首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The unsurpassed sensitivity and resolution of the Square Kilometer Array (SKA) will make it possible for the first time to probe the continuum emission of normal star forming galaxies out to the edges of the universe. This opens the possibility for routinely using the radio continuum emission from galaxies for cosmological research as it offers an independent probe of the evolution of the star formation density in the universe. In addition it offers the possibility to detect the first star forming objects and massive black holes.In deep surveys SKA will be able to detect Hi in emission out to redshifts of z ≈ 2.5 and hence be able to trace the conversion of gas into stars over an era where considerable evolution is taking place. Such surveys will be able to uniquely determine the respective importance of merging and accreting gas flows for galaxy formation over this redshift range (i.e. out to when the universe was only one third its present age). It is obvious that only SKA will able to see literally where and how gas is turned into stars.These and other aspects of SKA imaging of galaxies will be discussed.  相似文献   

2.
We study the stellar mass assembly of the Spiderweb galaxy  (MRC 1138−262)  , a massive   z = 2.2  radio galaxy in a protocluster and the probable progenitor of a brightest cluster galaxy. Nearby protocluster galaxies are identified and their properties are determined by fitting stellar population models to their rest-frame ultraviolet to optical spectral energy distributions. We find that within 150 kpc of the radio galaxy the stellar mass is centrally concentrated in the radio galaxy, yet most of the dust-uncorrected, instantaneous star formation occurs in the surrounding low-mass satellite galaxies. We predict that most of the galaxies within 150 kpc of the radio galaxy will merge with the central radio galaxy by   z = 0  , increasing its stellar mass by up to a factor of ≃2. However, it will take several hundred Myr for the first mergers to occur, by which time the large star formation rates are likely to have exhausted the gas reservoirs in the satellite galaxies. The tidal radii of the satellite galaxies are small, suggesting that stars and gas are being stripped and deposited at distances of tens of kpc from the central radio galaxy. These stripped stars may become intracluster stars or form an extended stellar halo around the radio galaxy, such as those observed around cD galaxies in cluster cores.  相似文献   

3.
K.E. Johnson   《New Astronomy Reviews》2004,48(11-12):1337
The Square Kilometer Array (SKA) will enable studies of star formation in nearby galaxies with a level of detail never before possible outside of the Milky Way. Because the earliest stages of stellar evolution are often inaccessible at optical and near-infrared wavelengths, high spatial resolution radio observations are necessary to explore extragalactic star formation. The SKA will have the sensitivity to detect individual ultracompact HII regions out to the distance of nearly 50 Mpc, allowing us to study their spatial distributions, morphologies, and populations statistics in a wide range of environments. Radio observations of Wolf-Rayet stars outside of the Milky Way will also be possible for the first time, greatly expanding the range of conditions in which their mass loss rates can be determined from free-free emission. On a vastly larger scale, natal of super star clusters will be accessible to the SKA out to redshifts of nearly z 0.1. The unprecedented sensitivity of radio observations with the SKA will also place tight constraints on the star formation rates as low as 1M yr−1 in galaxies out to a redshift of z 1 by directly measuring the thermal radio flux density without assumptions about a galaxy’s magnetic field strength, cosmic ray production rate, or extinction.  相似文献   

4.
The present-day Universe is seemingly dominated by dark energy and dark matter, but mapping the normal (baryonic) content remains vital for both astrophysics – understanding how galaxies form – and astro-particle physics – inferring properties of the dark components.The Square Kilometer Array (SKA) will provide the only means of studying the cosmic evolution of neutral hydrogen (HI) which, alongside information on star formation from the radio continuum, is needed to understand how stars formed from gas within dark-matter over-densities and the rôles of gas accretion and galaxy merging.‘All hemisphere’ HI redshift surveys to z 1.5 are feasible with wide-field-of-view realizations of the SKA and, by measuring the galaxy power spectrum in exquisite detail, will allow the first precise studies of the equation-of-state of dark energy. The SKA will be capable of other uniquely powerful cosmological studies including the measurement of the dark-matter power spectrum using weak gravitational lensing, and the precise measurement of H0 using extragalactic water masers.The SKA is likely to become the premier dark-energy-measuring machine, bringing breakthroughs in cosmology beyond those likely to be made possible by combining CMB (e.g. Planck), optical (e.g. LSST, SNAP) and other early-21st-century datasets.  相似文献   

