首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Landslide susceptibility mapping is an indispensable prerequisite for landslide prevention and reduction. At present, research into landslide susceptibility mapping has begun to combine machine learning with remote sensing and geographic information system (GIS) techniques. The random forest model is a new integrated classification method, but its application to landslide susceptibility mapping remains limited. Landslides represent a serious threat to the lives and property of people living in the Zigui–Badong area in the Three Gorges region of China, as well as to the operation of the Three Gorges Reservoir. However, the geological structure of this region is complex, involving steep mountains and deep valleys. The purpose of the current study is to produce a landslide susceptibility map of the Zigui–Badong area using a random forest model, multisource data, GIS, and remote sensing data. In total, 300 pre-existing landslide locations were obtained from a landslide inventory map. These landslides were identified using visual interpretation of high-resolution remote sensing images, topographic and geologic data, and extensive field surveys. The occurrence of landslides is closely related to a series of environmental parameters. Topographic, geologic, Landsat-8 image, raining data, and seismic data were used as the primary data sources to extract the geo-environmental factors influencing landslides. Thirty-four layers of causative factors were prepared as predictor variables, which can mainly be categorized as topographic, geological, hydrological, land cover, and environmental trigger parameters. The random forest method is an ensemble classification technique that extends diversity among the classification trees by resampling the data with replacement and randomly changing the predictive variable sets during the different tree induction processes. A random forest model was adopted to calculate the quantitative relationships between the landslide-conditioning factors and the landslide inventory map and then generate a landslide susceptibility map. The analytical results were compared with known landslide locations in terms of area under the receiver operating characteristic curve. The random forest model has an area ratio of 86.10%. In contrast to the random forest (whole factors, WF), random forest (12 major factors, 12F), decision tree (WF), decision tree (12F), the final result shows that random forest (12F) has a higher prediction accuracy. Meanwhile, the random forest models have higher prediction accuracy than the decision tree model. Subsequently, the landslide susceptibility map was classified into five classes (very low, low, moderate, high, and very high). The results demonstrate that the random forest model achieved a reasonable accuracy in landslide susceptibility mapping. The landslide hazard zone information will be useful for general development planning and landslide risk management.  相似文献   

2.
The main objective of this study is to investigate potential application of frequency ratio (FR), weights of evidence (WoE), and statistical index (SI) models for landslide susceptibility mapping in a part of Mazandaran Province, Iran. First, a landslide inventory map was constructed from various sources. The landslide inventory map was then randomly divided in a ratio of 70/30 for training and validation of the models, respectively. Second, 13 landslide conditioning factors including slope degree, slope aspect, altitude, plan curvature, stream power index, topographic wetness index, sediment transport index, topographic roughness index, lithology, distance from streams, faults, roads, and land use type were prepared, and the relationships between these factors and the landslide inventory map were extracted by using the mentioned models. Subsequently, the multi-class weighted factors were used to generate landslide susceptibility maps. Finally, the susceptibility maps were verified and compared using several methods including receiver operating characteristic curve with the areas under the curve (AUC), landslide density, and spatially agreed area analyses. The success rate curve showed that the AUC for FR, WoE, and SI models was 81.51, 79.43, and 81.27, respectively. The prediction rate curve demonstrated that the AUC achieved by the three models was 80.44, 77.94, and 79.55, respectively. Although the sensitivity analysis using the FR model revealed that the modeling process was sensitive to input factors, the accuracy results suggest that the three models used in this study can be effective approaches for landslide susceptibility mapping in Mazandaran Province, and the resultant susceptibility maps are trustworthy for hazard mitigation strategies.  相似文献   

3.
The aim of this study is to produce landslide susceptibility mapping by probabilistic likelihood ratio (PLR) and spatial multi-criteria evaluation (SMCE) models based on geographic information system (GIS) in the north of Tehran metropolitan, Iran. The landslide locations in the study area were identified by interpretation of aerial photographs, satellite images, and field surveys. In order to generate the necessary factors for the SMCE approach, remote sensing and GIS integrated techniques were applied in the study area. Conditioning factors such as slope degree, slope aspect, altitude, plan curvature, profile curvature, surface area ratio, topographic position index, topographic wetness index, stream power index, slope length, lithology, land use, normalized difference vegetation index, distance from faults, distance from rivers, distance from roads, and drainage density are used for landslide susceptibility mapping. Of 528 landslide locations, 70 % were used in landslide susceptibility mapping, and the remaining 30 % were used for validation of the maps. Using the above conditioning factors, landslide susceptibility was calculated using SMCE and PLR models, and the results were plotted in ILWIS-GIS. Finally, the two landslide susceptibility maps were validated using receiver operating characteristic curves and seed cell area index methods. The validation results showed that area under the curve for SMCE and PLR models is 76.16 and 80.98 %, respectively. The results obtained in this study also showed that the probabilistic likelihood ratio model performed slightly better than the spatial multi-criteria evaluation. These landslide susceptibility maps can be used for preliminary land use planning and hazard mitigation purpose.  相似文献   

