首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concentrations of submicron aerosols in the size range 10−7 to 10−5 cm, also called Aitken nuclei (AN) were measured over the Indian Ocean enroute India-Antarctica-India within the 10°E–70°E longitude zone from about 10°N to 70°S latitude on board MV Thuleland during the period from November 26, 1986 to March 18, 1987 as part of the scientific activities on the Sixth Indian Antarctic Expedition. Our analyses showed that only in about 25% of the cases, AN count fell below 1000 cm−3. Throughout the tropical trade wind region, the concentrations of AN were relatively stable with an average of about 3000 cm−3 (medians of 2600 and 1700 cm−3 in Northern and Southern Hemispheres, respectively). Large AN concentrations were found to be associated with higher sea surface temperatures and stronger surface winds in this region. In contrast, the scatter of single observations was found to be remarkable over South Indian Ocean and in Antarctic waters. The average AN concentration over the Indian Ocean to the south of 30°S was of the order of 1500 cm−3. No definite correlation could be established between large AN concentration and sea surface temperature, wind speed or wave height. Period with very low concentrations were, however, associated with clear sky conditions and calm winds or light breeze. Many events of sudden short-lived but large increase in AN concentrations were observed over the south Indian Ocean and in Antarctic waters and these were always associated with the approach of frontal systems. It is likely that particle production by bursting bubbles and sea spray as well as photochemical reactions and gas-to-particle conversions play important role in the observed high concentration of AN over South Indian Ocean.  相似文献   

2.
Based on earlier experimental studies, the ice nucleating abilities of further pollen types were investigated in the immersion and contact freezing modes. The studies were carried out at the Mainz vertical wind tunnel with freely floating supercooled droplets down to − 28 °C. The pollen had diameters between 26 and 28 μm and correspondingly low sink velocities around 2.5 cm s 1. The radii of the studied drops were calculated from the recorded wind velocity and for both freezing modes the radii of the observed droplets varied between 315 and 380 μm. Immersion freezing experiments were conducted with pollen particles added to the droplets while in contact freezing experiments supercooled droplets were subjected to a burst of pollen particles. The median freezing temperatures found in the immersion freezing mode were: − 13.5 °C (alder), − 21.5 °C (lombardy poplar), − 21.0 °C (redtop grass) and − 19.8 °C (kentucky blue). The median freezing temperatures in the contact freezing mode were found as: − 12.6 °C (alder), − 17.9 °C (lombardy poplar), − 18.7 °C (redtop grass) and − 16.1 °C (kentucky blue). The results show that the ice nucleating ability of pollen is not restricted to single pollen types but seems to be a general pollen property.  相似文献   

3.
We report on the development of an inexpensive radiative condenser for collecting atmospheric vapor. Based on the experience gained using a small working model in Grenoble (France), a prototype of 10×3 m2 was established in Ajaccio (Corsica, France). The condensing surface is a rectangular foil made of TiO2 and BaSO4 microspheres embedded in polyethylene and has an angle of 30° with respect to horizontal. The hollow part of the device, thermally isolated, faces the direction of the dominant nocturnal wind. Dew measurements were correlated with meteorological data and compared to dew condensed on a horizontal polymethylmethacrylate (PMMA, Plexiglas) reference plate. The plate served as a reference standard unit and was located nearby. Between July 22, 2000 and November 11, 2001 (478 days), there were 145 dew days for the reference plate (30%), but 214 dew days for the condenser (45%). This yield corresponds to 767 l (3.6 l, on average, per dew day). The maximum yield in the period was 11.4 l/day. Dew mass can be fitted to a simple model that predicts dew production from simple meteorological data (temperature, humidity, wind velocity, cloud cover). Chemical analyses of the water collected from the plate were performed from October 16, 1999 to July 16, 2000 and from the condenser, from July 17, 2000 to March 17, 2001. The following parameters were investigated: suspended solids, pH, concentration of SO42−, Cl, K+, Ca2+ ions. Only Cl and SO42− ions were sometimes found significant. Wind direction analyses revealed that Cl is due to the sea spray and SO42− to the combustion of fuel by an electrical plant located in the Ajaccio Gulf. Except for a weak acidity (average pH≈6) and high concentration of suspended solids, dew water fits the requirements for potable water in France with reference to the above ions.  相似文献   

