首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Turbulence measurements from a 30 m tower in the stably stratifiedboundary layer over the Greenland ice sheet are analyzed. The observationsinclude profile and eddy-correlation measurements at various levels. Atfirst, the analysis of the turbulence data from the lowest level (2 m aboveground) shows that the linear form of the non-dimensional wind profile(m) is in good agreement with the observations for z/L <0.4, whereL represents the Obukhov length. A linear regression yieldsm=1+5.8z/L. The non-dimensional temperature profile (h) at the2m level shows no tendency to increase with increasing stability. The datafrom the upper levels of the tower are analyzed in terms of both localscaling and surface-layer scaling. The m and the h values show atendency to level off at large stability (z/>0.4) where represents the local Obukhov length. Hence, the linear form of the functions is no longer appropriate under such conditions. The bestcorrespondence to the data can be achieved when using the expression ofBeljaars and Holtslag for m and h. The vertical profiles of theturbulent fluxes, the wind velocity variances and temperature variance arealso determined. The momentum flux profile and the profiles of wind speedvariances are in general agreement with other observations if a welldeveloped low-level wind maximum occurs, and the height of this maximum isused as a height scale.  相似文献   

2.
The purpose of the paper is to find the mean velocities and stresses in the turbulent, neutral, barotropic planetary boundary layer (PBL). Correction functions are introduced similar to those used by Millikan and Hinze in discussions of flows in a pipe and in a turbulent boundary layer. The functions for the PBL are determined semi-empirically and, with a choice of constants, the resulting velocity distributions are in reasonable agreement with the Leipzig profile. The paper also discusses the correction functions for pipe and boundary-layer flows and for plane Couette flow. The results are in excellent agreement with observations.  相似文献   

3.
This study details the observed effects ofatmospheric stability on characteristics of thesurface layer in a low wind speed (U = 1.5 m s-1)regime of tropical West Africa. Theaerodynamic roughness length, z0, anddisplacement height, d, obtained from profilewind-speed data at our bush land site (height 2 m)have values of 0.24 ± 0.10 m and 1.54 ± 0.04 mrespectively. In the unstable range (-2.5 < Ri < -0.1; Riis gradient Richardson number), thestandard deviation in wind speed fluctuations, u, increased from 0.57 ± 0.19 m s-1 toa maximum of 0.7 ± 0.2 m s-1 in near-neutralconditions, and in the stable range, the parameterdecreased rapidly to 0.41 ± 0.15 m s-1 at Ri 0.2.In the same stability range, the horizontal winddispersion, , decreased withincreasing stability from 19 ± 8 deg. to 13 ± 5 deg.The surface-layer integral quantity, u/u*, when plottedas a function of stability, is in agreement with theempirical results. The ratio ofsensible heat flux (estimated) to the net radiationranged between 0.1 and 0.2 at nighttime,increasing to about 0.5 during the daytime, and showeda strong dependency on season.  相似文献   

4.
The variations of and in the drainage flow in the Brush Creek valley of western Colorado are investigated using data from Doppler acoustic sodars and instrumented towers. The data were obtained on two experimental nights during the 1984 ASCOT field study. There is good agreement between the variations derived from low-level observations of the sodars and those derived from the towers located throughout the valley. The observed hourly average and in the nocturnal drainage flow are about 20 ° to 25 ° and 5 °, respectively; these values are much larger than those generally observed over flat terrain during nighttime stable conditions. After sunrise (about 0600 MST), as the valley warms and the flow direction changes to up-valley, these parameters increase sharply to their peak values at about 0800 MST and then decrease to their normal daytime values after about two hours.In the drainage flow, the hourly average varies inversely with wind speed according to the relation u 0.7ms-1. The vertical standard deviation is much less enhanced by complex terrain than the horizontal standard deviation. The observed values are predicted fairly well by the local similarity theory.Oak Ridge Associated Universities (ORAU) Summer Research Participant at ATDD in 1987 andOak Ridge Associated Universities (ORAU) Summer Research Participant at ATDD in 1987 and  相似文献   

5.
Summary This study presents an analytical investigation of the local behaviour of the solution to a mesoscale model with Newtonian nudging when observed winds are time varying. The analysis examines each Fourier component of the time series of observed winds. Unlike the case with a constant observed wind, the nudged wind vector does not asymptotically approach the observed wind. In response to sinusoidal oscillation of the observed wind, the nudged wind vector is always on a half circle connecting the vector ends of the observed and un-nudged modelled winds. When nudging parameter 0, the nudged wind vector approaches the un-nudged wind; when , the nudged wind vector approaches the observed wind. For commonly used values of nudging parameter , the modelled wind field always carries errors.A target nudging scheme is devised in this study in order to ensure the model result is identical to observed winds with sinusoidal oscillation. Investigation shows that such a target wind exists for a finite value of , and the magnitude of the target-nudging term is about the same as that of a normal nudging term if f, wheref is the Coriolis parameter and is the frequency of the wind oscillation.With 7 Figures  相似文献   