4.
Desalegn  Hunegnaw  Mulu  Arega  Damtew  Banchiamlak 《Natural Hazards》2022,113(2):1391-1417

Landslide susceptibility consists of an essential component in the day-to-day activity of human beings. Landslide incidents are typically happening at a low rate of recurrence when compared and in contrast to other events. This might be generated into main natural catastrophes relating to widespread and undesirable sound effects. Landslide hotspot area identification and mapping are used for the regional community to secure from this disaster. Therefore, this research aims to identify the hotspot areas of landslide and to generate maps using GIS, AHP, and multi-criteria decision analysis (MCDA). MCDA techniques are applied under such circumstances to categorize and class decisions for successive comprehensive estimation or else to state possible from impossible potentiality with various landslides. Analytical hierarchy process (AHP) constructively applies for conveying influence to different criteria within multi-criteria decision analysis. The causative landslide identifying factors utilized in this research were elevation, slope, aspect, soil type, lithology, distance to stream, land use/land cover, rainfall, and drainage density achieved from various sources. Subsequently, to explain the significance of each constraint into landslide susceptibility, all factors were found using the AHP technique. Generally, landslide susceptibility map factors were multiplied by their weights to acquire with the AHP technique. The result showed that the AHP methods are comparatively good quality estimators of landslide susceptibility identification in the Chemoga watershed. As the result, the Chemoga watershed landslide susceptibility map classes were classified as 46.52%, 13.83%.18.71%, 15.39%, and 5.55% of the occurred landslide fall to very low, low, moderate, high, and very high susceptibility zones, respectively. Performance and accuracy of modeled maps have been established using GPS field data and Google earth data landslide map and area under curve (AUC) of the receiver operating characteristic curve (ROC). As the result, validation depends on the ROC specifies the accuracy of the map formed with the AHP merged through weighted overly method illustrated very good accuracy of AUC value 81.45%. In general, the research outcomes inveterate the very good test consistency of the generated maps.

  相似文献   

5.
The main purpose of this paper is to present the use of multi-resource remote sensing data, an incomplete landslide inventory, GIS technique and logistic regression model for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China. Landslide location polygons were delineated from visual interpretation of aerial photographs, satellite images in high resolutions, and verified by selecting field investigations. Eight factors, including slope angle, slope aspect, elevation, distance from drainages, distance from roads, distance from main faults, seismic intensity and lithology were selected as controlling factors for earthquake-triggered landslide susceptibility mapping. Qualitative susceptibility analyses were carried out using the map overlaying techniques in GIS platform. The validation result showed a success rate of 82.751 % between the susceptibility probability index map and the location of the initial landslide inventory. The predictive rate of 86.930 % was obtained by comparing the additional landslide polygons and the landslide susceptibility probability index map. Both the success rate and the predictive rate show sufficient agreement between the landslide susceptibility map and the existing landslide data, and good predictive power for spatial prediction of the earthquake-triggered landslides.  相似文献   

6.
This paper presents landslide susceptibility analysis around the Cameron Highlands area, Malaysia using a geographic information system (GIS) and remote sensing techniques. Landslide locations were identified in the study area from interpretation of aerial photographs and field surveys. Topographical, geological data and satellite images were collected, processed, and constructed into a spatial database using GIS and image processing. Ten landslide occurrence factors were selected as: topographic slope, topographic aspect, topographic curvature and distance from drainage, lithology and distance from lineament, soil type, rainfall, land cover from SPOT 5 satellite images, and the vegetation index value from SPOT 5 satellite image. These factors were analyzed using an advanced artificial neural network model to generate the landslide susceptibility map. Each factor’s weight was determined by the back-propagation training method. Then, the landslide susceptibility indices were calculated using the trained back-propagation weights, and finally, the landslide susceptibility map was generated using GIS tools. The results of the neural network model suggest that the effect of topographic slope has the highest weight value (0.205) which has more than two times among the other factors, followed by the distance from drainage (0.141) and then lithology (0.117). Landslide locations were used to validate the results of the landslide susceptibility map, and the verification results showed 83% accuracy. The validation results showed sufficient agreement between the computed susceptibility map and the existing data on landslide areas.  相似文献   

