首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
The Bangbu gold deposit is a large orogenic gold deposit in Tibet formed during the AlpineHimalayan collision. Ore bodies(auriferous quartz veins) are controlled by the E-W-trending Qusong-Cuogu-Zhemulang brittle-ductile shear zone. Quartz veins at the deposit can be divided into three types: pre-metallogenic hook-like quartz veins, metallogenic auriferous quartz veins, and postmetallogenic N-S quartz veins. Four stages of mineralization in the auriferous quartz veins have been identified:(1) Stage S1 quartz+coarse-grained sulfides,(2) Stage S2 gold+fine-grained sulfides,(3) Stage S3 quartz+carbonates, and(4) Stage S4 quartz+ greigite. Fluid inclusions indicate the oreforming fluid was CO_2-N_2-CH_4 rich with homogenization temperatures of 170–261°C, salinities 4.34–7.45 wt% Na Cl equivalent. δ~(18)Ofluid(3.98‰–7.18‰) and low δDV-SMOW(-90‰ to-44‰) for auriferous quartz veins suggest ore-forming fluids were mainly metamorphic in origin, with some addition of organic matter. Quartz vein pyrite has δ~(34)SV-CDT values of 1.2‰–3.6‰(an average of 2.2‰), whereas pyrite from phyllite has δ~(34)SV-CDT 5.7‰–9.9‰(an average of 7.4‰). Quartz vein pyrites yield 206Pb/204 Pb ratios of 18.662–18.764, 207Pb/204 Pb 15.650–15.683, and ~(208)Pb/204 Pb 38.901–39.079. These isotopic data indicate Bangbu ore-forming materials were probably derived from the Langjiexue accretionary wedge. 40Ar/39 Ar ages for sericite from auriferous sulfide-quartz veins yield a plateau age of 49.52 ± 0.52 Ma, an isochron age of 50.3 ± 0.31 Ma, suggesting that auriferous veins were formed during the main collisional period of the Tibet-Himalayan orogen(~65–41 Ma).  相似文献   

2.
The Weiquan Ag-polymetallic deposit is located on the southern margin of the Central Asian Orogenic Belt and in the western segment of the Aqishan-Yamansu arc belt in East Tianshan,northwestern China. Its orebodies, controlled by faults, occur in the lower Carboniferous volcanosedimentary rocks of the Yamansu Formation as irregular veins and lenses. Four stages of mineralization have been recognized on the basis of mineral assemblages, ore fabrics, and crosscutting relationships among the ore veins. Stage I is the skarn stage(garnet + pyroxene), Stage Ⅱ is the retrograde alteration stage(epidote + chlorite + magnetite ± hematite 士 actinolite ± quartz),Stage Ⅲ is the sulfide stage(Ag and Bi minerals + pyrite + chalcopyrite + galena + sphalerite + quartz ± calcite ± tetrahedrite),and Stage IV is the carbonate stage(quartz + calcite ± pyrite). Skarnization,silicification, carbonatization,epidotization,chloritization, sericitization, and actinolitization are the principal types of hydrothermal alteration. LAICP-MS U-Pb dating yielded ages of 326.5±4.5 and 298.5±1.5 Ma for zircons from the tuff and diorite porphyry, respectively. Given that the tuff is wall rock and that the orebodies are cut by a late diorite porphyry dike, the ages of the tuff and the diorite porphyry provide lower and upper time limits on the age of ore formation. The δ~(13)C values of the calcite samples range from-2.5‰ to 2.3‰, the δ~(18)O_(H2 O) and δD_(VSMOW) values of the sulfide stage(Stage Ⅲ) vary from 1.1‰ to 5.2‰ and-111.7‰ to-66.1‰, respectively,and the δ~(13)C, δ~(18)O_(H2 O) and δD_(V-SMOW) values of calcite in one Stage IV sample are 1.5‰,-0.3‰, and-115.6‰, respectively. Carbon, hydrogen, and oxygen isotopic compositions indicate that the ore-forming fluids evolved gradually from magmatic to meteoric sources. The δ~(34)S_(V-CDT) values of the sulfides have a large range from-6.9‰ to 1.4‰, with an average of-2.2‰, indicating a magmatic source, possibly with sedimentary contributions. The ~(206)Pb/~(204)Pb, ~(207)Pb/~(204)Pb, and ~(208)Pb/~(204)Pb ratios of the sulfides are 17.9848-18.2785,15.5188-15.6536, and 37.8125-38.4650, respectively, and one whole-rock sample at Weiquan yields~(206)Pb/~(204)Pb,~(207)Pb/~(204)Pb, and ~(208)Pb/~(204)Pb ratios of 18.2060, 15.5674, and 38.0511,respectively. Lead isotopic systems suggest that the ore-forming materials of the Weiquan deposit were derived from a mixed source involving mantle and crustal components. Based on geological features, zircon U-Pb dating, and C-H-OS-Pb isotopic data, it can be concluded that the Weiquan polymetallic deposit is a skarn type that formed in a tectonic setting spanning a period from subduction to post-collision. The ore materials were sourced from magmatic ore-forming fluids that mixed with components derived from host rocks during their ascent, and a gradual mixing with meteoric water took place in the later stages.  相似文献   