6.
The function ()=(1+|z/L|2/3)1/2,where z is the height, L the Obukhov length, and a constant,is proposed for the nondimensional wind speed and temperaturegradients (flux-profile relationships) in anunstable surface layer. This function agrees quite well withboth wind speed and temperature data,has the theoretically correct behaviour in convective conditions,and leads to simple results when integrated to produce the mean profiles.  相似文献   

7.
The two-layer system of an atmosphere over water bodies is reduced to a single-layer problem. Values of the interfacial quantities, such as the friction velocity, the surface velocity, the angles, and , between the surface shear stress and the geostrophic wind velocity and the surface wind velocity, respectively, and the surface roughness, all of which depend upon external parameters, such as the geostrophic wind and stratifications, are obtained. The geostrophic drag coefficient C d, the geostrophic wind coefficient C f, and the angles , and , of the turbulent flow at the sea-air interface are functions of a dimensionless number, mfG/kg, with S 1 and S 2 as two free stratification parameters. The surface roughness is uniquely determined from the geostrophic wind rather than from the wind profile in the boundary layer.Formerly Visiting Research Associate, Applied Physics Branch, Earth Observations Division, NASA-Manned Spacecraft Center, Houston, Texas.  相似文献   

8.
A numerical study of the Chicago lake breeze   总被引:3,自引:0,他引:3  
A two-dimensional numerical model is presented for the study of the Chicago area lake breeze. The hydrostatic approximation used by previous workers in this field is not employed. Instead, the complete z-momentum equation is solved and the equation of continuity is retained in its original form. The numerical model employs a staggered mesh, and Alternating Direction Implicit methods are used for the integration of the equations. Computational stability is achieved without external filters, upstream space differencing, or artificial horizontal diffusion terms.The results obtained for realistic initial conditions but simplified boundary conditions compare reasonably well with observations obtained by Lyons in his 1967 observational study of the Chicago lake breeze. Limiting forms of the lower boundary condition bracket the observed wind speeds and other kinematic features of the breeze. Among the various eddy diffusivity models, that with constant eddy diffusivity with height produces the most realistic results. The models with a decrease of eddy diffusivity with height show unrealistic flow patterns in the upper layers. The stability of the atmosphere at the onset of the breeze is shown to have a pronounced effect on the intensity of the circulation, but not on the thickness of the inflow layer, which appears quite insensitive to large changes in the parameters involved.  相似文献   

9.
Several commonly used turbulence closure schemes forthe atmospheric boundarylayer (ABL) are applied to simulate neutral, nocturnal and diurnal cyclesituations in a one-dimensional ABL. Results obtained with the differentschemes, E-, E- and its modified versions, and twoversions ofthe q 2 Level 2.5, are compared and discussed.  相似文献   

10.
Local Similarity Relationships In The Urban Boundary Layer   总被引:5,自引:3,他引:2  
To investigate turbulent structures in an urban boundary layer (UBL) with many tallbuildings, a number of non-dimensional variable groups based on turbulent observationsfrom a 325-m meteorological tower in the urban area of Beijing, China, are analyzedin the framework of local similarity. The extension of surface-layer similarity to localsimilarity in the stable and unstable boundary layer is also discussed. According to localsimilarity, dimensionless quantities of variables: e.g., velocity and temperature standarddeviations i/u*l (i=u,v,w) andT/T*l,correlation coefficients of uw and wT covariance, gradients of wind and temperaturem and h, and dissipation rates of turbulent kinetic energy (TKE) andtemperature variance and N can be represented as a functiononly of a local stability parameter z/, where is the local Obukhovlength and z is the height above ground. The average dissipation rates of TKE andtemperature variance are computed by using the u spectrum, and the uw and wTcospectra in the inertial subrange. The functions above were found to be in a goodagreement with observational behaviour of turbulence under unstable conditions, butthere were obvious differences in the stable air.  相似文献   

11.
Horizontal diffusion in the surface layer is dependent on the standard deviation of wind direction fluctuations . Diurnal variation of this parameter in complex terrain was studied for the July 1979 Geysers, Cal., experiment using data from a network of 11 short meteorological towers in the 25 km2 Anderson Creek watershed Valley side slopes are roughly 20 ° and maximum terrain difference is about 1 km.Values of for wind directions sampled for one hour at a height of 10 m are about 35 ° during the daytime. They slowly decrease to about 20 ° by 8 to 10 p.m. as stability increases but wind speeds are still relatively high. After 10 p.m. the drainage flow sets in at most stations, with speeds of 1 to 2 m s-1, and average increases to about 30° during the period 11 p.m. to 6 a.m. In general, highest values of at night are associated with lowest values of wind speed and greatest static stability. This enhancement of by the terrain suggests that horizontal diffusion at night always conforms to that expected during nearly neutral stabilities. That is, Pasquill class D diffusion applies to the horizontal component all night in complex terrain.  相似文献   

