首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Abstract

Large errors in peak discharge estimates at catchment scales can be ascribed to errors in the estimation of catchment response time. The time parameters most frequently used to express catchment response time are the time of concentration (TC), lag time (TL) and time to peak (TP). This paper presents a review of the time parameter estimation methods used internationally, with selected comparisons in medium and large catchments in the C5 secondary drainage region in South Africa. The comparison of different time parameter estimation methods with recommended methods used in South Africa confirmed that the application of empirical methods, with no local correction factors, beyond their original developmental regions, must be avoided. The TC is recognized as the most frequently used time parameter, followed by TL. In acknowledging this, as well as the basic assumptions of the approximations TL = 0.6TC and TCTP, along with the similarity between the definitions of the TP and the conceptual TC, it was evident that the latter two time parameters should be further investigated to develop an alternative approach to estimate representative response times that result in improved estimates of peak discharge at these catchment scales.
Editor Z.W. Kundzewicz; Associate editor Qiang Zhang  相似文献   

2.
In single‐event deterministic design flood estimation methods, estimates of the peak discharge are based on a single and representative catchment response time parameter. In small catchments, a simplified convolution process between a single‐observed hyetograph and hydrograph is generally used to estimate time parameters such as the time to peak (TP), time of concentration (TC), and lag time (TL) to reflect the “observed” catchment response time. However, such simplification is neither practical nor applicable in medium to large heterogeneous catchments, where antecedent moisture from previous rainfall events and spatially non‐uniform rainfall hyetographs can result in multi‐peaked hydrographs. In addition, the paucity of rainfall data at sub‐daily timescales further limits the reliable estimation of catchment responses using observed hyetographs and hydrographs at these catchment scales. This paper presents the development of a new and consistent approach to estimate catchment response times, expressed as the time to peak (TPx) obtained directly from observed streamflow data. The relationships between catchment response time parameters and conceptualised triangular‐shaped hydrograph approximations and linear catchment response functions are investigated in four climatologically regions of South Africa. Flood event characteristics using primary streamflow data from 74 flow‐gauging stations were extracted and analysed to derive unique relationships between peak discharge, baseflow, direct runoff, and catchment response time in terms of TPx. The TPx parameters are estimated from observed streamflow data using three different methods: (a) duration of total net rise of a multipeaked hydrograph, (b) triangular‐shaped direct runoff hydrograph approximations, and (c) linear catchment response functions. The results show that for design hydrology and for the derivation of empirical equations to estimate catchment response times in ungauged catchments, the catchment TPx should be estimated from both the use of an average catchment TPx value computed using either Methods (a) or (b) and a linear catchment response function as used in Method (c). The use of the different methods in combination is not only practical but is also objective and has consistent results.  相似文献   

3.
Abstract

In this study, transferability options of the Hydrologiska Byråns Vattenbalansavdelning (HBV) hydrological model parameter (MP) spaces were investigated to estimate ungauged catchment runoff. Three approaches were applied in the study: MP space transfer from single, neighbouring and all potential donor catchments. The model performance was evaluated by a jackknife procedure, where one catchment at a time was treated as if ungauged, and behavioural MP sets from candidate donor catchments were used to estimate the “ungauged” runoff. The results showed that ungauged catchment runoff estimation could not be guaranteed by transferring MP sets from a single physiographically nearest donor catchment. Integrating MP sets typically from one to six donor catchments supplemented the lack of effective MP sets and improved the model performance at the ungauged catchments. In addition, the analysis results revealed that the model performance converged to an average performance when the MP sets of all potential donor catchments were integrated.  相似文献   