4.
Analyses of cloud condensation nuclei (CCN) number concentrations (cm− 3) measured at the Mace Head Atmospheric Research Station, near Carna, County Galway, Ireland, using a DH Associates Model M1 static thermal diffusion cloud chamber over the period from March 1994 to September 2002 are presented in this work. Air masses are defined as being ‘marine’ if they originate from a wind direction of 180–300° and ‘continental’ air masses are defined as originating from a wind direction of 45–135°. Air masses without such filtering were classified as ‘undefined’ air masses. Air masses were found to be dominated by marine sector air, re-affirming Mace Head as a baseline atmospheric research station. CCN levels for specific air masses at Mace Head were found to be comparable with earlier studies both at Mace Head and elsewhere. Monthly averaged clean marine (wind direction of 180–300° and black carbon absorption coefficient < 1.425 Mm− 1) CCN and marine CCN varied between 15–247 cm− 3 and 54–670 cm− 3, respectively. As expected, significant increases in number concentration were found in continentally sourced CCN over that of marine CCN and were found to follow a log-normal distribution significantly tighter than that of clean marine air masses. No significant trend was found for CCN over the 9-year period. While polluted continental air masses showed a slight increase in CCN concentrations over the winter months, most likely due to increased fuel usage and a lower mixed boundary layer, the dominance of marine sector air arriving at Mace Head, which generally consists of background CCN concentrations, reduced seasonal differences for polluted air. Marine air showed a distinct seasonal pattern, with elevated values occurring over the spring and summer seasons. This is thought to be due to enhanced biogenic aerosol production as a result of phytoplankton bloom activity in the North Atlantic.  相似文献   

5.
Land Surface Processes Experiment (LASPEX) was conducted over semi-arid region of western India in 1997. As a part of this program, wind and temperature observations were taken using slow as well as fast response sensors over a semi-arid station Anand (22°35′N, 72°55′E) situated in Gujarat state of India. Turbulent parameters such as drag coefficient and sensible heat flux were estimated using eddy correlation method and aerodynamic roughness length was estimated using wind profiles. The analysis has been carried out for the data representing summer, monsoon and winter seasons. It was found that the wind speed does not exceed 5 ms− 1 during the observational period considered in this study. Relationship of aerodynamic drag coefficient and roughness length with wind speed and stability has been investigated. Aerodynamic roughness length was greater in the stable conditions when the wind speed was low and it reduced drastically during convective conditions. The resulting values of aerodynamic roughness length and drag coefficient for the monsoon period agree well with values reported in literature over Indian subcontinent for homogeneous grass covered surfaces.  相似文献   

6.
The characteristics of the unstable normal modes of fluctuation of an eastward-flowing jet over a weak bottom slope are examined with a linear, quasi-geostrophic, continuously stratified, mixed-instability model utilizing basic-state fields determined from observations of the velocity and temperature structure of the Gulf Stream near 73d°W. Comparison of the model results with Gulf Stream path observations based on inverted echo sounder measurements in the area between 74°W and 70°W shows that the model can predict several of the observed features of Gulf Stream meanders: (a) two dispersion regimes, one with fast and one with slow changes in phase speed with meander wavelength; (b) the wavelengths λ associated with two growth maxima, a primary maximum at λ 270 km and a secondary maximum at λ 180 km.The energy conversion rates, when integrated over the model cross-sectional domain, change from predominantly baroclinic for fluctuations with λ < 370 km, to predominantly barotropic for λ > 370 km. The eddy pressure field is surface intensified in the upper 1000 m; a secondary intensification due to bottom topography occurs for the shorter wavelength (λ 180 km) fluctuations near the bottom at the area where the basic state jet extends to the bottom.In the absence of bottom slope, the phase speeds decrease and the growth rates increase relative to the sloped bottom case for all fluctuations with λ > 200 km; consistent with observations showing Gulf Stream meanders to slow down as they propagate through areas of relaxing bottom slope. Fluctuations with λ > 1000 km propagate upstream with phase speed of the order of −5 km day−1. The energy conversion rates, integrated over the model cross-sectional area, are predominantly baroclinic for all wavelengths.  相似文献   

7.
The hydrodynamic equations governing the water-level response of a lake to wind stress are inverted to determine wind stress from water-level fluctuations. In order to obtain a unique solution, the wind-stress field is represented in terms of a finite number of spatially dependent basis functions with time-dependent coefficients. The discretized version of the inverse equation is solved by a least-squares procedure to obtain the coefficients, and thereby the stress. The method is tested for several ideal cases with Lake Erie topography. Real water-level data is then used to determine hourly values of vector wind stress over Lake Erie for the period 5 May–31 October, 1979. Results are compared with measurements of wind speed and direction from buoys deployed in the lake. Calculated stress direction agrees with observed wind direction for wind speeds > 7.5 m s−1. Under neutral conditions, calculated drag coefficients increase with the wind speed from 1.53 × 10−3 for 7.5−10 m s−1 winds to 2.04 × 10−3 for 15−17.5 m s−1 winds. Drag coefficients are lower for stable conditions and higher for unstable conditions.  相似文献   