3.
The Maozu Pb–Zn deposit, located on the western margin of the Yangtze Block, southwest China, is a typical carbonate-hosted deposit in the Sichuan–Yunnan–Guizhou Pb–Zn metallogenic province with Pb + Zn reserves of about 2.0 million tonnes grading 4.15 wt.% Pb and 7.25 wt.% Zn. Its ore bodies are hosted in Sinian (635–541 Ma) Dengying Formation dolostone and show stratiform, vein and irregular textures. Ores are composed of sphalerite, galena, pyrite, calcite, dolomite, quartz and fluorite with massive, banded, disseminated and veined structures. The C–O–Sm–Nd isotopic compositions of hydrothermal calcites and S–Pb isotopic compositions of sulfides were analyzed to constrain the origin of the Maozu deposit. δ13CPDB and δ18OSMOW values of hydrothermal calcites range from −3.7‰ to −2.0‰ and +13.8‰ to +17.5‰, respectively, and plot near the marine carbonate rocks field in a plot of δ13CPDB vs. δ18OSMOW, with a negative correlation. It suggests that CO2 in the hydrothermal fluids was mainly originated from marine carbonate rocks, with limited influence from sedimentary organic matter. δ34SCDT values of sulfides range from +9.9‰ to +19.2‰, similar to that of Cambrian to Triassic seawater sulfate (+15‰ to +35‰) and evaporate (+15‰ to +30‰) in the Cambrian to Triassic sedimentary strata. It suggests that reduced sulfur was derived from evaporate in sedimentary strata by thermo chemical sulfate reduction. Sulfides have low radiogenic Pb isotope compositions (206Pb/204Pb = 18.129–18.375, 207Pb/204Pb = 15.640–15.686 and 208Pb/204Pb = 38.220–38.577) that plot in the field between upper crust and the orogenic belt evolution curve in the plot of 207Pb/204Pb vs. 206Pb/204Pb, and similar to that of age corrected Proterozoic basement rocks (Dongchuan and Kunyang Groups). This indicates that ore-forming metals were mainly derived from basement rocks. Hydrothermal calcite yields a Sm–Nd isotopic age of 196 ± 13 Ma, possibly reflecting the timing of Pb–Zn mineralization in the SYG province, younger than the Permian Emeishan mantle plume (∼260 Ma). All data combined suggests that hydrothermal fluids circulated through basement rocks where they picked up metals and migrated to surface, mixed with reduced sulfur-bearing fluids and precipitated metals. Ore genesis of the Maozu deposit is different from known magmatic–hydrothermal, Sedimentary Exhalative or Mississippi Valley-types, which maybe represent a unique ore deposit type, named as the SYG-type.  相似文献   

4.
The Hoshbulak Zn–Pb deposit is located in South Tianshan, Xinjiang, China. The Zn–Pb orebody is tabular and stratoid in form and it is hosted in calcareous rocks of the Upper Devonian Tan'gaitaer Formation which were thrust over the Carboniferous system. The ores are mineralogically simple and composed mainly of sphalerite, galena, pyrite, calcite, dolomite and exhibit massive, banded, veinlets, colloidal, metasomatic, eutectic, concentric ring and microbial-like fabrics. The Co/Ni ratios of pyrite in the ores range from 0.46 to 0.90 by electron microprobe, which suggested that the Hoshbulak Zn–Pb mineralization was formed in a sedimentary environment. The REE patterns of the hydrothermal calcite coincide well with those of recrystallized micritic limestones, suggesting that the Hoshbulak Pb–Zn mineralization was closely genetically related to limestones of the Tan'gaitaer Formation. The C-, H- and O-isotopic compositions of hydrothermal calcite and dolomite in the ores yield δ13C(VPDB) values ranging from − 1.9‰ to + 2.6‰ (mean 0.79‰), δ18O(VSMOW) values from 22.41‰ to 24.67‰ (mean 23.04‰) and δD values from − 77‰ to − 102‰ for fluid inclusions. It is suggested that the ore-forming fluids, including CO2, were derived from the calcareous strata of the Tan'gaitaer Formation in association with hydrocarbon brines. The δ34S(VCDT) ranges from − 22.3‰ to − 8.5‰ for early ore-stage sulfides and from 5.9‰ to 24.2‰ with a cluster between 14.4‰ and 24.2‰ for the sulfides (pyrite, sphalerite, galena) in the main ore-stage. The ore sulfur may have been derived from evaporite rocks by thermochemical sulfate reduction (TSR) as the predominant mechanism for H2S generation. The Pb-isotopic compositions of the sulfide minerals from the Hoshbulak ores yield 206Pb/204Pb ratios from 17.847 to 18.173, 207Pb/204Pb ratios from 15.586 to 15.873 and 208Pb/204Pb ratios from 37.997 to 38.905, which indicate that the metals were sourced mainly from the Tan'gaitaer Formation. We conclude that the genesis of the Hoshbulak Mississippi Valley-type deposit was closely related to thrust faulting in the South Tianshan orogen of China.  相似文献   

5.
《Resource Geology》2018,68(3):227-243
As a newly discovered medium‐sized deposit (proven Pb + Zn resources of 0.23 Mt, 9.43% Pb and 8.73% Zn), the Dongzhongla skarn Pb–Zn deposit is located in the northern margin of the eastern Gangdese, central Lhasa block. Based on the geological conditions in this deposit of ore‐forming fluids, H, O, C, S, Pb, Sr, and noble gas isotopic compositions were analyzed. Results show that δ18OSMOW of quartz and calcite ranged from −9.85 to 4.17‰, and δDSMOW ranged from −124.7 to −99.6‰ (where SMOW is the standard mean ocean water), indicating magma fluids mixed with meteoric water in ore‐forming fluids. The δ13CPDB and δ18OSMOW values of calcite range from −1.4 to −1.1‰ and from 5.3 to 15.90‰, respectively, show compositions consistent with the carbonate limestone in the surrounding rocks, implying that the carbon was primarily sourced from the dissolution of carbonate strata in the Luobadui Formation. The ore δ34S composition varied in a narrow range of 2.8 to 5.7‰, mostly between 4‰ and 5‰. The total sulfur isotopic value δ34S was 4.7‰ with characteristics of magmatic sulfur. The 3He/4He values of pyrite and galena ranged from 0.101 to 5.7 Ra, lower than those of mantle‐derived fluids (6 ± 1 Ra), but higher than those of the crust (0.01–0.05 Ra), and therefore classified as a crust–mantle mixed source. The Pb isotopic composition for 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values of the ores were in the ranges of 18.628–18.746, 15.698–15.802, and 39.077–39.430, respectively, consistent with the Pb isotopic composition of magmatic rocks in the deposit, classified as upper‐crust lead. The ore lead was likely sourced partially from the crustal basement of the Lhasa Terrane. The initial (87Sr/86Sr)i value from five sulfide samples ranged from 0.71732 to 0.72767, and associated ore‐forming fluids were mainly sourced from the partial melting of the upper‐crust materials. Pb isotopic compositions of ore sulfides from the Dongzhongla deposit are similar to that of the Yuiguila and Mengya'a deposit, indicating that they have similar sources of metal‐rich ore‐forming solution. According to basic skarn mineralogy, the economic metals, and the origin of the ore‐forming fluids, the Dongzhongla deposit was classified as a skarn‐type Pb–Zn deposit.  相似文献   