4.
The bedrock controls on catchment mixing, storage, and release have been actively studied in recent years. However, it has been difficult to find neighbouring catchments with sufficiently different and clean expressions of geology to do comparative analysis. Here, we present new data for 16 nested catchments (0.45 to 410 km2) in the Alzette River basin (Luxembourg) that span a range of clean and mixed expressions of schists, phyllites, sandstones, and quartzites to quantify the relationships between bedrock permeability and metrics of water storage and release. We examined 9 years' worth of precipitation and discharge data, and 6 years of fortnightly stable isotope data in streamflow, to explore how bedrock permeability controls (a) streamflow regime metrics, (b) catchment storage, and (c) isotope response and catchment mean transit time (MTT). We used annual and winter precipitation–run‐off ratios, as well as average summer and winter precipitation–run‐off ratios to characterise the streamflow regime in our 16 study catchments. Catchment storage was then used as a metric for catchment comparison. Water mixing potential of 11 catchments was quantified via the standard deviation in streamflow δD (σδD) and the amplitude ratio (AS/AP) of annual cycles of δ18O in streamflow and precipitation. Catchment MTT values were estimated via both stable isotope signature damping and hydraulic turnover calculations. In our 16 nested catchments, the variance in ratios of summer versus winter average run‐off was best explained by bedrock permeability. Whereas active storage (defined here as a measure of the observed maximum interannual variability in catchment storage) ranged from 107 to 373 mm, total catchment storage (defined as the maximum catchment storage connected to the stream network) extended up to ~1700 mm (±200 mm). Catchment bedrock permeability was strongly correlated with mixing proxies of σδD in streamflow and δ18O AS/AP ratios. Catchment MTT values ranged from 0.5 to 2 years, based on stable isotope signature damping, and from 0.5 to 10 years, based on hydraulic turnover.  相似文献   

5.
Physically based models are useful frameworks for testing intervention strategies designed to reduce elevated sediment loads in agricultural catchments. Evaluating the success of these strategies depends on model accuracy, generally established by a calibration and evaluation process. In this contribution, the physically based SHETRAN model was assessed in two similar U.K. agricultural catchments. The model was calibrated on the Blackwater catchment (18 km2) and evaluated in the adjacent Kit Brook catchment (22 km2) using 4 years of 15 min discharge and suspended sediment flux data. Model sensitivity to changes in single and multiple combinations of parameters and sensitivity to changes in digital elevation model resolution were assessed. Model flow performance was reasonably accurate with a Nash–Sutcliffe efficiency coefficient of 0.78 in Blackwater and 0.60 in Kit Brook. In terms of event prediction, the mean of the absolute percentage of difference (μAbsdiff) between measured and simulated flow volume (Qv), peak discharge (Qp), sediment yield (Sy), and peak sediment flux (Sp) showed larger values in Kit Brook (48% [Qv], 66% [Qp], 298% [Sy], and 438% [Sp]) compared with the Blackwater catchment (30% [Qv], 41% [Qp], 106% [Sy], and 86% [Sp]). Results indicate that SHETRAN can produce reasonable flow prediction but performs less well in estimation of sediment flux, despite reasonably similar hydrosedimentary behaviour between catchments. The sensitivity index showed flow volume sensitive to saturated hydraulic conductivity and peak discharge to the Strickler coefficient; sediment yield was sensitive to the overland flow erodibility coefficient and peak sediment flux to raindrop/leaf soil erodibility coefficient. The multiparameter sensitivity analysis showed that different combinations of parameters produced similar model responses. Model sensitivity to grid resolution presented similar flow volumes for different digital elevation model resolutions, whereas event peak and duration (for both flow and sediment flux) were highly sensitive to changes in grid size.  相似文献   

6.
Abstract

Flood frequency estimation is crucial in both engineering practice and hydrological research. Regional analysis of flood peak discharges is used for more accurate estimates of flood quantiles in ungauged or poorly gauged catchments. This is based on the identification of homogeneous zones, where the probability distribution of annual maximum peak flows is invariant, except for a scale factor represented by an index flood. The numerous applications of this method have highlighted obtaining accurate estimates of index flood as a critical step, especially in ungauged or poorly gauged sections, where direct estimation by sample mean of annual flood series (AFS) is not possible, or inaccurate. Therein indirect methods have to be used. Most indirect methods are based upon empirical relationships that link index flood to hydrological, climatological and morphological catchment characteristics, developed by means of multi-regression analysis, or simplified lumped representation of rainfall–runoff processes. The limits of these approaches are increasingly evident as the size and spatial variability of the catchment increases. In these cases, the use of a spatially-distributed, physically-based hydrological model, and time continuous simulation of discharge can improve estimation of the index flood. This work presents an application of the FEST-WB model for the reconstruction of 29 years of hourly streamflows for an Alpine snow-fed catchment in northern Italy, to be used for index flood estimation. To extend the length of the simulated discharge time series, meteorological forcings given by daily precipitation and temperature at ground automatic weather stations are disaggregated hourly, and then fed to FEST-WB. The accuracy of the method in estimating index flood depending upon length of the simulated series is discussed, and suggestions for use of the methodology provided.
Editor D. Koutsoyiannis  相似文献   