8.
Bulk formulae for wind stress, sensible and latent heat flux are presented that are suitable for strong mesoscale events such as westerly wind bursts that contribute to the El Niño-Southern Oscillation (ENSO). Their exchange coefficients for heat and momentum have a simple polynomial dependence on wind speed and a linear dependence on air–sea temperature difference. The accuracy of these formulae are validated with respect to air–sea fluxes estimated using the standard algorithm adopted by the Tropical Ocean-Global AtmosphereCoupled-Ocean Atmosphere Response Experiment (TOGA COARE). The comparison ismade for observations from 96 Tropical Atmosphere Ocean (TAO) array and National Oceanographic Data Center (NODC) moorings in the equatorial and North Pacific Ocean spanning years 1990–1999. The bulk formulae are shown to have very small median root–mean-square differences with respect to the TOGA COARE estimates: 0.003 N m-2, 1.0 W m-2, and 10.0 W m-2 for the wind stress, sensible heat flux, and latent heat flux, respectively.The variability of air–sea fluxes during the 1997–1998 ENSO is also examined, along with a possible relationship between air–sea fluxes and surface ocean mixed layer depth (MLD). The wind stress and latent heat flux during the 1997 El Niño are found to be greater in the warm pool of the western Pacific than in the central Pacific where the ENSO is most clearly seen. These differences disappear upon the start of La Niña. The MLD in the equatorial Pacific is found to be moderately correlated to air–sea fluxes just before the start of the 1998 La Niña and poorly correlated otherwise.  相似文献   

9.
Deposition of atmospheric particulate PCBs in suburban site of Turkey   总被引:2,自引:1,他引:2  
Dry deposition and air concentration samples were collected from July 2004 to May 2005 at a suburban site in Turkey. A water surface sampler (WSS) was used to measure directly the dry deposition flux of particulate polychlorinated biphenyls (PCBs) while a high volume air sampler (HVAS) was employed to collect air samples. Particulate PCB concentrations accounted for 15% of total PCBs (gas + particle phase) at the site. The overall particulate phase PCB flux ranged from 2 to 160 ng m− 2 d− 1 with an average of 46.3 ± 40.6 ng m− 2 d− 1. Forty one PCB congeners were targeted in the samples while twenty one congeners were found to be higher than detection limits in deposition samples. Fluxes for homolog groups ranged between 0.9 (7-CBs) and 21.0 (3-CBs) ng m− 2 d− 1. Measured dry deposition fluxes were lower than the ones usually reported for urban sites. Average PCB dry deposition velocity, calculated using flux values and concurrently measured atmospheric concentrations, was 1.26 ± 1.86 cm s− 1 depended on size distribution of particles, atmospheric PCB concentrations and meteorological conditions.  相似文献   

10.
To further investigate the influence of cloud base temperature, updraft velocity and precipitation particle constitution on cloud electrification, five thunderstorms in various regions of China were simulated by using the three-dimensional compressible hailstorm numerical model including inductive and non-inductive charging mechanisms. The results indicate that changes of cloud base temperature have an influence on the initial electrification. Comparison of the above cases shows that in the case of warm cloud base and moderate updraft velocity (< 20 m s−  1), active electrification occurred below the − 10 °C level before moving upward to the − 20 °C level. In contrast, when cloud base is cold and updraft velocity is intensive, the main charging region is at the − 20 °C or even higher level. In that case, the vertical extent of the main negative charge region becomes larger with the increase of cloud base temperature. Apart from the main dipolar or tripolar charge structure, some smaller charge regions with relatively high values of charge density may also appear. Frozen drops, originating mainly from supercooled raindrops, mainly get electrified through charging interactions with snow at or below the − 20 °C level. They are responsible for the negative charge region near the melting level at the initial stage of precipitation if there is a large supercooled raindrop content. Non-inductive charging during hail-snow collisions is rather weak, resulting in the charge density on hail of no more than − 0.01 nC m− 3.  相似文献   