7.
Landslide susceptibility mapping and spatial prediction have been carried out for the headwater region of Manimala river basin in the Western Ghats of Kerala, India, through geographic information technology and bayesian statistics, Weights of Evidence (WofE) model. The variables such as geomorphology, slope, relative relief, terrain curvature, slope length and steepness, soil type and land use/land cover are considered as factors that translate the terrain susceptible to landsliding. The quantitative relationship between landslides and the causative factors were statistically weighted using the ArcSDM extension of ArcGIS software. The posterior probability map, produced on the basis of predictive weights for each variable by combining the weighted layers in GIS, shows a high posterior probability value of 0.1 (highly possible) with a standard deviation of 0.0025. The discrete susceptibility classes in the reclassified posterior probability map reveals that the high and moderate landslide susceptibility classes cover 0.78 and 14.93% respectively of the total study area. The result was validated using the Area Under Curve (AUC) method with a separate set of landslide locations and the validation demonstrates high prediction accuracy with a prediction rate of 81.32%.  相似文献   

8.

The main purpose of this study was to compare and evaluate the performance of two multicriteria models for landslide susceptibility assessment in Constantine, north-east of Algeria. The landslide susceptibility maps were produced using the analytic hierarchy process (AHP) and Fuzzy AHP (FAHP) via twelve landslides conditioning factors, including the slope gradient, lithology, land cover, distance from drainage network, distance from the roads, distance from faults, topographic wetness index, stream power index, slope curvature, Normalized Difference Vegetation Index, slope aspect and elevation. In this study, the mentioned models were used to derive the weighting value of the conditioning factors. For the validation process of these models, the receiver operating characteristic analysis, and the area under the curve (AUC) were applied by comparing the obtained results to The landslide inventory map which prepared using the archives of scientific publications, reports of local authorities, and field survey as well as analyzing satellite imagery. According to the AUC values, the FAHP model had the highest value (0.908) followed by the AHP model (0.777). As a result, the FAHP model is more consistent and accurate than the AHP in this case study. The outcome of this paper may be useful for landslide susceptibility assessment and land use management.

  相似文献   

9.
The current research presents a detailed landslide susceptibility mapping study by binary logistic regression, analytical hierarchy process, and statistical index models and an assessment of their performances. The study area covers the north of Tehran metropolitan, Iran. When conducting the study, in the first stage, a landslide inventory map with a total of 528 landslide locations was compiled from various sources such as aerial photographs, satellite images, and field surveys. Then, the landslide inventory was randomly split into a testing dataset 70 % (370 landslide locations) for training the models, and the remaining 30 % (158 landslides locations) was used for validation purpose. Twelve landslide conditioning factors such as slope degree, slope aspect, altitude, plan curvature, normalized difference vegetation index, land use, lithology, distance from rivers, distance from roads, distance from faults, stream power index, and slope-length were considered during the present study. Subsequently, landslide susceptibility maps were produced using binary logistic regression (BLR), analytical hierarchy process (AHP), and statistical index (SI) models in ArcGIS. The validation dataset, which was not used in the modeling process, was considered to validate the landslide susceptibility maps using the receiver operating characteristic curves and frequency ratio plot. The validation results showed that the area under the curve (AUC) for three mentioned models vary from 0.7570 to 0.8520 $ ({\text{AUC}}_{\text{AHP}} = 75.70\;\% ,\;{\text{AUC}}_{\text{SI}} = 80.37\;\% ,\;{\text{and}}\;{\text{AUC}}_{\text{BLR}} = 85.20\;\% ) $ ( AUC AHP = 75.70 % , AUC SI = 80.37 % , and AUC BLR = 85.20 % ) . Also, plot of the frequency ratio for the four landslide susceptibility classes of the three landslide susceptibility models was validated our results. Hence, it is concluded that the binary logistic regression model employed in this study showed reasonably good accuracy in predicting the landslide susceptibility of study area. Meanwhile, the results obtained in this study also showed that the statistical index model can be used as a simple tool in the assessment of landslide susceptibility when a sufficient number of data are obtained.  相似文献   

