首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A theoretical model for gas adsorption-induced coal swelling   总被引:6,自引:2,他引:6  
Swelling and shrinkage (volumetric change) of coal during adsorption and desorption of gas is a well-known phenomenon. For coalbed methane recovery and carbon sequestration in deep, unminable coal beds, adsorption-induced coal volumetric change may cause significant reservoir permeability change. In this work, a theoretical model is derived to describe adsorption-induced coal swelling at adsorption and strain equilibrium. This model applies an energy balance approach, which assumes that the surface energy change caused by adsorption is equal to the elastic energy change of the coal solid. The elastic modulus of the coal, gas adsorption isotherm, and other measurable parameters, including coal density and porosity, are required in this model. Results from the model agree well with experimental observations of swelling. It is shown that the model is able to describe the differences in swelling behaviour with respect to gas species and at very high gas pressures, where the coal swelling ratio reaches a maximum then decreases. Furthermore, this model can be used to describe mixed-gas adsorption induced-coal swelling, and can thus be applied to CO2-enhanced coalbed methane recovery.  相似文献   

2.
There is still no clear understanding of the specific interactions between coal and gas molecules. In this context sorption–desorption studies of methane and carbon dioxide, both in a single gas environment and gas mixtures, are of fundamental interest. This paper presents the results of unique simultaneous measurements of sorption kinetics, volumetric strain and acoustic emission (AE) on three tetragonal coal samples subjected to sorption of carbon dioxide and methane mixtures. The coal was a high volatile bituminous C coal taken from the Budryk mine in the Upper Silesia Basin, Poland. Three different gas mixtures were used in the sorption tests, with dominant CO2, with dominant CH4 and a 50/50 mixture.The experimental set-up was designed specially for this study. It consisted of three individual units working together: (i) a unit for gas sorption experiments using a volumetric method, (ii) an AE apparatus for detecting, recording and analysing AE, and (iii) a strain meter for measuring strains induced in the coal sample by gas sorption/desorption. All measurements were computer aided.The experiments indicated that the coal tested showed preferential sorption of CH4 at 2.6 MPa pressure and exhibited comparable affinities for CH4 and CO2 at higher pressures (4.0 MPa). The results of chromatographic analysis of the gas released on desorption suggested that the desorption of methane from the coal was favoured. The relationship between the volumetric strain and the amount of sorbed gas was found to be non-linear. These results were contrary to common opinions on the coal behaviour. Furthermore, it appeared that the swelling/shrinkage of coal was clearly influenced by the network of fractures. Besides, the AE and strain characteristics suggested common sources of sorption induced AE and strain.The present results may have implications for the sequestration of carbon dioxide in coal seams and enhanced coalbed methane recovery (ECBM).  相似文献   

3.
Characterization of coal reservoirs and determination of in-situ physical coal properties related to transport mechanism are complicated due to having lack of standard procedures in the literature. By considering these difficulties, a new approach has been developed proposing the usage of relationships between coal rank and physical coal properties. In this study, effects of shrinkage and swelling (SS) on total methane recovery at CO2 breakthrough (TMRB), which includes ten-year primary methane recovery and succeeding enhanced coalbed methane (ECBM) recovery up to CO2 breakthrough, and CO2 sequestration have been investigated by using rank-dependent coal properties. In addition to coal rank, different coal reservoir types, molar compositions of injected fluid, and parameters within the extended Palmer & Mansoori (P&M) permeability model were considered. As a result of this study, shrinkage and swelling lead to an increase in TMRB. Moreover, swelling increased CO2 breakthrough time and decreased displacement ratio and CO2 storage for all ranks of coal. Low-rank coals are affected more negatively than high-rank coals by swelling. Furthermore, it was realized that dry coal reservoirs are more influenced by swelling than others and saturated wet coals are more suitable for eliminating the negative effects of CO2 injection. In addition, it was understood that it is possible to reduce swelling effect of CO2 on cleat permeability by mixing it with N2 before injection. However, an economical optimization is required for the selection of proper gas mixture. Finally, it is concluded from sensitivity analysis that elastic modulus is the most important parameter, except the initial cleat porosity, controlling SS in the extended P&M model by highly affecting TMRB.  相似文献   