6.
The Dapingzhang volcanogenic Cu–Pb–Zn sulfide deposit is located in the Lancangjiang tectonic zone within the Sanjiang region, Yunnan province of southwestern China. The deposit occurs within a felsic volcanic dome belonging to a mid-Silurian volcanic belt stretching for more than 100 km from Dapingzhang to Sandashan. The mineralized volcanic rocks are predominantly keratophyre and quartz keratophyre with subordinate spilite. The Dapingzhang deposit is characterized by well-developed vertical zonation with stockwork ores in the bottom, disseminated sulfide ores in the middle, and massive sulfide ores in the top, overlain by a thin layer of chemical sedimentary exhalative rocks (chert and barite). The Re–Os age of the pyrites from the deposit is 417 ± 23 Ma, indistinguishable from the age of the associated felsic volcanic rocks. The associated felsic volcanic rocks are characterized by negative Nb–Ta anomalies and positive εNd(t) values (+ 4.4–+6.5), similar to the coeval calc-alkaline volcanic rocks in the region. This observation supports the interpretation that the felsic volcanic rocks associated with the Dapingzhang deposit are the derivatives of arc basaltic magma by extensive fractional crystallization. The δ34S values of the sulfides from the deposit vary from − 1.24 to + 4.32‰, indicating a predominantly magmatic source for the sulfur. The sulfides are also characterized by homogeneous and relatively low radiogenic Pb isotope compositions (206Pb/204Pb = 18.310–18.656, 207Pb/204Pb = 15.489–15.643 and 208Pb/204Pb = 37.811–38.662), similar to the Pb isotopic compositions of the associated volcanic rocks. The Pb isotopic data indicate that mantle-derived Pb is more prevalent than crust-derived Pb in the deposit. The S–Pb isotopic data indicate that the important ore-forming materials were mainly derived from the associated volcanic rocks. The δ13CPDB and δ18OSMOW values of the associated hydrothermal calcite crystals vary from − 2.3‰ to + 0.27‰ and from + 14.6 to + 24.4‰, respectively. These values are between the mantle and marine carbonate values. The narrow range of the δ13CPDB values for the calcite indicates that carbon-bearing species in the hydrothermal fluids were primarily derived from marine carbonates. The δ18O values for the hydrothermal fluids, calculated from the measured values for quartz, are between − 2.1‰ and + 3.5‰. The corresponding δD values for the fluids range from − 59‰ to − 84‰. The O–H isotopic data indicate mixing between magmatic fluids and seawater in the ore-forming hydrothermal system. Similar to a typical volcanogenic massive sulfide (VMS) deposit, the ore-forming fluids contained both magmatic fluids and heated seawater; the ore metals and regents were derived from the underlying magma as well as felsic country rocks.  相似文献   

7.
The Kanggur gold deposit is located in the southern margin of the Central Asia Orogenic Belt and in the western segment of the Kanggur–Huangshan ductile shear belt in Eastern Tianshan, northwestern China. The orebodies of this deposit are hosted in the Lower Carboniferous volcanic rocks of the Aqishan Formation and mainly consist of andesite, dacite and pyroclastic rocks. The SHRIMP zircon U–Pb age data of the andesite indicate that the volcanism in the Kanggur area might have occurred at ca. 339 Ma in the Early Carboniferous, and that the mineralization age of the Kanggur gold deposit was later than the age of volcanic rocks in the area. Geochemically, the andesite rocks of the Aqishan Formation belong to low-tholeiite and calc-alkaline series and display relative depletions in high field strength elements (HFSEs; i.e. Nb, Ta and Ti). The δ18Ow and δDw values vary from − 9.1‰ to + 3.8‰ and − 66.0‰ to − 33.9‰, respectively, indicating that the ore-forming fluids were mixtures of metamorphic and meteoric waters. The δ30Si values of 13 quartz samples range from − 0.3‰ to + 0.1‰ with an average of − 0.15‰, and the δ34S values of 18 sulphide samples range from − 0.9‰ to + 2.2‰ with an average of + 0.54‰. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb values of 10 sulphide samples range from 18.166 to 18.880, 15.553 to 15.635 and 38.050 to 38.813, respectively, showing similarities to orogenic Pb; these values are consistent with those of the andesite from the Kanggur area, suggesting a common lead source. All of the silicon, sulphur and lead isotopic systems indicate that the ore-forming fluids and materials were mainly derived from the Aqishan Formation, and that the host volcanic rocks of the Aqishan Formation probably played a significant role in the Kanggur gold mineralization. Integrating the data obtained from studies on geology, geochronology, petro-geochemistry and H–O–Si–S–Pb isotope systematics, we suggest that the Kanggur gold deposit is an orogenic-type deposit formed in Eastern Tianshan orogenic belt during the Permian post-collisional tectonism.  相似文献   