10.
The purpose of this study is to produce landslide susceptibility map of a landslide-prone area (Daguan County, China) by evidential belief function (EBF) model and weights of evidence (WoE) model to compare the results obtained. For this purpose, a landslide inventory map was constructed mainly based on earlier reports and aerial photographs, as well as, by carrying out field surveys. A total of 194 landslides were mapped. Then, the landslide inventory was randomly split into a training dataset; 70% (136 landslides) for training the models and the remaining 30% (58 landslides) was used for validation purpose. Then, a total number of 14 conditioning factors, such as slope angle, slope aspect, general curvature, plan curvature, profile curvature, altitude, distance from rivers, distance from roads, distance from faults, lithology, normalized difference vegetation index (NDVI), sediment transport index (STI), stream power index (SPI), and topographic wetness index (TWI) were used in the analysis. Subsequently, landslide susceptibility maps were produced using the EBF and WoE models. Finally, the validation of landslide susceptibility map was accomplished with the area under the curve (AUC) method. The success rate curve showed that the area under the curve for EBF and WoE models were of 80.19% and 80.75% accuracy, respectively. Similarly, the validation result showed that the susceptibility map using EBF model has the prediction accuracy of 80.09%, while for WoE model, it was 79.79%. The results of this study showed that both landslide susceptibility maps obtained were successful and would be useful for regional spatial planning as well as for land cover planning.  相似文献   

11.
In the Three Gorges of China, there are frequent landslides, and the potential risk of landslides is tremendous. An efficient and accurate method of generating landslide susceptibility maps is very important to mitigate the loss of lives and properties caused by these landslides. This paper presents landslide susceptibility mapping on the Zigui-Badong of the Three Gorges, using rough sets and back-propagation neural networks (BPNNs). Landslide locations were obtained from a landslide inventory map, supported by field surveys. Twenty-two landslide-related factors were extracted from the 1:10,000-scale topographic maps, 1:50,000-scale geological maps, Landsat ETM + satellite images with a spatial resolution of 28.5 m, and HJ-A satellite images with a spatial resolution of 30 m. Twelve key environmental factors were selected as independent variables using the rough set and correlation coefficient analysis, including elevation, slope, profile curvature, catchment aspect, catchment height, distance from drainage, engineering rock group, distance from faults, slope structure, land cover, topographic wetness index, and normalized difference vegetation index. The initial, three-layered, and four-layered BPNN were trained and then used to map landslide susceptibility, respectively. To evaluate the models, the susceptibility maps were validated by comparing with the existing landslide locations according to the area under the curve. The four-layered BPNN outperforms the other two models with the best accuracy of 91.53 %. Approximately 91.37 % of landslides were classified as high and very high landslide-prone areas. The validation results show sufficient agreement between the obtained susceptibility maps and the existing landslide locations.  相似文献   

12.
水库库区地形地质和水位地质条件复杂,蓄水后受降雨和库水位变动影响容易产生滑坡、崩塌等次生地质灾害,严重威胁水库安全运行和附近居民安全. 本文依托层次分析法,以某蓄水水库为研究对象,在充分收集其地形地质和水文条件资料的基础上,选取地形地貌、地层岩性、坡度、坡向、地灾点密度、地灾点面积、降雨、库水变动幅度和地震强度等9个致滑因子,构建评价矩阵和滑坡危险性计算评价方法. 依据评价成果划分4个滑坡危险性等级,借助MapGIS软件生成库区潜在滑坡危险性分区图. 该分区图与遥感解译的库区滑坡体分布点高度吻合,验证了评价模型的合理性.  相似文献   

13.
This research work deals with the landslide susceptibility assessment using Analytic hierarchy process (AHP) and information value (IV) methods along a highway road section in Constantine region, NE Algeria. The landslide inventory map which has a total of 29 single landslide locations was created based on historical information, aerial photo interpretation, remote sensing images, and extensive field surveys. The different landslide influencing geoenvironmental factors considered for this study are lithology, slope gradient, slope aspect, distance from faults, land use, distance from streams, and geotechnical parameters. A thematic layer map is generated for every geoenvironmental factor using Geographic Information System (GIS); the lithological units and the distance from faults maps were extracted from the geological database of the region. The slope gradient, slope aspect, and distance from streams were calculated from the Digital Elevation Model (DEM). Contemporary land use map was derived from satellite images and field study. Concerning the geotechnical parameters maps, they were determined making use of the geotechnical data from laboratory tests. The analysis of the relationships between the landslide-related factors and the landslide events was then carried out in GIS environment. The AUC plot showed that the susceptibility maps had a success rate of 77 and 66% for IV and AHP models, respectively. For that purpose, the IV model is better in predicting the occurrence of landslides than AHP one. Therefore, the information value method could be used as a landslide susceptibility mapping zonation method along other sections of the A1 highway.  相似文献   