4.
An alternative approach is proposed to develop an improved permeability model for coalbed methane (CBM) and CO2-enhanced CBM (ECBM) recovery, and CO2 geosequestration in coal. This approach integrates the textural and mechanical properties to describe the anisotropy of gas permeability in coal reservoirs. The model accounts for the stress dependent deformation using a stress–strain correlation, which allows determination of directional permeability for coals. The stress–strain correlation was developed by combining mechanical strain with sorption-induced strain for any given direction. The mechanical strain of coal is described by the general thermo-poro-elastic constitutive equations for solid materials under isothermal conditions and the sorption-induced strain is approximated by treating the swelling/shrinkage of coal matrix equivalent to the thermal contraction/expansion of materials. With directional strains, the permeability of coal in any given direction can be modeled based on the theory of rock hydraulics. In this study, the proposed model was tested with both literature data and experiments. The experiments were carried out using a specially designed true tri-axial stress coal permeameter (TTSCP). The results show that the proposed model provides better predictions for the literature data compared with other conventional coal permeability models. The model also gives reasonable agreement between the predicted and measured stress–strains and directional permeabilities under laboratory conditions.  相似文献   

5.
Interpretation of carbon dioxide diffusion behavior in coals   总被引:3,自引:1,他引:3  
Storage of carbon dioxide in geological formations is for many countries one of the options to reduce greenhouse gas emissions and thus to satisfy the Kyoto agreements. The CO2 storage in unminable coal seams has the advantage that it stores CO2 emissions from industrial processes and can be used to enhance coalbed methane recovery (CO2-ECBM). For this purpose, the storage capacity of coal is an important reservoir parameter. While the amount of CO2 sorption data on various natural coals has increased in recent years, only few measurements have been performed to estimate the rate of CO2 sorption under reservoir conditions. An understanding of gas transport is crucial for processes associated with CO2 injection, storage and enhanced coalbed methane (ECBM) production.A volumetric experimental set-up has been used to determine the rate of sorption of carbon dioxide in coal particles at various pressures and various grain size fractions. The pressure history during each pressure step was measured. The measurements are interpreted in terms of temperature relaxation and transport/sorption processes within the coal particles. The characteristic times of sorption increase with increasing pressure. No clear dependence of the characteristic time with respect to the particle size was found. At low pressures (below 1 MPa) fast gas diffusion is the prevailing mechanism for sorption, whereas at higher pressures, the slow diffusion process controls the gas uptake by the coal.  相似文献   

6.
The sensitivity of coal permeability to the effective stress means that changes in stress as well as pore pressure within a coal seam lead to changes in permeability. In addition coal swells with gas adsorption and shrinks with desorption; these sorption strains impact on the coal stress state and thus the permeability. Therefore the consideration of gas migration in coal requires an appreciation of the coupled geomechanical behaviour. A number of approaches to representing coal permeability incorporate the geomechanical response and have found widespread use in reservoir simulation. However these approaches are based on two simplifying assumptions; uniaxial strain (i.e. zero strain in the horizontal plane) and constant vertical stress. This paper investigates the accuracy of these assumptions for reservoir simulation of enhanced coalbed methane through CO2 sequestration. A coupled simulation approach is used where the coalbed methane simulator SIMED II is coupled with the geomechanical model FLAC3D. This model is applied to three simulation case studies assembled from information presented in the literature. Two of these are for 100% CO2 injection, while the final example is where a flue gas (12.5% CO2 and 87.5% N2) is injected. It was found that the horizontal contrast in sorption strain within the coal seam caused by spatial differences in the total gas content leads to vertical stress variation. Thus the permeability calculated from the coupled simulation and that using an existing coal permeability model, the Shi–Durucan model, are significantly different; for the region in the vicinity of the production well the coupled permeability is greater than the Shi–Durucan model. In the vicinity of the injection well the permeability is less than that calculated using the Shi–Durucan model. This response is a function of the magnitude of the strain contrast within the seam and dissipates as these contrasts diminish.  相似文献   