8.
Xiaolonghe is a poorly studied greisen-type tin deposit that is hosted by biotite granite in the western Yunnan tin belt. The mineralisation-related metaluminous and weak peraluminous granite is characterised by high Si, Al and K and low Mg, Fe and Ca, with an average A/CNK of 1.02. The granite is enriched in LILEs (K and Rb), LREEs and HFSEs (Zr, Hf, Th, U and Ce) and depleted in Ba, Nb, Sr, P, and Ti, with zircon εHf(t) =  10.8 to − 7.5 (TDM2 = 1.61–1.82 Ga). These characteristics indicate that the magma was generated by the partial melting of a thickened ancient crust. LA-ICP-MS U–Pb dating of igneous zircon and hydrothermal cassiterite yield ages of 71.4 ± 0.4 Ma and 71.6 ± 4.8 Ma, respectively. The igneous biotite and hydrothermal muscovite samples show Ar–Ar plateau ages of 72.3 ± 0.4 Ma and 70.6 ± 0.2 Ma, respectively. The close temporal relationship between the igneous emplacement and hydrothermal activity suggests that the tin mineralisation was closely linked to the igneous emplacement. The δ18O and δD values for the deposit range from + 3.11‰ to − 4.5‰ and from − 127.3‰ to − 94.7‰, respectively. The hydrothermal calcite C and O isotopic data show a wide range of δ13CPDB values from − 5.7‰ to − 4.4‰, and the δ18OSMOW values range from + 1.4‰ to + 11.2‰. The δ34SV-CDT data range from + 4.8‰ to + 8.9‰ for pyrite, and the 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios range from 18.708 to 18.760, from 15.728 to 15.754 and from 39.237 to 39.341, respectively. The stable isotopic (C–H–O–S–Pb) compositions are all similar to those of magmatic and mantle-derived fluids, which indicate that the ore-forming fluids and materials were mainly derived from magmatic sources that were accompanied by meteoric water. The tin mineralisation in the Xiaolonghe district was closely associated with the Late Cretaceous crustal-melting S-type granites that formed during the subduction of the Neo-Tethys oceanic lithosphere. Combined with the tin deposits in the Southeast Asian tin belt, Tengchong block and Central Lhasa, we interpreted that a giant intermittent tin mineralisation belt should be present along the Asian Neo-Tethys margin.  相似文献   

9.
The Yindongpo gold deposit is located in the Weishancheng Au–Ag-dominated polymetallic ore belt in Tongbai Mountains, central China. The ore bodies are stratabound within carbonaceous quartz–sericite schists of the Neoproterozoic Waitoushan Group. The ore-forming process can be divided into three stages, represented by early barren quartz veins, middle polymetallic sulfide veinlets and late quartz–carbonate stockworks, with most ore minerals, such as pyrite, galena, native gold and electrum being formed in the middle stage. The average δ18Owater values changed from 9.7‰ in the early stage, through 4.9‰ in the middle stage, to − 5.9‰ in the late stage, with the δD values ranging between − 65‰ and − 84‰. The δ13CCO2 values of ore fluids are between − 3.7‰ and + 6.7‰, with an average of 1.1‰. The H–O–C isotope systematics indicate that the ore fluids forming the Yindongpo gold deposit were probably initially sourced from a process of metamorphic devolatilization, and with time gradually mixed with meteoric water. The δ34S values range from − 0.3‰ to + 5.2‰, with peaks ranging from + 1‰ to + 4‰. Fourteen sulfide samples yield 206Pb/204Pb values of 16.990–17.216, 207Pb/204Pb of 15.419–15.612 and208Pb/204Pb of 38.251–38.861. Both S and Pb isotope ratios are similar to those of the main lithologies of the Waitoushan Group, but differ from other lithologic units and granitic batholiths in the Tongbai area, which suggest that the ore metals and fluids originated from the Waitoushan Group. The available K–Ar and 40Ar/39Ar ages indicate that the ore-forming process mainly took place in the period of 176–140 Ma, during the transition from collisional compression to extension and after the closure of the oceanic seaway in the Qinling Orogen. The Yindongpo gold deposit is interpreted as a stratabound orogenic-style gold system formed during the transition phase from collisional compression to extension.The ore metals in the Waitoushan Group were extracted, transported and then accumulated in the carbonaceous sericite schist layer. The carbonaceous sericite schist layer, especially at the junction of collapsed anticline axis and fault structures, became the most favorable locus for the ore bodies.  相似文献   

10.
Located in the western Yangtze Block, the Qingshan Pb–Zn deposit, part of the Sichuan–Yunnan–Guizhou Pb–Zn metallogenic province, contains 0.3 million tonnes of 9.86 wt.% Pb and 22.27 wt.% Zn. Ore bodies are hosted in Carboniferous and Permian carbonate rocks, structurally controlled by the Weining–Shuicheng anticline and its intraformational faults. Ores composed of sphalerite, galena, pyrite, dolomite, and calcite occur as massive, brecciated, veinlets, and disseminations in dolomitic limestones.

The C–O isotope compositions of hydrothermal calcite and S–Pb–Sr isotope compositions of Qingshan sulphide minerals were analysed in order to trace the sources of reduced sulphur and metals for the Pb–Zn deposit. δ13CPDB and δ18OSMOW values of calcite range from –5.0‰ to –3.4‰ and +18.9‰ to +19.6‰, respectively, and fall in the field between mantle and marine carbonate rocks. They display a negative correlation, suggesting that CO2 in the hydrothermal fluid had a mixed origin of mantle, marine carbonate rocks, and sedimentary organic matter. δ34S values of sulphide minerals range from +10.7‰ to +19.6‰, similar to Devonian-to-Permian seawater sulphate (+20‰ to +35‰) and evaporite rocks (+23‰ to +28‰) in Carboniferous-to-Permian strata, suggesting that the reduced sulphur in hydrothermal fluids was derived from host-strata evaporites. Ores and sulphide minerals have homogeneous and low radiogenic Pb isotope compositions (206Pb/204Pb = 18.561 to 18.768, 207Pb/204Pb = 15.701 to 15.920, and 208Pb/204Pb = 38.831 to 39.641) that plot in the upper crust Pb evolution curve, and are similar to those of Devonian-to-Permian carbonate rocks. Pb isotope compositions suggest derivation of Pb metal from the host rocks. 87Sr/86Sr ratios of sphalerite range from 0.7107 to 0.7136 and (87Sr/86Sr)200Ma ratios range from 0.7099 to 0.7126, higher than Sinian-to-Permian sedimentary rocks and Permian Emeishan flood basalts, but lower than Proterozoic basement rocks. This indicates that the ore strontium has a mixture source of the older basement rocks and the younger cover sequence. C–O–S–Pb–Sr isotope compositions of the Qingshan Pb–Zn deposit indicate a mixed origin of the ore-forming fluids and metals.  相似文献   