12.
Recent studies suggest that the destruction of methane by Cl in the marine boundary layer could be accounted for as another major sink besides the methane destruction by OH. High level ab initio molecular orbital calculations have been carried out to study the CH4+Cl reaction, the carbon Kinetic Isotope Effect (KIE) is calculated using Conventional Transition-State Theory (CTST) plus Wigner and Eckart semiclassical tunneling corrections. The calculated KIE is around 1.026 at 300 K and has a small temperature variation. This is by far the largest KIE among different processes involving atmospheric methane destruction (e.g., OH, soil). A calculated mass balance of atmospheric methane including the KIE for the CH4+Cl reaction is found to favor those methane budgets with enhanced biological methane sources, which have relatively lighter carbon isotope composition.  相似文献   

13.
A computationally simple model is given for estimation of wind speed over a low, isolated protuberance, given a knowledge of the surface wind over nearly level ground. Readers are invited to match their own mathematico-predictive skills to those of the model for a topographically simple terrain.  相似文献   

14.
Turbulence mechanisms at an agricultural site   总被引:8,自引:0,他引:8  
An extensive set of turbulence data from the 3- and 12-m heights taken over an agricultural site (Marsta, Sweden) are analyzed and compared with data from ideal sites.In unstable air, Monin-Obukhov similarity is found to be valid for the non-dimensional gradients of wind, m , temperature, h , and humidity, e , for (only a few data), for T /|T *|,/ E /|E *| and for the non-dimensionalized inertial subrange spectra of temperature and humidity. Where comparison is possible, the unstable data also agree with those found in the Kansas study, with one remarkable exception, the inertial subrange constant of the temperature spectrum, 1, being only 0.39, compared to the value 0.80 found at the Kansas site.On the stable side, most similarity predictions break down, with most of the data differing systematically from the corresponding Kansas results, the only exception being . The inertial subrange constants for temperature, 1, and for humidity, 1 are found to have the same values, 0.39 and 0.30, respectively, as they do on the unstable side. Remarkable similarity is found for the shape of the stable u- and - and e-spectra. In addition, this shape is found to be identical with that found in Kansas. The peak wavelength of the stable u-, and -spectra is found to be about four times larger than it is for the corresponding Kansas spectra. This is interpreted to be a result of the increased macro-roughness at the Marsta site as compared with that at the Kansas site. A possible explanation for the low 1-value is discussed, suggesting that 1 is not a universal constant, but instead dependent on the turbulent structure.  相似文献   

15.
Standard deviations of concentration in horizontal andvertical directions i.e. y andz have been estimated by using fivedifferent schemes based on empirical(due to Pasquill and Briggs)schemes and sophisticated methods(due to Irwin, Draxler, Taylor, Hanna et al.). The fiveschemes are discussed atlength. The purpose of this study is to make use ofmeteorological observations whichare routinely available, to test all the above methods andintercompare the resultswith one another and observations so that the sensitivityof each schemeunder various atmospheric stability conditions could beassessed. It has beenfound that the existing schemes are good enough to providereasonable estimates ofdispersion coefficient (y) during highly unstableconditions (Pasquill stability classes A and B). However, thesame is not true for the case when the stability increasesfrom C to F and turbulencedecreases, specifically during stable atmospheric conditions,when the observedvalues were found to be much higher than all the existingschemes. This suggests thatwhile we continue to use the current methods of estimatingthe dispersion parameters,a rigorous search is required for methods which give predictionswhich are close-to-realityduring such conditions which are represented by lowlevels (in terms of magnitude)of atmospheric turbulence leading to higher levelsof pollution.As one of the sophisticated methods requiresthe use of v and w (standard deviationsof wind velocity fluctuation in y and z directions),these have been estimated andvalidated with observed data (field experiments conductedby EPRI at Kincaid).Statistical evaluation of v and wbased on performance measures indicate a goodperformance of the parameterisations adopted in thisstudy. In the case of w duringunstable conditions a comparison of three differentschemes with observations is made.  相似文献   

16.
The commonly measured value of in the relaxed eddy accumulationmethod of about 0.56is shown to arise from the non-Gaussiannature of turbulence. Fourth-orderGram–Charlier functions forthe two-dimensional probability distributionsof variation in the horizontal component of wind velocityand concentrations of water vapour, carbondioxide and methane with respect to thevertical component of wind velocity are used to examinethe value of .An analytical solution for ispresented in terms of fourth-order moments.Under mean conditions, this solution givesa value for of0.557. Variation of is shown to be controlledprimarily by the ratio of the mean ofc'w3 (where c'is relevant to the entity of interest andw' is vertical component of windvelocity) to the correlationcoefficient between the entity concentrationand vertical component of wind velocity.  相似文献   