7.
We report laboratory experiments that investigate the permeability evolution of an anthracite coal as a function of applied stress and pore pressure at room temperature as an analog to other coal types. Experiments are conducted on 2.5 cm diameter, 2.5-5 cm long cylindrical samples at confining stresses of 6 to 12 MPa. Permeability and sorption characteristics are measured by pulse transient methods, together with axial and volumetric strains for both inert (helium (He)) and strongly adsorbing (methane (CH4) and carbon dioxide (CO2)) gases. To explore the interaction of swelling and fracture geometry we measure the evolution of mechanical and transport characteristics for three separate geometries — sample A containing multiple small embedded fractures, sample B containing a single longitudinal through-going fracture and sample C containing a single radial through-going fracture. Experiments are conducted at constant total stress and with varied pore pressure — increases in pore pressure represent concomitant (but not necessarily equivalent) decreases in effective stress. For the samples with embedded fractures (A and C) the permeability first decreases with an increase in pressure (due to swelling and fracture constraint) and then increases near-linearly (due to the over-riding influence of effective stresses). Conversely, this turnaround in permeability from decreasing to increasing with increasing pore pressure is absent in the discretely fractured sample (B) — the influence of the constraint of the connecting fracture bridges in limiting fracture deformation is importantly absent as supported by theoretical considerations. Under water saturated conditions, the initial permeabilities to all gases are nearly two orders of magnitude lower than for dry coal and permeabilities increase with increasing pore pressure for all samples and at all gas pressures. We also find that the sorption capacities and swelling strains are significantly reduced for water saturated samples — maybe identifying the lack of swelling as the primary reason for the lack of permeability decrease. Finally, we report the weakening effects of gas sorption on the strength of coal samples by loading the cores to failure. Results surprisingly show that the strength of the intact coal (sample A) is smaller than that of the axially fractured coal (sample B) due to the extended duration of exposure to CH4 and CO2. Average post-failure particle size for the weakest intact sample (A) is found to be three times larger than that of the sample B, based on the sieve analyses from the samples after failure. We observe that fracture network geometry and saturation state exert important influences on the permeability evolution and strength of coal under in situ conditions.  相似文献   

8.
Laboratory experiments were conducted to investigate the adsorption kinetic behavior of pure and mixed gases (CO2, CH4, approximately equimolar CO2 + CH4 mixtures, and He) on a coal sample obtained from the Black Warrior Basin at the Littleton Mine (Twin Pine Coal Company), Jefferson County, west-central Alabama. The sample was from the Mary Lee coal zone of the Pottsville Formation (Lower Pennsylvanian). Experiments with three size fractions (45–150 µm, 1–2 mm, and 5–10 mm) of crushed coal were performed at 40 °C and 35 °C over a pressure range of 1.4–6.9 MPa to simulate coalbed methane reservoir conditions in the Black Warrior Basin and provide data relevant for enhanced coalbed methane recovery operations. The following key observations were made: (1) CO2 adsorption on both dry and water-saturated coal is much more rapid than CH4 adsorption; (2) water saturation decreases the rates of CO2 and CH4 adsorption on coal surfaces, but it appears to have minimal effects on the final magnitude of CO2 or CH4 adsorption if the coal is not previously exposed to CO2; (3) retention of adsorbed CO2 on coal surfaces is significant even with extreme pressure cycling; and (4) adsorption is significantly faster for the 45–150 μm size fraction compared to the two coarser fractions.  相似文献   

9.
Sequestration of carbon dioxide in unmineable coal seams is an option to reduce carbon dioxide emissions. It is well known that the interaction of carbon dioxide with unconfined coal induces swelling. This paper contributes three-dimensional strain distribution in confined coal at microstructural level using high-resolution X-ray computerized tomography data and image analysis. Swelling and compression/compaction of regions in the coal matrix occurs with CO2 uptake. Normal strain varies between ? 1.15% and 0.93%, ? 3.11% and 0.94%, ? 0.43% and 0.30% along x, y and z axes respectively. Volumetric strain varies between ? 4.25% and 1.25%. The positive strains reported are consistent with typical range for unconstrained swelling. However, the average volumetric strains value (? 0.34%) reflect overall volume reduction. Overall swelling is apparently influenced by the confining stresses. The magnitudes of normal strains are heterogeneous and anisotropic. The swelling vs. compression/compaction observed after CO2 uptake is localized and likely lithotype dependant.  相似文献   

