在新元古代时期,阿尔金的地质演化历史与扬子克拉通非常相似,而与华北则有很大的不同,锆石U-Pb测定还表明中南阿尔金的深变质岩石普遍遭受了早古生代的变质作用的改造,显示它们普遍卷入了早古生代的碰撞造山事件之中,成为早古生代碰撞造山带的组成部分。  相似文献   

19.
The Eastern Kunlun Range, as a high-elevation and granitoid-rich tectonic element in northern Tibet, records Paleozoic–Mesozoic amalgamation process of the East Asia continent and Cenozoic uplift of the Tibetan Plateau. However, Precambrian evolution of the Eastern Kunlun remains poorly understood and relations between Eastern Kunlun and adjacent terranes (e.g., Qaidam and Qilian) during the Phanerozoic accretion process are still highly controversial. We use detrital zircon U-Pb geochronological and Hf isotopic data of Proterozoic and Paleozoic metasedimentary rocks from the Eastern Kunlun Range, to reconstruct its origin and subsequent evolutionary history. Detrital zircons of the Proterozoic rocks are dominated by early–middle Neoproterozoic ages (700–1000 Ma), with two age peaks at ca. 800 Ma and ca. 920 Ma and εHf(t) values ranging from −10 to 5. The youngest detrital zircon ages (648–788 Ma) demonstrate that these investigated Proterozoic strata, which were previously mapped as Paleoproterozoic to Mesoproterozoic, were most likely deposited in the middle–late Neoproterozoic. Abundant 0.9–1.0 Ga detrital zircon crystals are consistent with those crystalline rocks of similar ages across the Kunlun-Qaidam and Qilian terranes, which are generally interpreted as the product of Grenvillian orogenesis. These findings support the hypothesis that these terranes were probably within a single continental landmass (named as KQQ block) during the Neoproterozoic. The high similarity of detrital zircon ages, Hf isotopes and Neoproterozoic lithostratigraphy between western Yangtze and KQQ blocks, supports a temporary connection of the KQQ block to western Yangtze in Rodinia supercontinent. Detrital zircons of the analyzed Paleozoic rocks are characterized by 390–490 Ma age populations. These results, in combination with published granitoids data of the northern Tibet, favor a scenario in which the Kunlun-Qaidam and Qilian terranes underwent separated subduction and accretion processes during the late Cambrian–Devonian, but together formed an upper plate to northward subduction of the Paleo-Tethys during the Permian–Triassic.  相似文献   

20.
The relationship of the Yangtze Block with other continental blocks of the Rodinia and Gondwana supercontinents is hotly debated. Here we report U–Pb and Lu–Hf isotopic data for zircons from the latest Neoproterozoic Yanjing Group and the overlying Silurian–Devonian rocks on the western margin of Yangtze Block, which provide critical constraints on the provenance of these sediments and further shed light on the crustal evolution and tectonic affinity of the western Yangtze Block in the context of Rodinia and the subsequent Gondwanaland. Mica schist from the middle part of the Yanjing Group contains dominant Neoproterozoic detrital zircons (0.72–0.80 Ga) with a pronounced age peak at 0.75 Ga. Based on the euhedral to subhedral shapes, high Th/U ratios and exclusively positive εHf(t) values (+ 6 to + 14) for the zircon crystals, and the lack of ancient zircons, we consider the sediments as products of proximal deposition near a Neoproterozoic subduction system in western Yangtze. Combined with the age of rhyolite from the lower part of the Yanjing Group, these strata were estimated to have been deposited in a period between 0.72 and 0.63 Ga. In contrast, the Silurian–Devonian sediments exhibit dominant Grenvillian ages (0.9–1.0 Ga), with middle Neoproterozoic (0.73–0.85 Ga), Pan-African (0.49–0.67 Ga) and Neoarchean (~ 2.5 Ga) age populations, suggesting a significant change of sedimentary provenance and thus a different tectonic setting. Although the shift occurred in the Silurian, the age spectra turn to be consistent along the western margin of the Yangtze Block until the Devonian, indicating persistence of the same sedimentary environment. However, the related provenance of these Paleozoic sediments cannot be found in South China. The presence of abundant Grenvillian, Pan-African and Neoarchean ages, along with their moderately to highly rounded shapes, indicates the possibility of exotic continental terrane(s) as a possible sedimentary provenance. Considering the potential source areas around the Yangtze Block when it was part of the Rodinia or Gondwana, we suggest that the source of these Paleozoic sediments had typical Gondwana affinities such as the Himalaya region, north India, which is also supported by their stratigraphic similarity, newly published paleomagnetic data and the tectono-thermal events of northwestern fragments of Gondwana. This implies that after a prolonged subduction in the Neoproterozoic, the western margin of the Yangtze Block began to incorporate into the assembly of the Gondwana supercontinent and was able to accept sediments from northwestern margin of Gondwanaland as a result of early Paleozoic orogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号