14.
The objective of this study was to produce and evaluate a landslide susceptibility map for weathered granite soils in Deokjeok-ri Creek, South Korea. The relative effect (RE) method was used to determine the relationship between landslide causative factors (CFs) and landslide occurrence. To determine the effect of CFs on landslides, data layers of aspect, elevation, slope, internal relief, curvature, distance to drainage, drainage density, stream power index, sediment transport index, topographic wetness index, soil drainage character, soil type, soil depth, forest type, timber age, and geology were analyzed in a geographical information system (GIS) environment. A GIS-based landslide inventory map of 748 landslide locations was prepared using data from previous reports, aerial photographic interpretation, and extensive field work. A RE model was generated from a training set consisting of 673 randomly selected landslides in the inventory map, with the remaining 75 landslides used for validation of the susceptibility map. The results of the analysis were verified using the landslide location data. According to the analysis, the RE model had a success rate of 86.3 % and a predictive accuracy of 88.6 %. The validation results showed satisfactory agreement between the susceptibility map and the existing data on landslide locations. The results of this study can therefore be used to mitigate landslide-induced hazards and to plan land use.  相似文献   

15.
Slope instability research and susceptibility mapping is a fundamental component of hazard management and an important basis for provision of measures aimed at decreasing the risk of living with landslides. On this basis, this paper presents the result of a comprehensive study on slope stability analyses and landslide susceptibility mapping carried out in part of Sado Island of Japan. Various types of landslides occurred in the island throughout history. Little is known about the triggering factors and severity of old landslides, but for many of the recent slope failures, the slope characteristics and stratigraphy are such that ground surfaces retain water perennially and landslides occur when additional moisture is induced during rainfall and snowmelt. A range of methods are available in literature for preparation of landslide susceptibility maps. In this study we used two methods namely, the analytical hierarchy process (AHP) and logistic regression, to produce and later compare two susceptibility maps. AHP is a semi-qualitative method, which involves a matrix-based pair-wise comparison of the contribution of different factors for landsliding. Logistic regression on the other hand promotes a multivariate statistical analysis with an objective to find the best-fitting model that describes the relationship between the presence or absence of landslides (dependent variable) and a set of causal factors (independent parameters). Elevation, lithology and slope gradient were casual factors in this study. The determinations of factor weights by AHP and logistic regression were preceded by the calculation of class weights (landslide densities) based on bivariate statistical analyses (BSA). The differences between the AHP derived susceptibility map and the logistic regression counterpart are relatively minor when broad-based classifications are considered. However, with an increase in the number of susceptibility classes, the logistic regression map gave more details but the one derived by AHP failed to do so. The reason is that the majority of pixels in the AHP map have high values, and an increase in the number of classes gives little change in the spatial distribution of susceptibility zones in the middle. To verify the practicality of the two susceptibility maps, both of them were compared with a landslide activity map containing 18 active landslide zones. The outcome was that the active landslide zones do not completely fit into the very high susceptibility class of both maps for various reasons. But 70% of these landslide zones fall into the high and very high susceptibility zones of the AHP map while this is 63% in the case of logistic regression. This indicates that despite the skewed distribution of susceptibility indices, the AHP map was better to capture the reality on the ground than the logistic regression equivalent.  相似文献   

16.
For predictive landslide susceptibility mapping, this study applied and verified probability model, the frequency ratio and statistical model, logistic regression at Pechabun, Thailand, using a geographic information system (GIS) and remote sensing. Landslide locations were identified in the study area from interpretation of aerial photographs and field surveys, and maps of the topography, geology and land cover were constructed to spatial database. The factors that influence landslide occurrence, such as slope gradient, slope aspect and curvature of topography and distance from drainage were calculated from the topographic database. Lithology and distance from fault were extracted and calculated from the geology database. Land cover was classified from Landsat TM satellite image. The frequency ratio and logistic regression coefficient were overlaid for landslide susceptibility mapping as each factor’s ratings. Then the landslide susceptibility map was verified and compared using the existing landslide location. As the verification results, the frequency ratio model showed 76.39% and logistic regression model showed 70.42% in prediction accuracy. The method can be used to reduce hazards associated with landslides and to plan land cover.  相似文献   