10.
For the degassing of coal seams, either prior to mining or in un-minable seams to obtain coalbed methane, it is the combination of cleat frequency, aperture, connectivity, stress, and mineral occlusions that control permeability. Unfortunately, many potential coalbeds have limited permeability and are thus marginal for economic methane extraction. Enhanced coalbed methane production, with concurrent CO2 sequestration is also challenging due to limited CO2 injectivity. Microwave energy can, in the absence of confining stress, induce fractures in coal. Here, creation of new fractures and increasing existing cleat apertures via short burst, high-energy microwave energy was evaluated for an isotropically stressed and an unstressed bituminous coal core. A microwave-transparent argon gas pressurized (1000 psi) polycarbonate vessel was constructed to apply isotropic stress simulating ~ 1800 foot depth. Cleat frequency and distribution was determined for the two cores via micro-focused X-ray computed tomography. Evaluation occurred before and after microwave exposure with and without the application of isotropic stress during exposure. Optical microscopy was performed for tomography cleat aperture calibration and also to examine lithotypes influences on fracture: initiation, propagation, frequency, and orientation. It was confirmed that new fractures are induced via high-energy microwave exposure in an unconfined bituminous core and that the aperture increased in existing cleats. Cleat/fracture volume, following microwave exposure increased from 1.8% to 16.1% of the unconfined core volume. For the first time, similar observations of fracture generation and aperture enhancement in coal were also determined for microwave exposure under isotropic stress conditions. An existing cleat aperture, determined from calibrated X-ray computed tomography increased from 0.17 mm to 0.32 mm. The cleat/fracture volume increased from 0.5% to 5.5%. Optical microscopy indicated that fracture initiated likely occurred in at least some cases at fusain microlithotypes. Presumably this was due to the open pore volumes and potential for bulk water presence or steam pressure buildup in these locations. For the major induced fractures, they were mostly horizontal (parallel to the bedding plane) and often contained within lithotype bands. Thus it appears likely that microwaves have the potential to enhance the communication between horizontal wellbore and existing cleat network, in coal seams at depth, for improved gas recovery or CO2 injection.  相似文献   

11.
Studying gas transport mechanisms in coal seams is crucial in determining the suitability of coal formations for geosequestration and/or CO2-enhanced coal bed methane recovery (ECBM), estimating CO2 storage capacity and recoverable volume of methane, and predicting the long-term integrity of CO2 storage and possible leakages. Due to the dual porosity nature of coal, CO2 transport is a combination of viscous flow and Fickian diffusion. Moreover, CO2 is adsorbed by the coal which leads to coal swelling which can change the porous structure of coal and consequently affects the gas flow properties of coal, i.e. its permeability. In addition, during CO2 permeation, the coal seam undergoes a change in effective stress due to the pore pressure alteration and this can also change the permeability of the coal seam. In addition, depending on the in situ conditions of the coal seam and the plan of the injection scheme, carbon dioxide can be in a supercritical condition which increases the complexity of the problem. We provide an overview of the recent studies on porous structure of coal, CO2 adsorption onto coal, mechanisms of CO2 transport in coalbeds and their measurement, and hydro-mechanical response of coal to CO2 injection and identify opportunities for future research.  相似文献   