7.
Synchronously and accurately estimating the flood discharges and dynamic changes in the fluid density is essential for hydraulic analysis and forecasting of flash floods, as well as for risk assessment. However, such information is rare for steep mountain catchments, especially in regions that are hotspots for earthquakes. Therefore, six hydrological monitoring sites were established in the main stream and tributaries of the 78.3‐km2 Longxi River catchment, an affected region of the Wenchuan earthquake region in China. Direct real‐time monitoring equipment was installed to measure the flow depths, velocities, and fluid total pressures of the flood hydrographs. On the basis of field measurements, real‐time mean cross‐sectional velocities during the flood hydrographs could be derived from easily obtainable parameters: cross‐sectional maximum velocities and the calibrated dimensionless parameter Kh . Real‐time discharges were determined on the basis of a noncontact method to establish the effective rating curves of this mountainous stream, ranging from 1.46 to 386.34 m3/s with the root mean square errors of ≤10.22 m3/s. Compared with the traditional point‐velocity method and empirical Manning's formula, the proposed noncontact method was reliable and safe for monitoring whole flood hydrographs. Additionally, the real‐time fluid density during the flood hydrographs was calculated on the basis of the direct monitoring parameters for fluid total pressures and water depths. During the flood hydrograph, transient flow behaviour with higher fluid density generally occurred downstream during the flood peak periods when the flow was in the supercritical flow regime. The observed behaviour greatly increased the threat of damage to infrastructure and human life near the river. Thus, it is important to accurately estimate flood discharge and identify for fluid densities so that people at risk from an impending flash flood are given reliable, advanced warning.  相似文献   

8.
The estimation of hydrologic transit times in a catchment provides insights into the integrated effects of water storage, mixing dynamics, and runoff generation processes. There has been limited effort to estimate transit times in southern boreal Precambrian Shield landscapes, which are characteristically heterogeneous with surface cover including till, thin soils, bedrock outcrops, and depressional wetland features that play contrasting hydrologic roles. This study presents approximately 3.5 years of precipitation and streamflow water isotope data and estimates mean transit times (MTTs) and the young water fraction (py) across six small catchments in the Muskoka-Haliburton region of south-central Ontario. The main objectives were to define a typical range of MTTs for headwater catchments in this region and to identify landscape variables that best explain differences in MTTs/py using airborne light detection and ranging and digital terrain analysis. Of the transit time distributions, the two parallel linear reservoir and gamma distributions best describe the hydrology of these catchments, particularly because of their ability to capture more extreme changes related to events such as snowmelt. The estimated MTTs, regardless of the modelling approach or distribution used, are positively associated with the percent wetland area and negatively with mean slope in the catchments. In this landscape, low-gradient features such as wetlands increase catchment scale water storage when antecedent conditions are dryer and decrease transit times when there is a moisture surplus, which plausibly explains the increases in MTTs and mean annual runoff from catchments with significant coverage of these landscape features.  相似文献   

9.
A new parameter parsimonious rainfall–run‐off model, the Distance Distribution Dynamics (DDD) model, is used to simulate hydrological time series at ungauged sites in the Lygne basin in Norway. The model parameters were estimated as functions of catchment characteristics determined by geographical information system. The multiple regression equations relating catchment characteristics and model parameters were trained from 84 calibrated catchments located all over Norway, and all model parameters showed significant correlations with catchment characteristics. The significant correlation coefficients (with p‐value < 0.05) ranged from 0.22 to 0.55. The suitability of DDD for predictions in ungauged basins was tested for 17 catchments not used to estimate the multiple regression equations. For ten of the 17 catchments, deviations in Nash–Sutcliffe efficiency (NSE) criteria between the calibrated and regionalised model were less than 0.1, and for two calibrated catchments within the Lygne basin, the deviations were less than 0.08. The median NSE for the regionalized DDD for the 17 catchments for two time series was 0.66 and 0.72. Deviations in NSE between calibrated and regionalised models are well explained by the deviations between calibrated and regressed parameters describing spatial snow distribution and snowmelt respectively. The quality of the simulated run‐off series for the ungauged sites in the Lygne basin was assessed by comparing flow indices describing high, medium and low flow estimated from observed run‐off at the 17 catchments and for the simulated run‐off series. The indices estimated for the simulated series were generally well within the ranges defined by the 17 observed series. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
《水文科学杂志》2013,58(2):401-408
Abstract