11.
Magnesium isotopic compositions, along with new Sr–Nd–Pb isotopic data and elemental analyses, are reported for 12 Miocene tourmaline-bearing leucogranites, 15 Eocene two-mica granites and 40 metamorphic rocks to investigate magnesium isotopic behaviors during metamorphic processes and associated magmatism and constrain the tectonic-magmatic-metamorphic evolution of the Himalayan orogeny. The gneisses, granulites and amphibolites represent samples of the Indian lower crust and display large range in δ26Mg from −0.44‰ to −0.09‰ in mafic granulites, −0.44‰ to −0.10‰ in amphibolites, and −0.70‰ to −0.03‰ in granitic gneisses. The average Mg isotopic compositions of the granitic gneisses (−0.19 ± 0.34‰), mafic granulites (−0.22 ± 0.17‰) and amphibolites (−0.25 ± 0.24‰) are similar, indicating the limited Mg isotope fractionation during prograde metamorphism from granitic gneisses to mafic granulites and retrograde metamorphism from mafic granulites to amphibolites. The Eocene two-mica granites and Miocene leucogranites are characterized by large variations in elemental and Sr–Nd–Pb isotopic compositions. The leucogranites and two-mica granites have their corresponding (87Sr/86Sr)i varying from 0.7282 to 0.7860 and 0.7163 to 0.7191, (143Nd/144Nd)i from 0.511888 to 0.512040 and 0.511953 to 0.512076, 207Pb/204Pb from 15.7215 to 15.7891 and 15.7031 to 15.7317, 208Pb/204Pb from 38.8521 to 39.5286 and 39.2710 to 39.4035, and 206Pb/204Pb from 18.4748 to 19.0139 and 18.7834 to 18.9339. However, they have similar Mg isotopic compositions (−0.21‰ to +0.06‰ versus −0.24‰ to +0.09‰), which did not originate from fractional crystallization nor source heterogeneity. Based on hornblende/biotite/muscovite dehydration melting reaction and Mg isotopic variations in two-mica granites and leucogranites with the proceeding metamorphism, along with elemental discrimination diagrams, Eocene two-mica granites and Miocene leucogranites could be related to hornblende dehydration melting and muscovite dehydration melting, respectively. Mg isotopic compositions of Eocene two-mica granites become heavier compared to the source because of residues of isotopically light garnet in the source; while those of Miocene leucogranites become lighter because of entrainment of isotopically light garnet from the source region. Thus, a new model for crustal anatexis and Himalayan orogenesis was proposed based on the Mg isotope fractionation in the leucogranites and metamorphic rocks. This model emphasizes a successive process from Indian continental subduction to rapid exhumation of the Higher Himalayan Crystalline Series (HHCS). The former underwent high-temperature (HT) and high-pressure (HP) granulite-facies prograde metamorphism, which resulted in the hornblende dehydration melting and the formation of Eocene two-mica granites; while the latter experienced amphibolite-facies retrogression and decompression, which resulted in the muscovite dehydration melting and the formation of Miocene leucogranites.  相似文献   

12.
The Niujuan breccia-type silver deposit forms part of the North Hebei metallogenic belt along the northern margin of the North China Craton. The Hercynian Baiyingou coarse-grained granite and the Yanshanian Er’daogou fine-grained granite are the major Mesozoic intrusions exposed in this region. Here we investigate the salient characteristics of the mineralization and evaluate its genesis through zircon U-Pb and fluorite Sm-Nd age data, and Pb, S, O, H, He and Ar isotope data. The orebodies of the Niujuan silver deposit are hosted in breccias, which contain angular fragments of the Baiyingou and Er’daogou granitoids. The δ34S values of pyrite from the silver mineralized veins range from 2.4‰ to 5.3‰. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of the sulfide minerals show ranges of 16.837–16.932, 15.420–15.501 and 37.599–37.950, respectively. The 3He/4He and 40Ar/36Ar ratios of the fluids trapped in pyrite are 0.921–4.81Ra and 299.34–303.84, respectively. The δ18O and δ18Dw values of the ore-forming fluids range from 0.6‰ to −4.15‰ and from −119.4‰ to −98.7‰, respectively. Our isotopic data suggest that the ore-forming fluids were originally derived from the subvolcanic plutons and evolved into a mixture of magmatic and meteoric water during the main hydrothermal stage. The ore-forming materials were primarily derived from the lower crust with limited incorporation of mantle materials. The emplacement time of the Er’daogou granite is constrained by LA-ICP-MS zircon U-Pb geochronology at 145.5 ± 2.1 Ma. Five fluorite samples from the last hydrothermal stage yielded a Sm-Nd isochron age of 139.2 ± 3.8 Ma, indicating the upper age limit for the silver mineralization. These ages correlate with the formation of the Niujuan deposit in an extensional setting associated with the closure of the Mongol-Okhotsk Ocean and the subduction of the Paleo-Pacific oceanic plate beneath the North China Craton.  相似文献   

13.
《International Geology Review》2012,54(15):1885-1901
The Dachang gold deposit is located in the Late Triassic Songpan-Ganzi Fold Belt, NE Tibetan Plateau. Gold ore is concentrated as veins along secondary faults and fracture zones in the Bayan Har Group metaturbidites. No exposed felsic plutons are present in the vicinity of the deposit. The auriferous veins contain <15% sulphide minerals, mainly arsenopyrite, pyrite, and stibnite. Gold is commonly enclosed within arsenopyrite and pyrite. Typical alteration around the ore bodies includes silicification, sericitization, and weak carbonatization.