12.
Significant potential exists for CO2 sequestration in coalbed methane reservoirs of the Black Warrior basin. Reservoir simulation is an appropriate approach to estimate both the storage capacity and methane recovery enhancement. However, prior to a reliable reservoir modeling and simulation, conducting an accurate and comprehensive reservoir characterization study is necessary. The purpose of the present study is twofold: (a) to provide a rigorous reservoir characterization study required for modeling Mary Lee coal group in the Blue Creek field of the Black Warrior basin; (b) to run fluid flow simulations to predict the performance of ECBM process applied to an under pressured zone of the Mary Lee coal group. According to the current well configuration of Blue Creek field, three applicable well patterns, namely a direct line drive, an inverted 5-spot and a normal 5-spot were separately (i.e., in three distinct cases) used for simulating ECBM. Simulations were run on an approximately 32 ha (80-acre) drainage area, and included coal matrix shrinkage/swelling effects. The injected gas was assumed to be pure CO2. Using an inverted 5-spot pattern, simulations predicted that after 7.5 years of CO2 injection, approximately 32,000 tonnes of CO2 would be sequestered per 32 ha of this zone and that methane recovery would be enhanced by 36 %. Using a normal 5-spot pattern, CO2 breakthrough would occur 2.4 years earlier, and about 40,000 tonnes CO2 would be sequestered. However, methane production would be enhanced by 33 %. Considering methane recovery enhancement, direct line drive pattern delivered poor results in comparison with two other patterns. As expected, the results also showed that CO2 injection would increase water production.  相似文献   

13.
CBM and CO2-ECBM related sorption processes in coal: A review   总被引:1,自引:0,他引:1  
This article reviews the state of research on sorption of gases (CO2, CH4) and water on coal for primary recovery of coalbed methane (CBM), secondary recovery by an enhancement with carbon dioxide injection (CO2-ECBM), and for permanent storage of CO2 in coal seams.Especially in the last decade a large amount of data has been published characterizing coals from various coal basins world-wide for their gas sorption capacity. This research was either related to commercial CBM production or to the usage of coal seams as a permanent sink for anthropogenic CO2 emissions. Presently, producing methane from coal beds is an attractive option and operations are under way or planned in many coal basins around the globe. Gas-in-place determinations using canister desorption tests and CH4 isotherms are performed routinely and have provided large datasets for correlating gas transport and sorption properties with coal characteristic parameters.Publicly funded research projects have produced large datasets on the interaction of CO2 with coals. The determination of sorption isotherms, sorption capacities and rates has meanwhile become a standard approach.In this study we discuss and compare the manometric, volumetric and gravimetric methods for recording sorption isotherms and provide an uncertainty analysis. Using published datasets and theoretical considerations, water sorption is discussed in detail as an important mechanisms controlling gas sorption on coal. Most sorption isotherms are still recorded for dry coals, which usually do not represent in-seam conditions, and water present in the coal has a significant control on CBM gas contents and CO2 storage potential. This section is followed by considerations of the interdependence of sorption capacity and coal properties like coal rank, maceral composition or ash content. For assessment of the most suitable coal rank for CO2 storage data on the CO2/CH4 sorption ratio data have been collected and compared with coal rank.Finally, we discuss sorption rates and gas diffusion in the coal matrix as well as the different unipore or bidisperse models used for describing these processes.This review does not include information on low-pressure sorption measurements (BET approach) to characterize pore sizes or pore volume since this would be a review of its own. We also do not consider sorption of gas mixtures since the data base is still limited and measurement techniques are associated with large uncertainties.  相似文献   

14.
This paper reports on the performance comparison for different CO2-ECBM schemes in relatively thin unminable seams typical of Northern Appalachian coal basin using a horizontal well configuration. Numerical simulations based upon public-domain coalbed reservoir properties indicated that injection of pure CO2 is likely to result in only limited incremental methane recovery if any over primary recovery, due to the low injection rates that can be achieved. On the other hand, the presence of the nitrogen component in the injected gas stream is capable of improving the efficiency of enhanced methane recovery significantly without compromising the net CO2 injection rates, as a result of improved injectivity over pure CO2 injection. There is, however, a trade off between incremental methane recovery and produced gas purity due to early nitrogen breakthrough.  相似文献   