Knowledge of peak discharge is essential for safe and economical planning and design of hydraulic structures. In India, as in most developing countries, the majority of river basins are either sparsely gauged or not gauged at all. The gauged records are also of short length (generally 15–30 years), therefore development of robust models is necessary for estimation of streamflows. Various studies reveal that flood estimation through channel geometry is an alternative method for ungauged catchments. It is appropriate for use where flow characteristics are poorly related to catchment area and other catchment characteristics. In the present study, stream geometry parameters for 42 river sites in central-south India were used; calibration equations were developed with data for 35 stations and tested on data for the remaining seven stations. The relationships developed between mean discharge and channel geometry parameters provide an alternative technique for estimation of mean annual channel discharge.  相似文献   

11.
Geomorphological evidence and recent trash lines were used as stage indicators in a step-backwater computer model of high discharges through an ungauged bedrock channel. The simulation indicated that the peak discharge from the 26.7 m2 catchment was close to 150m3s?1 during the passage of Hurricane Charlie in August 1986. This estimate can be compared with an estimate of 130–160 m3s?1 obtained using the Flood Studies Report (FSR) unit hydrograph methodology. Other palaeostage marks indicate that higher stages have occurred at an earlier time associated with a discharge of 200 m3s?1. However, consideration of both the geometry of a plunge pool and transport criteria for bedrock blocks in the channel indicates that floods since 1986 have not exceeded 150 m3s?1. Given that the estimated probable maximum flood (PMF) calculated from revised FSR procedure is at least 240 m3s?1, it is concluded that compelling evidence for floods equal to the PMF is lacking. Taking into consideration the uncertainty of the discharge estimation, the 1986 flood computed using field evidence has a minimum return period of 100 years using the FSR procedure. This may be compared with a return period for the same event in the neighbouring gauged River Greta of > 100 years and a rainfall return period of 190 years. In as much as discharges of similar order to FSR estimates are indicated, it is concluded (a) that regional geomorphological evidence and flood simulation within ungauged catchments may be useful as a verification for hydrological estimates of recent widespread flood magnitude and (b) that palaeohydraulic computation can be useful in determining the magnitude of the local maximum [historic] flood when determining design discharges for hydraulic structures within specific catchments.  相似文献   

12.
The Budyko framework is an efficient tool for investigating catchment water balance, focusing on the effects of seasonal changes in climate (S) and vegetation cover (M) on catchment evapotranspiration (ET). However, the effects of vegetation seasonality on ET remain largely unknown. The present study explored these effects by modelling interannual variations in ET considering vegetation and climate seasonality using the Budyko framework. Reconstructed 15-day GIMMS NDVI3g timeseries data from 1982 to 2015 were used to estimate M and extract the relative duration of the vegetation growing season (GL) in the Yellow River Basin (YRB). To characterize S, seasonal variations in precipitation and potential ET were extracted using a Gaussian algorithm. Analysis of the observed datasets for 19 catchments revealed that interannual variation in the catchment parameter ϖ (in Fuh's equation) was significantly and positively correlated with M and GL. Conversely, ϖ was significantly but negatively correlated with S. Furthermore, stepwise linear regression was used to calibrate the empirical formula of ϖ for these three dimensionless parameters. Following validation, based on observations in the remaining 11 catchments, ϖ was integrated into Fuh's equation to accurately estimate annual ET. Over 79% subcatchments showed an upward trend (0.9 mm yr−1), whereas fewer than 21% subcatchments showed a downward trend (−0.5 mm yr−1) across YRB. In the central region of the middle reach, ET increased with increased M, prolonged GL, and decreased S, whereas in the source region of YRB, ET decreased with decreased M and shortened GL. Our study provides an alternative method to estimate interannual ET in ungauged catchments and offers a novel perspective to investigate hydrological responses to vegetation and climate seasonality in the long-term.  相似文献   

13.
Abstract

The increasing demand for water in southern Africa necessitates adequate quantification of current freshwater resources. Watershed models are the standard tool used to generate continuous estimates of streamflow and other hydrological variables. However, the accuracy of the results is often not quantified, and model assessment is hindered by a scarcity of historical observations. Quantifying the uncertainty in hydrological estimates would increase the value and credibility of predictions. A model-independent framework aimed at achieving consistency in incorporating and analysing uncertainty within water resources estimation tools in gauged and ungauged basins is presented. Uncertainty estimation in ungauged basins is achieved via two strategies: a local approach for a priori model parameter estimation from physical catchment characteristics, and a regional approach to regionalize signatures of catchment behaviour that can be used to constrain model outputs. We compare these two sources of information in the data-scarce region of South Africa. The results show that both approaches are capable of uncertainty reduction, but that their relative values vary.