Gold-bearing quartz samples have δ18O values of 16.9–21.2‰ (V-SMOW) from which δ18OH2O values of 6.2–9.6‰ can be calculated from the fluid inclusion temperatures (or 10.0 to 12.7‰ if we used the average arsenopyrite geothermometer temperature of 301°C). The δD values of fluid inclusions in quartz range from –90‰ to –72‰. δ34S values of gold-bearing sulphides mainly range from –5.9‰ to –2.8‰ (V-CDT). Pyrite and arsenopyrite in ores have 206Pb/204Pb ratios of 18.2888 to 18.4702, 207Pb/204Pb ratios of 15.5763 to 15.6712, and 208Pb/204Pb ratios of 38.2298 to 38.8212. These isotopic compositions indicate that the ore-forming fluids were of metamorphic origin, and the S and Pb may have been derived from the host metaturbidites of the Bayan Har Group. The Dachang Au deposit has geological and geochemical features similar to orogenic gold deposits. We propose that the ores formed when the Songpan-Ganzi Fold Belt was intensely deformed by Late Triassic folding and thrusting. Large-scale thrusting resulted in regional allochthons of different scales, followed by secondary faults or fracture zones that controlled the ore bodies.  相似文献   

14.
通过成矿期方解石的C、O、Sr和含硫矿物的S、Pb同位素,成矿期方解石Sm-Nd测年研究,探讨白秧坪矿集区东矿带矿床成因。测试结果表明,白秧坪矿集区东矿带方解石δ13CPDB值变化范围-4.0‰~2.3‰,平均值-0.2‰,δ18OPDB值范围-27.2‰~20.4‰,平均值-14.1‰,δ18OSMOW值范围2.9‰~24.4‰,平均值16.4‰;方解石Sr同位素值变化范围0.707669~0.710115,平均值0.709320;硫化物δ34SV-CDT值分布范围-20.2‰~1.3‰,平均值约-8.8‰,天青石δ34SV-CDT值分布范围为17.1‰~19.4‰,平均值约18.0‰;Pb同位素测试结果中,206Pb/204Pb的变化范围为18.553~18.857,207Pb/204Pb变化范围为15.501~15.826,208Pb/204Pb变化范围为38.54~39.456;成矿阶段方解石Sm-Nd等时线年龄为29.5±1.7 Ma。对测试结果的研究表明,白秧坪矿集区东矿带碳质的来源较为均一,矿石中热液方解石碳质源自地层中碳酸盐岩溶解,成矿流体来自地层水和大气降水,属于盆地卤水流体系统;成矿物质硫来自海水硫酸盐的还原作用,成矿早期以有机质还原硫为主,成矿后期以生物还原硫为主;金属成矿物质来自沉积地层和盆地基底;测定白秧坪矿集区东矿带铅锌成矿年龄为29.5±1.7 Ma,与地质年龄限定的较为吻合。   相似文献   

15.
The Yinchanggou-Qiluogou Pb-Zn deposit,located in the western Yangtze Block,southwest China,is hosted by the Upper Sinian Dengying Formation dolostone.Ore bodies occur in the Qiluogou anticline and the NS-and NNW-trending faults.Sulfide ores mainly consist of sphalerite,pyrite,galena and calcite,with subordinate dolomite and quartz.Seventeen ore bodies have been discovered to date and they have a combined 1.0 million tons of sulfide ores with average grades of 2.27wt%Zn and 6.89wt%Pb.The δD_(H2O-SMOW) and δ~(18)O_(H2O-SMOW) values of fluid inclusions in quartz and calcite samples range from-68.9‰ to-48.7‰ and 7.3‰ to 15.9‰,respectively,suggesting that H_2O in the hydrothermal fluids sourced from metamorphic water.Calcite samples have δ~(13)C_(PDB) values ranging from-6.2‰ to-4.1‰ and δ~(18)O_(SMOW) values ranging from 15.1‰ to 17.4‰,indicating C and O in the hydrothermal fluids likely derived from a mixed source of metamorphic fluids and the host carbonates.The δ~(34)S_(CDT) values of sulfide minerals range from 5.5‰ to 20.3‰,suggesting that thermal chemical reduction of sulfate minerals in evaporates were the most probable source of S in the hydrothermal fluids.The ~(206)Pb/~(204)Pb,~(207)Pb/~(204)Pb and ~(208)Pb/~(204)Pb ratios of sulfide minerals fall in the range of 18.11 to 18.40,15.66 to 15.76 and 38.25 to 38.88,respectively.The Pb isotopic data of the studied deposit plot near the upper crust Pb evolution curve and overlap with the age-corrected Proterozoic basement rocks and the Upper Sinian Dengying Formation hosting dolostone.This indicates that the Pb originated from a mixed source of the basement metamorphic rocks and the ore-hosting carbonate rocks.The ore geology and C-H-O-S-Pb isotopic data suggest that the YinchanggouQiluogou deposit is an unusual carbonate-hosted,strata-bound and epigenetic deposit that derived ore-forming materials from a mixed source of the underlying Porterozoic basements and the Sinian hosting carbonates.  相似文献   

16.
The genesis of mineralized systems across the Mountain Freegold area, in the Dawson Range Cu–Au?±?Mo Belt of the Tintina Au province was constrained using Pb and stable isotope compositions and Ar–Ar and Re–Os geochronology. Pb isotope compositions of sulfides span a wide compositional range (206Pb/204Pb, 18.669–19.861; 208Pb/204Pb, 38.400–39.238) that overlaps the compositions of the spatially associated igneous rocks, thus indicating a magmatic origin for Pb and probably the other metals. Sulfur isotopic compositions of sulfide minerals are broadly similar and their δ34S (Vienna-Canyon Diablo Troilite (V-CDT)) values range from ?1.4 to 3.6 ‰ consistent with the magmatic range, with the exception of stibnite from a Au–Sb–quartz vein, which has δ34S values between ?8.1 and ?3.1 ‰. The δ34S values of sulfates coexisting with sulfide are between 11.2 and 14.2 ‰; whereas, those from the weathering zone range from 3.7 to 4.3 ‰, indicating supergene sulfates derived from oxidation of hypogene sulfides. The δ13C (Vienna Peedee Belemnite (VPDB)) values of carbonate range from ?4.9 to 1.1 ‰ and are higher than magmatic values. The δ18O (V-SMOW) values of magmatic quartz phenocrysts and magmatic least-altered rocks vary between 6.2 and 10.1 ‰ and between 5.0 and 10.1 ‰, respectively, whereas altered magmatic rocks and hydrothermal minerals (quartz and magnetite) are relatively 18O-depleted (4.2 to 7.9 ‰ and ?6.3 to 1.5 ‰, respectively). Hydrogen isotope compositions of both least-altered and altered igneous rock samples are D-depleted (from ?133 to ?161 ‰ Vienna-Standard Mean Ocean Water (V-SMOW)), consistent with differential magma degassing and/or post-crystallization exchange between the rocks and meteoric ground water. Zircon from a chlorite-altered dike has a U–Pb crystallization age of 108.7?±?0.4 Ma; whereas, the same sample yielded a whole-rock Ar–Ar plateau age of 76.25?±?0.53 Ma. Likewise, molybdenite Re–Os model ages range from 75.8 to 78.2 Ma, indicating the mineralizing events are genetically related to Late Cretaceous volcano-plutonic intrusions in the area. The molybdenite Re–Os ages difference between the nearby Nucleus (75.9?±?0.3 to 76.2?±?0.3 Ma) and Revenue (77.9?±?0.3 to 78.2?±?0.3 Ma) mineral occurrences suggests an episodic mineralized system with two pulses of hydrothermal fluids separated by at least 2 Ma. This, in combination with geological features suggest the Nucleus deposit represents the apical and younger portion of the Revenue–Nucleus magmatic-hydrothermal system and may suggest an evolution from the porphyry to the epithermal environments.  相似文献   