11.
Vertical wind shear at a temperature inversion can be caused by baroclinicity associated with a tilt of the inversion. Four observational cases of tilted inversions are presented. The tilts on horizontal scales of 20–100 km range from 2–10 × 10-3 and the vertical wind shear is between 1 and 25 m/s per 100 m. In general, there is remarkable agreement between observed and geostrophic wind shear.The observations show that the inversion tilt is particularly strong at the edges of mesoscale cloud fields. The Richardson number can reach subcritical values. Cloud fields may be surrounded by a cyclonically rotating wind field and cloud gaps by an anticyclonically rotating wind field.  相似文献   

12.
Measurements of natural ice nuclei with a continuous flow diffusion chamber   总被引:1,自引:0,他引:1  
Measurements of natural ice nuclei were made in winter continental airmasses with a continuous flow thermal gradient diffusion chamber (described in a separate paper). Over the range of temperatures −7°C to −20°C, the concentration of ice nuclei was closely related to ice supersaturation (SSi) for humidities both below and above water saturation. Measurements below water saturation were interpreted as deposition nuclei with average concentrations (per liter) approximately 0.32 SSi(%)0.81. Measurements were made up to 5% above water saturation and activated both deposition and condensation-freezing nuclei. The average concentration of condensation-freezing nuclei was 0.25 e−0.15 T(°C). Sample residence time in the chamber was probably too small to detect contact nuclei, unless the nucleating aerosols are extremely small. There was large variability in nucleus concentrations, as much as two orders of magnitude at −15°C. Comparisons are made between these ice nuclei measurements and aircraft observations of ice crystal concentrations in winter orographic clouds.  相似文献   

13.
Retrievals of cloud-top heights from the ARM 35 GHz Millimeter Wave Cloud Radar (MMCR) located on Manus Island are compared to those from the GMS-5 satellite as a means to evaluate the accuracy of both MMCR and GMS-5 retrievals, as well as to ascertain their limitations. Comparisons are carried out for retrievals of both single-layer and multilayer clouds as seen by radar, but only for satellite-detected clouds with 100% amount within a 0.3×0.3° domain centered at the ARM site of one cloud type (i.e., low, middle, or high). Mean differences, with 95% confidence limits, between radar- and satellite-retrieved cloud-top heights (i.e., radar-retrieved cloud-top heights−satellite-retrieved cloud-top heights) are 0.3±0.3 km for single-layer clouds and −0.7±0.3 km for multilayer clouds. The study reveals that for thick clouds (i.e., cloud base ≤1 km and cloud thickness ≥10 km), which are representative of convective towers with no/light precipitation as well as thick anvil clouds, retrievals from the MMCR agree well with those from satellite with mean differences of 0.0±0.4 and −0.2±0.3 km for single-layer and multilayer clouds, respectively. For clouds of lesser thickness, mean cloud-top heights derived from satellite are lower than those derived from radar by as much as 2.0 km. It is also shown that for convective clouds with heavy precipitation, MMCR retrievals underestimate the cloud-top heights significantly.  相似文献   

14.
Wind data from NCEP and hydrographic data obtained during 8–27 March 1992 have been used to compute circulation in the Luzon Strait and the northern South China Sea using three-dimensional diagnostic models with a modified inverse method. Numerical results are as follows: the main Kuroshio is located above 800 m levels. It has two intrusive branches of the Kuroshio in the areas above 400 m. One part intrudes anti-cyclonically northwestward, then flows through the area above 200 m southwest of Taiwan and into the Taiwan Strait. The other part intrudes westward and flows cyclonically in the areas north of the cyclonic eddies, then flows southward through the southern boundary of the region. The net westward volume transport (VT) through Section at 120°15′E between Luzon Island and Taiwan Island is about 3.0 Sv, net northward VT through northern boundaries into the Taiwan Strait is about 1.4 Sv and net southward VT through southern boundaries is about 1.6 Sv, which finally flows into the Karimata and Mindoro Straits. In the areas above 400 m east of 117°15′E, the circulation is mainly dominated by the basin-scale cyclonic gyre, which consists of two cyclonic eddies. However, in the areas below 400 m east of 119°00′E, the circulation is mainly dominated by basin-scale anti-cyclonic gyre. The joint effect of baroclinity and relief and interaction between wind stress and relief are important in different area respectively for the pattern of the depth-averaged flow across contours of fH−1.  相似文献   