Editor D. Koutsoyiannis

Citation Kapangaziwiri, E., Hughes, D.A., and Wagener, T., 2012. Incorporating uncertainty in hydrological predictions for gauged and ungauged basins in southern Africa. Hydrological Sciences Journal, 57 (5), 1000–1019.  相似文献   

14.
Mean transit times (MTTs) can give useful insights into the internal processes of hydrological systems. However, our understanding of how they vary and scale remains unclear. We used MTT estimates obtained from δ18O data from 20, mostly nested, contrasting catchments in North East Scotland, ranging from 1 to 1700 km2. The estimated MTTs ranged between 270 and 1170 days and were used to test a previously developed multiple linear regression (MLR) model for MTT prediction based on metrics of soil cover, landscape organization and climate. We show that the controls on MTT identified by the MLR model hold with the independent data from these 20 sites and that the MLR can be used to predict MTT in ungauged montane catchments. The dominant controls also remain unchanged over four orders of magnitude of catchment size, suggesting no major change of dominant flow paths and mixing processes at larger scales. This is consistent with the fact that only the variance of MTT, rather than MTT, showed a scaling relationship. MTTs appeared to converge with increasing catchment scale, apparently due to the integration of heterogeneous headwater responses in larger downstream catchments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The extent to which forests, relative to shorter vegetation, mitigate flood peak discharges remains controversial and relatively poorly researched, with only a few significant field studies. Considering the effect purely of change of vegetation cover, peak flow magnitude comparisons for paired catchments have suggested that forests do not mitigate large floods, whereas flood frequency comparisons have shown that forests mitigate frequencies over all magnitudes of flood. This study investigates the apparent inconsistency using field-based evidence from four contrasting field programmes at scales of 0.34–3.1 km2. Repeated patterns are identified that provide strong evidence of real effects with physical explanations. Magnitude and frequency comparisons are both relevant to the impact of forests on peak discharges but address different questions. Both can show a convergence of response between forested and grassland/logged states at the highest recorded flows but the associated return periods may be quite variable and are subject to estimation uncertainty. For low to moderate events, the forested catchments have a lower peak magnitude for a given frequency than the grassland/logged catchments. Depending on antecedent soil saturation, a given storm may nevertheless generate peak discharges of the same magnitude for both catchment states but these peaks will have different return periods. The effect purely of change in vegetation cover may be modified by additional forestry interventions, such as road networks and drainage ditches which, by effectively increasing the drainage density, may increase peak flows for all event magnitudes. For all the sites, forest cover substantially reduces annual runoff.  相似文献   

16.
There is still wide uncertainty about past flash‐flood processes in mountain regions owing to the lack of systematic databases on former events. This paper presents a methodology to reconstruct peak discharge of flash floods and illustrates a case in an ungauged catchment in the Spanish Central System. The use of dendrogeomorphic evidence (i.e. scars on trees) together with the combined use of a two‐dimensional (2D) numerical hydraulic model and a terrestrial laser scan (TLS) has allowed estimation of peak discharge of a recent flash flood. The size and height distribution of scars observed in the field have been used to define three hypothetical scenarios (Smin or minimum scenario; Smed or medium scenario; and Smax or maximum scenario), thus illustrating the uncertainty involved in peak‐discharge estimation of flash floods in ungauged torrents. All scars analysed with dendrogeomorphic techniques stem from a large flash flood which took place on 17 December 1997. On the basis of the scenarios, peak discharge is estimated to 79 ± 14 m3 s?1. The average deviation obtained between flood stage and expected scar height was ? 0·09 ± 0·53 m. From the data, it becomes obvious that the geomorphic position of trees is the main factor controlling deviation rate. In this sense, scars with minimum deviation were located on trees growing in exposed locations, especially on unruffled bedrock where the model predicts higher specific kinetic energy. The approach used in this study demonstrates the potential of tree‐ring analysis in palaeohydrology and for flood‐risk assessment in catchments with vulnerable goods and infrastructure. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Hydrological models used for flood prediction in ungauged catchments are commonly fitted to regionally transferred data. The key issue of this procedure is to identify hydrologically similar catchments. Therefore, the dominant controls for the process of interest have to be known. In this study, we applied a new machine learning based approach to identify the catchment characteristics that can be used to identify the active processes controlling runoff dynamics. A random forest (RF) regressor has been trained to estimate the drainage velocity parameters of a geomorphologic instantaneous unit hydrograph (GIUH) in ungauged catchments, based on regionally available data. We analyzed the learning procedure of the algorithm and identified preferred donor catchments for each ungauged catchment. Based on the obtained machine learning results from catchment grouping, a classification scheme for drainage network characteristics has been derived. This classification scheme has been applied in a flood forecasting case study. The results demonstrate that the RF could be trained properly with the selected donor catchments to successfully estimate the required GIUH parameters. Moreover, our results showed that drainage network characteristics can be used to identify the influence of geomorphological dispersion on the dynamics of catchment response.  相似文献   