17.
The Nage Cu-Pb deposit,a new found ore deposit in the southeast Guizhou province,southwest China,is located on the southwestern margin of the Jiangnan Orogenic Belt.Ore bodies are hosted in slate and phyllite of Neoproterozoic Jialu and Wuye Formations,and are structurally controlled by EW-trending fault.It contains Cu and Pb metals about 0.12 million tonnes with grades of 0.2 wt% to 3.4 wt% Cu and 1.1 wt% to 9.27 wt% Pb.Massive and disseminated Cu-Pb ores from the Nage deposit occur as either veinlets or disseminations in silicified rocks.The ore minerals include chalcopyrite,galena and pyrite,and gangue minerals are quartz,sericite and chlorite.The H-O isotopic compositions of quartz,S-Cu-Pb isotopic compositions of sulfide minerals,Pb isotopic compositions of whole rocks and ores have been analyzed to trace the sources of ore-forming fluids and metals for the Nage Cu-Pb deposit.The δ65CuNBS values of chalcopyrite range from-0.09% to +0.33‰,similar to basic igneous rocks and chalcopyrite from magmatic deposits.δ65CuNBS values of chalcopyrite from the early,middle and final mineralization stages show an increasing trend due to63Cu prior migrated in gas phase when fluids exsolution from magma.δ34SCDT values of sulfide minerals range from 2.7‰ to +2.8‰,similar to mantle-derived sulfur(0±3‰).The positive correlation between δ65CuNBS and δ34SCDT values of chalcopyrite indicates that a common source of copper metal and sulfur from magma.δDH2OSMOW and δ18OH2O-SMOW values of water in fluid inclusions of quartz range from 60.7‰ to 44.4‰ and +7.9‰ to +9.0‰(T=260°C),respectively and fall in the field for magmatic and metamorphic waters,implicating that mixed sources for H2O in hydrothermal fluids.Ores and sulfide minerals have a small range of Pb isotopic compositions(208Pb/204Pb=38.152 to 38.384,207Pb/204Pb=15.656 to 17.708 and 206Pb/204Pb=17.991 to 18.049) that are close to orogenic belt and upper crust Pb evolution curve,and similar to Neoproterozoic host rocks(208Pb/204Pb=38.201 to 38.6373,207Pb/204Pb=15.648 to 15.673 and 206Pb/204Pb=17.820 to 18.258),but higher than diabase(208Pb/204Pb=37.830 to 38.012,207Pb/204Pb=15.620 to 15.635 and206Pb/204Pb=17.808 to 17.902).These results imply that the Pb metal originated mainly from host rocks.The H-O-S-Cu-Pb isotopes tegather with geology,indicating that the ore genesis of the Nage Cu-Pb deposit is post-magmatic hydrothermal type.  相似文献   

18.
The Shanshulin Pb–Zn deposit occurs in Upper Carboniferous Huanglong Formation dolomitic limestone and dolostone, and is located in the western Yangtze Block, about 270 km west of Guiyang city in southwest China. Ore bodies occur along high angle thrust faults affiliated to the Weishui regional fault zone and within the northwestern part of the Guanyinshan anticline. Sulfide ores are composed of sphalerite, pyrite, and galena that are accompanied by calcite and subordinate dolomite. Twenty-two ore bodies have been found in the Shanshulin deposit area, with a combined 2.7 million tonnes of sulfide ores grading 0.54 to 8.94 wt.% Pb and 1.09 to 26.64 wt.% Zn. Calcite samples have δ13CPDB and δ18OSMOW values ranging from − 3.1 to + 2.5‰ and + 18.8 to + 26.5‰, respectively. These values are higher than mantle and sedimentary organic matter, but are similar to marine carbonate rocks in a δ13CPDB vs. δ18OSMOW diagram, suggesting that carbon in the hydrothermal fluid was most likely derived from the carbonate country rocks. The δ34SCDT values of sphalerite and galena samples range from + 18.9 to + 20.3‰ and + 15.6 to + 17.1‰, respectively. These values suggest that evaporites are the most probable source of sulfur. The δ34SCDT values of symbiotic sphalerite–galena mineral pairs indicate that deposition of sulfides took place under chemical equilibrium conditions. Calculated temperatures of S isotope thermodynamic equilibrium fractionation based on sphalerite–galena mineral pairs range from 135 to 292 °C, consistent with previous fluid inclusion studies. Temperatures above 100 °C preclude derivation of sulfur through bacterial sulfate reduction (BSR) and suggest that reduced sulfur in the hydrothermal fluid was most likely supplied through thermo-chemical sulfate reduction (TSR). Twelve sphalerite samples have δ66Zn values ranging from 0.00 to + 0.55‰ (mean + 0.25‰) relative to the JMC 3-0749L zinc isotope standard. Stages I to III sphalerite samples have δ66Zn values ranging from 0.00 to + 0.07‰, + 0.12 to + 0.23‰, and + 0.29 to + 0.55‰, respectively, showing the relatively heavier Zn isotopic compositions in later versus earlier sphalerite. The variations of Zn isotope values are likely due to kinetic Raleigh fractional crystallization. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of the sulfide samples fall in the range of 18.362 to 18.573, 15.505 to 15.769 and 38.302 to 39.223, respectively. The Pb isotopic ratios of the studied deposit plot in the field that covers the upper crust, orogenic belt and mantle Pb evolution curves and overlaps with the age-corrected Proterozoic folded basement rocks, Devonian to Lower Permian sedimentary rocks and Middle Permian Emeishan flood basalts in a 207Pb/204Pb vs. 206Pb/204Pb diagram. This observation points to the derivation of Pb metal from mixed sources. Sphalerite samples have 87Sr/86Sr200 Ma ratios ranging from 0.7107 to 0.7115 similar to the age-corrected Devonian to Lower Permian sedimentary rocks (0.7073 to 0.7111), higher than the age-corrected Middle Permian basalts (0.7039 to 0.7078), and lower than the age-corrected Proterozoic folded basement (0.7243 to 0.7288). Therefore, the Sr isotope data support a mixed source. Studies on the geology and isotope geochemistry suggest that the Shanshulin deposit is a carbonate-hosted, thrust fault-controlled, strata-bound, epigenetic, high grade deposit formed by fluids and metals of mixed origin.  相似文献   