15.
Enhanced coalbed methane (ECBM) involves the injection of a gas, such as nitrogen or carbon dioxide, into the coal reservoir to displace the methane present. Potentially this strategy can offer greater recovery of the coal seam methane and higher rates of recovery due to pressure maintenance of the reservoir. While reservoir simulation forms an important part of the planning and assessment of ECBM, a key question is the accuracy of existing approaches to characterising and representing the gas migration process. Laboratory core flooding allows the gas displacement process to be investigated on intact coal core samples under conditions analogous to those in the reservoir. In this paper a series of enhanced drainage core floods are presented and history matched using an established coal seam gas reservoir simulator, SIMED II. The core floods were performed at two pore pressures, 2 MPa and 10 MPa, and involve either nitrogen or flue gas (90% nitrogen and 10% CO2) flooding of core samples initially saturated with methane. At the end of the nitrogen floods the core flood was reversed by flooding with methane to investigate the potential for hysteresis in the gas displacement process. Prior to the core flooding an independent characterisation programme was performed on the core sample where the adsorption isotherm, swelling with gas adsorption, cleat compressibility and geomechanical properties were measured. This information was used in the history matching of the core floods; the properties adjusted in the history matching were related to the affect of sorption strain on coal permeability and the transfer of gas between cleat and matrix. Excellent agreement was obtained between simulated and observed gas rates, breakthrough times and total mass balances for the nitrogen/methane floods. It was found that a triple porosity model improved the agreement with observed gas migration over the standard dual porosity Warren-Root model. The Connell, Lu and Pan hydrostatic permeability model was used in the simulations and improved history match results by representing the contrast between pore and bulk sorption strains for the 10 MPa cases but this effect was not apparent for the 2 MPa cases. There were significant differences between the simulations and observations for CO2 flow rates and mass balances for the flue gas core floods. A possible explanation for these results could be that there may be inaccuracy in the representation of mixed gas adsorption using the extended Langmuir adsorption model.  相似文献   

16.
Carbon dioxide (CO2) is considered to be the most important greenhouse gas in terms of overall effect. CO2 geological storage in coal beds is of academic and industrial interest because of economic synergies between greenhouse gas sequestration and coal bed methane (CH4) recovery by displacement/adsorption. Previously, most work focused on either theoretical analyses and mathematical simulations or gas adsorption?Cdesorption experiments using coal particles of millimeter size or smaller. Those studies provided basic understanding of CH4 recovery by CO2 displacement in coal fragments, but more relevant and realistic investigations are still rare. To study the processes more realistically, we conducted experimental CH4 displacement by CO2 and CO2 sequestration with intact 100?×?100?×?200?mm coal specimens. The coal specimen permeability was measured first, and results show that the permeability of the specimen is different for CH4 and CO2; the CO2 permeability was found to be at least two orders of magnitude greater than that for CH4. Simultaneously, a negative exponential relationship between the permeability and the applied mean stress on the specimen was found. Under the experimental stress conditions, 17.5?C28.0 volumes CO2 can be stored in one volume of coal, and the displacement ratio CO2?CCH4 is as much as 7.0?C13.9. The process of injection, adsorption and desorption, displacement, and output of gases proceeds smoothly under an applied constant pressure differential, and the CH4 content in the output gas amounted to 20?C50% at early stages, persisting to 10?C16% during the last stage of the experiments. Production rate and CH4 fraction are governed by complex factors including initial CH4 content, the pore and fissure fabric of the coal, the changes in this fabric as the result of differential adsorption of CO2, the applied stress, and so on. During CO2 injection and CH4 displacement, the coal can swell from effects of gas adsorption and desorption, leading to changes in the microstructure of the coal itself. Artificial stimulation (e.g. hydraulic fracturing) to improve coalbed transport properties for either CO2 sequestration or enhanced coal bed methane recovery will be necessary. The interactions of large-scale induced fractures with the fabric at the scale of observable fissures and fractures in the laboratory specimens, as well as to the pore scale processes associated with adsorption and desorption, remain of profound interest and a great challenge.  相似文献   