17.
Summary A chronology and some comments about the occurrence of dry fogs i.e. clouds of volcanic aerosols trapped in the planetary boundary layer (PBL) are reported. The dry fogs have severely affected the biosphere, and they also had local climatic effects affecting the terrestrial albedo. In the most severe cases the fog persisted for months and obscured the sun, in the lesser ones a mist persisted for a few days and the sun was seen as weak and the moon with a red halo. The volcanic aerosols were trapped in the PBL in the warm season, when the atmosphere is particularly stable over the relatively cold Mediterranean waters and the Azores Anticyclone causes the absence of winds.  相似文献   

18.
In this paper, we lay the foundations of a systematic mathematical formulation for the governing equations for flow through an urban canopy (e.g., coarse-scaled building array) where the effects of the unresolved obstacles on the flow are represented through a distributed mean-momentum sink. This, in turn, implies additional corresponding terms in the transport equations for the turbulence quantities. More specifically, a modified k-- model is derived for the simulation of the mean wind speed and turbulence for a neutrally stratified flow through and over a building array, where groups of buildings in the array are aggregated and treated as a porous medium. This model is based on time averaging the spatially averaged Navier--Stokes equations, in which the effects of the obstacle--atmosphere interaction are included through the introduction of a volumetric momentum sink (representing drag on the unresolved buildings in the array).The k-- turbulence closure model requires two additional prognostic equations, namely one for the time-averaged resolved-scale kinetic energy of turbulence,, and another for the dissipation rate, , of . The transport equation for is derived directly from the transport equation for the spatially averaged velocity, and explicitly includes additional sources and sinks that arise from time averaging the product of the spatially averaged velocity fluctuations and the distributed drag force fluctuations. We show how these additional source/sink terms in the transport equation for can be obtained in a self-consistent manner from a parameterization of the sink term in the spatially averaged momentum equation. Towards this objective, the time-averaged product of the spatially averaged velocity fluctuations and the distributed drag force fluctuations can be approximated systematically using a Taylor series expansion. A high-order approximation is derived to represent this source/sink term in the transport equation for . The dissipation rate () equation is simply obtained as a dimensionally consistent analogue of the equation. The relationship between the proposed mathematical formulation of the equations for turbulent flow within an urban canopy (where the latter is treated as a porous medium) and an earlier heuristic two-band spectral decomposition for parameterizing turbulence in a plant canopy is explored in detail.  相似文献   

19.
Functional forms of the universal similarity functions A, B (for wind components parallel and normal to the surface stress), and C (for potential temperature difference) are determined based on the generalized theory of the resistance laws for the Planetary Boundary Layer (PBL). The similarity-profile functions for the surface layer are matched with the velocity and temperature-defect profiles that are assumed to have shapes modified by certain powers of nondimensional height z/h, where h is the PBL height. The powers of the outer-layer profile functions are determined, so that the functions become negligible in the surface layer. To close the temperature defect law, an assumption that the temperature gradient across the top of the PBL is continuous with the stratification of the overlying atmosphere is used. The result of this assumption is that nondimensional momentum and temperature profiles in the PBL can be described in terms of four basic ratios: (1) roughness ratio = /h (2) scale-height ratio =|f|h/u*, (3) ambient stratification parameter =h/*, and (4) stability parameter =h/L, where L is the Monin-Obukhov length, z0 is the surface roughness, is the upper-air stratification, u * is the friction velocity, and * is the temperature scale at the surface. For stable conditions, the scale-height ratio can be related to the atmospheric stability and the upperair stratification, and the generalized similarity and Rossby number similarity theories become identical. Under appropriate boundary conditions, function A is explicitly dependent on the stability parameter , while B is a function of scale-height ratio , which in turn depends on the stability. Function C is shown to be dependent on the stability and the upper-air stratification, due to the closure assumption used for the temperature profile.The suggested functional forms are compared with other empirical approximations by several authors. The general framework used to determine the functional forms needs to be tested against good boundary-layer measurements.  相似文献   

20.
Equilibrium evaporation beneath a growing convective boundary layer   总被引:1,自引:1,他引:0  
Expressions for the equilibrium surface Bowen ratio ( s ) and equilibrium evaporation are derived for a growing convective boundary layer (CBL) in terms of the Bowen ratio at the top of the mixed layer i and the entrainment parameter A R . If AR is put equal to zero, the solution for s becomes-that previously obtained for the zero entrainment or closed box model. The Priestley-Taylor parameter is also calculated and plotted in terms ofA R and i . Realistic combinations of the atmospheric parameters give values of in the range 1.1 to 1.4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号