19.
The Qianfanling Mo deposit, located in Songxian County, western Henan province, China, is one of the newly discovered quartz-vein type Mo deposits in the East Qinling–Dabie orogenic belt. The deposit consists of molybdenite in quartz veins and disseminated molybdenite in the wall rocks. The alteration types of the wall rocks include silicification, K-feldspar alteration, pyritization, carbonatization, sericitization, epidotization and chloritization. On the basis of field evidence and petrographic analysis, three stages of hydrothermal mineralization could be distinguished: (1) pyrite–barite–quartz stage; (2) molybdenite–quartz stage; (3) quartz–calcite stage.Two types of fluid inclusions, including CO2-bearing fluid inclusions and water-rich fluid inclusions, have been recognized in quartz. Homogenization temperatures of fluid inclusions vary from 133 °C to 397 °C. Salinity ranges from 1.57 to 31.61 wt.% NaCl eq. There are a large number of daughter mineral-CO2-bearing inclusions, which is the result of fluid immiscibility. The ore-forming fluids are medium–high temperature, low to moderate salinity H2O–NaCl–CO2 system. The δ34S values of pyrite, molybdenite, and barite range from − 9.3‰ to − 7.3‰, − 9.7‰ to − 7.3‰ and 5.9‰ to 6.8‰, respectively. The δ18O values of quartz range from 9.8‰ to 11.1‰, with corresponding δ18Ofluid values of 1.3‰ to 4.3‰, and δ18D values of fluid inclusions of between − 81‰ and − 64‰. The δ13CV-PDB values of fluid inclusions in quartz and calcite have ranges of − 6.7‰ to − 2.9‰ and − 5.7‰ to − 1.8‰, respectively. Sulfur, hydrogen, oxygen and carbon isotope compositions show that the sulfur and ore-forming fluids derived from a deep-seated igneous source. During the peak collisional period between the North China Craton and the Yangtze Craton, the ore-forming fluids that derived from a deep igneous source extracted base and precious metals and flowed upwards through the channels that formed during tectonism. Fluid immiscibility and volatile exsolution led to the crystallization of molybdenite and other minerals, and the formation of economic orebodies in the Qianfanling Mo deposit.  相似文献   

20.
The Makeng iron deposit is located in the Yong’an-Meizhou depression belt in Fujian Province, eastern China. Both skarn alteration and iron mineralization are mainly hosted within middle Carboniferous-lower Permian limestone. Five paragenetic stages of skarn formation and ore deposition have been recognized: Stage 1, early skarn (andradite–grossular assemblage); Stage 2, magnetite mineralization (diopside–magnetite assemblage); Stage 3, late skarn (amphibole–chlorite–epidote–johannsenite–hedenbergite–magnetite assemblage); Stage 4, sulfide mineralization (quartz–calcite–fluorite–chlorite–pyrite–galena–sphalerite assemblage); and Stage 5, carbonate (quartz–calcite assemblage). Fluid inclusion studies were carried out on inclusions in diopside from Stage 2 and in quartz, calcite, and fluorite from Stage 4.Halite-bearing (Type 1) and coexisting two-phase vapor-rich aqueous (Type 3) inclusions in the magnetite stage display homogenization temperatures of 448–564 °C and 501–594 °C, respectively. Salinities range from 26.5 to 48.4 and 2.4 to 6.9 wt% NaCl equivalent, respectively. Two-phase liquid-rich aqueous (Type 2b) inclusions in the sulfide stage yield homogenization temperatures and salinities of 182–343 °C and 1.9–20.1 wt% NaCl equivalent. These fluid inclusion data indicate that fluid boiling occurred during the magnetite stage and that fluid mixing took place during the sulfide stage. The former triggered the precipitation of magnetite, and the latter resulted in the deposition of Pb, Zn, and Fe sulfides. The fluids related to magnetite mineralization have δ18Ofluid-VSMOW of 6.7–9.6‰ and δD of −96 to −128‰, which are interpreted to indicate residual magmatic water from magma degassing. In contrast, the fluids related to the sulfide mineralization show δ18Ofluid-VSMOW of −0.85 to −1.04‰ and δD of −110 to −124‰, indicating that they were generated by the mixing of magmatic water with meteoric water. Magnetite grains from Stage 2 exhibit oscillatory zoning with compositional variations in major elements (e.g., SiO2, Al2O3, CaO, MgO, and MnO) from core to rim, which is interpreted as a self-organizing process rather than a dissolution-reprecipitation process. Magnetite from Stage 3 replaces or crosscuts early magnetite, suggesting that later hydrothermal fluid overprinted and caused dissolution and reprecipitation of Stage 2 magnetite. Trace element data (e.g., Ti, V, Ca, Al, and Mn) of magnetite from Stages 2 and 3 indicate a typical skarn origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号