15.
We present results of direct aerosol radiative forcing over a French Mediterranean coastal zone based on one year of continuous observations of aerosol optical properties during 2005–2006. Monthly-mean aerosol optical depth at 440 nm ranged between 0.1 and 0.34, with high Angstrom coefficient (α > 1.2). The single scattering albedo (at 525 nm) estimated at the surface ranged between 0.7 and 0.8, indicating significant absorption. The presence of aerosols over the Mediterranean zone during summer decreases the shortwave radiation reaching the surface by as much as 26 ± 3.9 W m− 2, and increases the top of the atmosphere reflected radiation by as much as 5.2 ± 1.0 W m− 2. The shortwave atmospheric absorption translates to an atmospheric heating of 2.5 to 4.6 K day− 1. Concerted efforts are needed for investigating the possible impact of the increase in heating rate on the maintenance of heat-waves frequently occurring over this coastal region during summer time.  相似文献   

16.
Measurements of the temperature and zonal velocity fields which develop in a rotating annulus of fluid with an upper surface, differentially heated from the inner to outer cylinder, are described for the lower symmetric regime (small radial temperature differences). The temperature field is essentially conductive for moderate to large rotation rates, Ω (>1.0 sec−1). The zonal velocity field is poorly approximated by the thermal wind equation.Measurements of the transition to waves from the lower symmetric regime at very large rotation rates are presented for positive and negative radial temperature differences. They suggest that the centrifugal buoyancy force and the free surface curvature may be important factors for the lower symmetric-wave transition at large Ω. By varying the stratification of the fluid over a range of 103 independently of the radial temperature difference, ΔrwT, it is conclusively shown that several theories are correct in predicting that the lower symmetric transition is independent of the stratification at small ΔrwT > 0 for large enough Ω.  相似文献   

17.
Modeling microclimate environments: A verification study   总被引:3,自引:0,他引:3  
A numerical model is developed for simulating microclimate of plants and bare soil. The model evaluates heat, mass, momentum, and radiative fluxes in the soil-plant-atmosphere system. Its vertical domain may extend throughout the whole Planetary Boundary Layer (PBL). The model requires, either, temporal meteorological data of solar radiation, wind speed, air temperature and humidity measured over the field, or, when applied to the whole PBL, initial values of the latter three at its top. Vegetation parameters (leaf area index, photometric properties, root distribution and density) as well as soil texture, hydraulic and photometric properties are considered. The model was verified with meteorological data taken from two different climatological regions, above a bare soil and two cotton fields.For all case studies, observed and calculated values of air (except for within-canopy) and soil temperatures, wind speed, net radiation, and soil-, latent-, and sensible heat fluxes, agreed well with measurements.  相似文献   

18.
Observations have been made of the ice-crystal morphology of snow which fell at two sampling sites during a warm front followed by a cold front in the Sierra Nevada of the western United States. The snow sampling and ice crystal observations were conducted at Kingvale (KV) and Hobart Mills (HM), California, which are located at almost identical elevations on the upwind and down wind sides of the Sierra Nevada crest, respectively.These observations and several mesoscale features of one of the storms, have been used to study the substantial changes which occurred in the stable oxygen isotopic composition (δ18O) of the precipitation at the two sites.At the beginning of the period of observation, a low level warm front lay across the region and its elevation lowered with time from 2.5 km to 1.7 km. This decrease of the frontal surface height was accompanied by a steady increase in the δ18O values.In the pre-cold frontal passage time periods, the δ18O values at the upwind site signified warmer origin ice crystal morphology than the downwind site. This is explained by orographic effects and the production of supercooled liquid water at low elevations on the upslope side of the Sierra Nevada.During the passage of the surface cold front, the differences in δ18O at the two sites were quite small probably because the orography plays a less significant role in the precipitation production process during such events.The δ18O peaked around −13% which translates to an “equivalent temperature” of −10.7°C for ice phase water capture at the upwind site KV. At site HM downwind of the Sierra crest, and 25 km east of KV, the weighted mean ice phase water capture occurred at elevations some 5 to 6°C colder than at KV, because of subsidence and loss of supercooled liquid water in the lower elevations on the lee side.  相似文献   

19.
20.
GPS-synchronized measurements of electric (E) field changes induced by lightning flashes were recorded at six stations in the northeastern verge of the Tibetan Plateau. The height and magnitude of charge neutralized by 65 return strokes, including 16 negative cloud-to-ground (CG) flashes and 2 positive CG flashes, have been fitted with the nonlinear least-square method based on the E field changes of CG flashes observed in a typical thunderstorm with larger-than-usual lower positive charge center (LPCC). Results show that the height of the charge region neutralized by negative CG flashes ranges from 3 km to 5 km above the ground, corresponding to an ambient temperature between − 2 °C and − 15 °C. For the two positive CG flashes, the neutralized charge regions are located at a height of about 5.5 km and the ambient temperature is about − 18 °C, indicating the existence of upper positive charge in the thunderstorm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号