18.
Long-term catchment experiments from South Africa have demonstrated that afforestation of grasslands and shrublands significantly reduces surface-water runoff. These results have guided the country's forestry policy and the implementation of a national Invasive Alien Plant (IAP) control programme for the past few decades. Unfortunately, woody IAP densities continue to increase, compounding existing threats to water security from population growth and climatic change. Decision makers need defensible estimates of the impacts of afforestation or invasions on runoff to weigh up alternative land use options, or guide investment of limited resources into ecosystem restoration through IAP clearing versus engineering-based water-augmentation schemes. Existing attempts to extrapolate the impacts observed in catchment afforestation experiments to broad-scale IAP impacts give no indication of uncertainty. Globally, the uncertainty inherent in the results from paired-catchment experiments is seldom propagated into subsequent analyses making use of these data. We present a fully reproducible Bayesian model that propagates uncertainty from input data to final estimates of changes in streamflow when extrapolating from catchment experiments to broader landscapes. We apply our model to South Africa's catchment experiment data, estimating streamflow losses to plantations and analogous plant invasions in the catchments of southwestern South Africa, including uncertainty. We estimate that regional streamflow is reduced by 304 million m3 or 4.14% annually as a result of IAPs, with an upper estimate of 408 million m3 (5.54%) and a lower estimate of 267 million m3 (3.63%). Our model quantifies uncertainty associated with all parameters and their contribution to overall uncertainty, helping guide future research needs. Acknowledging and quantifying inherent uncertainty enables more defensible decisions regarding water resource management.  相似文献   

19.
Barry Fahey  John Payne 《水文研究》2017,31(16):2921-2934
This paper presents results from 34 years of the Glendhu Experimental Catchment Study, established in 1979 by the former New Zealand Forest Service in upland east Otago in New Zealand's South Island to determine the hydrological consequences of converting indigenous tussock grassland to plantation forestry. A traditional paired catchment approach was adopted; after a 2.5‐year pretreatment period, one catchment (GH2, 310 ha) was planted over two thirds of its area in Pinus radiata, and an adjacent catchment (GH1, 216 ha) was left in tussock as a control. The average annual reduction in water yield from the planted catchment between canopy closure in 1991 and 2013, compared with that in tussock, was 273 mm (33%). Annual water yields from the planted catchment continued to decline relative to the tussock catchment until 2010. Since then, the difference in annual water yields between the two catchments has narrowed. Ripping before planting caused some redistribution of the total streamflow from stormflow to baseflow. Following canopy closure, afforestation has reduced the low flow (Q95) by an average of 26% compared with the tussock catchment. Average peak flows for small events (2–5 L/s/ha) were reduced by 78%, but only by 37% for larger, less frequent storms (>15 L/s/ha), suggesting that peak flows during high magnitude storms are less dependent on the prevailing land cover.  相似文献   

20.
Abstract

We present a procedure for estimating Q95 low flows in both gauged and ungauged catchments where Q95 is the flow that is exceeded 95% of the time. For each step of the estimation procedure, a number of alternative methods was tested on the Austrian data set by leave-one-out cross-validation, and the method that performed best was used in the final procedure. To maximise the accuracy of the estimates, we combined relevant sources of information including long streamflow records, short streamflow records, and catchment characteristics, according to data availability. Rather than deriving a single low flow estimate for each catchment, we estimated lower and upper confidence limits to allow local information to be incorporated in a practical application of the procedure. The components of the procedure consist of temporal (climate) adjustments for short records; grouping catchments into eight seasonality-based regions; regional regressions of low flows with catchment characteristics; spatial adjustments for exploiting local streamflow data; and uncertainty assessment. The results are maps of lower and upper confidence limits of low flow discharges for 21 000 sub-catchments in Austria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号