17.
Coal swelling/shrinkage during gas adsorption/desorption is a well-known phenomenon. For some coals the swelling/shrinkage shows strong anisotropy, with more swelling in the direction perpendicular to the bedding than that parallel to the bedding. Experimental measurements performed in this work on an Australian coal found strong anisotropic swelling behaviour in gases including nitrogen, methane and carbon dioxide, with swelling in the direction perpendicular to the bedding almost double that parallel to the bedding. It is proposed here that this anisotropy is caused by anisotropy in the coal's mechanical properties and matrix structure. The Pan and Connell coal swelling model, which applies an energy balance approach where the surface energy change caused by adsorption is equal to the elastic energy change of the coal solid, is further developed to describe the anisotropic swelling behaviour incorporating coal property and structure anisotropy. The developed anisotropic swelling model is able to accurately describe the experimental data mentioned above, with one set of parameters to describe the coal's properties and matrix structure and three gas adsorption isotherms. This developed model is also applied to describe anisotropic swelling measurements from the literature where the model was found to provide excellent agreement with the measurement. The anisotropic coal swelling model is also applied to an anisotropic permeability model to describe permeability behaviour for primary and enhanced coalbed methane recovery. It was found that the permeability calculation applying anisotropic coal swelling differs significantly to the permeability calculated using isotropic volumetric coal swelling strain. This demonstrates that for coals with strong anisotropic swelling, anisotropic swelling and permeability models should be applied to more accurately describe coal permeability behaviour for both primary and enhanced coalbed methane recovery processes.  相似文献   

18.
Field experiments and laboratory studies have shown that swelling of coal takes place upon contact with carbon dioxide at underground pressure and temperature conditions. Understanding this swelling behavior is crucial for predicting the performance of future carbon dioxide sequestration operations in unminable coal seams conducted in association with methane production. Swelling is believed to be related to adsorption on the internal coal surface. Whereas it is well established that moisture influences the sorption capacity of coal, the influence of water on coal swelling is less well-defined. This paper presents the results of laboratory experiments to investigate the effect of moisture on coal swelling in the presence of carbon dioxide, methane and argon. Strain development of an unconfined sample of about 1.0–1.5 mm3 at 40 °C and 8 MPa (and at other pressures) was observed in an optical cell under a microscope as a function of time. Both air dried and moisturized samples were used. Results confirmed different swelling behaviors of coal with different substances: carbon dioxide leads to higher strain than methane, while exposure to argon leads to very little swelling. The experiments on moisturized samples seem to confirm the role of moisture as a competitor to gas molecules for adsorption sites. Adsorption of water could also explain the observed swelling due to water uptake at atmospheric pressure. A re-introduction of carbon dioxide, after intermediate gas release, results in higher strains which indicate a drying effect of the carbon dioxide on the coal. The results of this study show that the role of water cannot be ignored if one wants to understand the fundamental processes that are taking place in enhanced coalbed methane operations.  相似文献   

19.
The Panguan Syncline contains abundant coal resources,which may be a potential source of coalbed methane.In order to evaluate the coalbed methane production potential in this area,we investigated the pore-fracture system of coalbed methane reservoirs,and analyzed the gas sorption and seepage capacities by using various analytical methods,including scanning electron microscopy(SEM),optical microscopy,mercury-injection test,low-temperature N2 isotherm adsorption/desorption analyses,lowfield nuclear magnetic resonance and methane isothermal adsorption measurements.The results show that the samples of the coal reservoirs in the Panguan Syncline have moderate gas sorption capacity.However, the coals in the study area have favorable seepage capacities,and are conductive for the coalbed methane production.The physical properties of the coalbed methane reservoirs in the Panguan Syncline are generally controlled by coal metamorphism:the low rank coal usually has low methane sorption capacity and its pore and microfractures are poorly developed;while the medium rank coal has better methane sorption capacity,and its seepage pores and microfractures are well developed,which are sufficient for the coalbed methane’s gathering and exploration.Therefore,the medium rank coals in the Panguan Syncline are the most prospective targets for the coalbed methane exploration and production.  相似文献   

20.
为了查明河南省不同构造区内二1煤层中气体的流动特征和煤体受构造变形分异后的独特性,采用实验数据分析、瓦斯地质和渗流学理论,研究煤中孔容分布、孔径受应力影响后的变化以及煤体强度受构造应力作用下的变形和破坏特点。结果表明,煤层中甲烷连续流型占优的排序为:太行构造区、崤熊构造区、嵩萁构造区。煤中甲烷流型差异受区域构造变形体制控制,太行构造区的拉伸变形导致煤体强度值域分布广,最大体应变大于其他区域;嵩萁构造区的重力滑动、剪切和伸展变形使煤体强度和孔隙率最低、最大体应变最小;崤熊构造区内煤体的最大体应变介于两者之间。该结论对河南省煤层气开发有指导意义。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号