17.
Spatial prediction of landslides is termed landslide susceptibility zonation (LSZ). In this study, an objective weighting approach based on fuzzy concepts is used for LSZ in a part of the Darjeeling Himalayas. Relevant thematic layers pertaining to landslide causative factors have been generated using remote sensing and geographic information system (GIS) techniques. The membership values for each category of thematic layers have been determined using the cosine amplitude fuzzy similarity method and are used as ratings. The integration of these ratings led to the generation of LSZ map. The integration of different ratings to generate an LSZ map has been performed using a fuzzy gamma operator apart from the arithmetic overlay approach. The process is based on determination of combined rating known as the landslide susceptibility index (LSI) for all the pixels using the fuzzy gamma operator and classification using the success rate curve method to prepare the LSZ map. The results indicate that as the gamma value increases, the accuracy of the LSZ map also increases. It is observed that the LSZ map produced by the fuzzy algebraic sum has reflected a more real situation in terms of landslides in the study area.  相似文献   

18.
Landslide susceptibility zonation mapping is a fundamental procedure for geo-disaster management in tropical and sub-tropical regions. Recently, various landslide susceptibility zonation models have been introduced in Nepal with diverse approaches of assessment. However, validation is still a problem. Additionally, the role of various predisposing causative parameters for landslide activity is still not well understood in the Nepal Himalaya. To address these issues of susceptibility zonation and landslide activity, about 4,000 km2 area of central Nepal was selected for regional-scale assessment of landslide activity and susceptibility zonation mapping. In total, 655 new landslides and 9,229 old landslides were identified with the study area with the help of satellite images, aerial photographs, field data and available reports. The old landslide inventory was “blind landslide database” and could not explain the particular rainfall event responsible for the particular landslide. But considering size of the landslide, blind landslide inventory was reclassified into two databases: short-duration high-intensity rainfall-induced landslide inventory and long-duration low-intensity rainfall-induced landslide inventory. These landslide inventory maps were considered as proxy maps of multiple rainfall event-based landslide inventories. Similarly, all 9,884 landslides were considered for the activity assessment of predisposing causative parameters. For the Nepal Himalaya, slope, slope aspect, geology and road construction activity (anthropogenic cause) were identified as most affective predisposing causative parameters for landslide activity. For susceptibility zonation, multivariate approach was considered and two proxy rainfall event-based landslide databases were used for the logistic regression modelling, while a relatively recent landslide database was used in validation. Two event-based susceptibility zonation maps were merged and rectified to prepare the final susceptibility zonation map and its prediction rate was found to be more than 82 %. From this work, it is concluded that rectification of susceptibility zonation map is very appropriate and reliable. The results of this research contribute to a significant improvement in landslide inventory preparation procedure, susceptibility zonation mapping approaches as well as role of various predisposing causative parameters for the landslide activity.  相似文献   

19.
RS与GIS支持下的汶川县城周边地质灾害危险性评价   总被引:1,自引:1,他引:0       下载免费PDF全文
刘汉湖 《中国地质》2012,39(1):243-251
地质灾害危险性评价是防灾减灾工作的重要依据。本文以汶川县城周边64 km2为例,应用遥感信息提取技术与GIS空间分析方法,根据IKONOS遥感图像和地形图及野外调查资料,提取了崩塌和滑坡易发性评价因子,采用信息量法确定了因子分值,计算了崩塌和滑坡易发性,并分别提出崩塌和滑坡的危险性计算方法,形成了汶川地区崩塌和滑坡危险性分区图。研究结果表明:新的崩塌和滑坡危险性评价方法能够反映区内地质灾害危险程度,该方法可行,结果合理,这为中、大比例尺区域范围内地质灾害危险性研究提供了有益的思路。  相似文献   

20.
The main goal of this study was to investigate the application of the weights-of-evidence and certainty factor approaches for producing landslide susceptibility maps of a landslide-prone area (Haraz) in Iran. For this purpose, the input layers of the landslide conditioning factors were prepared in the first stage. The landslide conditioning factors considered for the study area were slope gradient, slope aspect, altitude, lithology, land use, distance from streams, distance from roads, distance from faults, topographic wetness index, stream power index, stream transport index and plan curvature. For validation of the produced landslide susceptibility maps, the results of the analyses were compared with the field-verified landslide locations. Additionally, the receiver operating characteristic curves for all the landslide susceptibility models were constructed and the areas under the curves were calculated. The landslide locations were used to validate results of the landslide susceptibility maps. The verification results showed that the weights-of-evidence model (79.87%) performed better than certainty factor (72.02%) model with a standard error of 0.0663 and 0.0756, respectively. According to the results of the area under curve evaluation, the map produced by weights-of-evidence exhibits satisfactory properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号