5.
The study of the stellar constituents of star-forming sites in a wide variety of conditions yields the key to interpreting wide-field UV-optical imaging of extended nearby galaxies, and of distant galaxies. We obtained six-band imaging (from far-UV to I) with HST-WFPC2 of 67 sites of recent star formation in eight Local Group galaxies. HST pointings were selected from GALEX wide-field FUV imaging, which traces the young stellar populations. The HST observations were optimized to characterize the hottest, most massive stars in these regions. From the HST photometry, analyzed with stellar model colors, we derived the physical parameters of the massive stars in each field, and of the extinction by interstellar dust. The HST results are used to interpret GALEX UV measurements of SF across the entire galaxies. Our comprehensive photometric study at HST resolution (sub-pc scale in these galaxies) also provides an ideal selection of targets for follow-up spectroscopy with large ground-based telescopes, and in the UV with HST- or WSO-class telescopes, to clarify the influence of metallicity on the properties and the evolution of massive stars.  相似文献   

6.
This paper introduces a technique for searching for bright massive stars in galaxies beyond the Local Group.To search for massive stars,we processed the results of stellar photometry from the Hubble Space Telescope(HST) images using the DAOPHOT and DOLPHOT packages.The results of such searches are demonstrated with examples of the galaxies DDO 68,M94 and NGC 1672.In the galaxy DDO 68,the LBV star changes its brightness,and massive stars in M94 can be identified by excess in the Ha band.For the galaxy NGC 1672,we measure the distance for the first time by the TRGB method,which enabled determining the luminosities of the brightest stars,likely hypergiants,in the young star formation region.So far,we have performed stellar photometry on HST images of 320 northern sky galaxies located at a distance less than 12 Mpc.This allowed us to identify 53 galaxies with probable hypergiants.Further photometric and spectral observations of these galaxies are planned to search for massive stars.  相似文献   

7.
We follow the chemical evolution of a galaxy through star formation and its feedback into the interstellar medium (ISM), starting from primordial gas and allowing for gas to inflow into the region being modelled. We attempt to reproduce observed spectral line strengths for early-type galaxies in order to constrain their star formation histories (SFH). The efficiencies and times of star formation are varied, as are the amount and duration of inflow. We evaluate the chemical enrichment and the mass of stars made with time. Single stellar population (SSP) data are then used to predict line strengths for composite stellar populations. The results are compared with observed line strengths in 10 ellipticals, including some features which help to break the problem of age–metallicity degeneracy in old stellar populations. We find that the elliptical galaxies modelled require high metallicity SSPs (> 3 Z⊙) at later times. In addition, the strong lines observed cannot be produced by an initial starburst in primordial gas, even if a large amount of inflow is allowed for during the first few × 108 yr. This is because some pre-enrichment is required for lines in the bulk of the stars to approach the observed line strengths in ellipticals. These strong lines are better modelled by a system with a delayed burst of star formation, following an early SFH which can be a burst or more steady star formation. Such a model is representative of star formation in normal ellipticals or spirals, respectively, followed by a starburst and gas inflow during a merger or strong interaction with a gas-rich galaxy. Alternatively, a single initial burst of normal stars with a Salpeter initial mass function could produce the observed strong lines if it followed some pre-enrichment process which did not form long-lived stars (e.g. population III stars).  相似文献   

8.
I review the origin of UV-radiation in galaxies of different morphological types. UV-excess in spectra of massive elliptical galaxies which have predominantly old stellar populations is traditionally explained by the contribution of low-mass stars at very late, poorly known stages of evolution—by so called ‘AGB-manqué’ stars or by the population of extended horizontal branch. However recent results from the GALEX survey of a large sample of nearby ellipticals have also demonstrated probable traces of recent star formation in a third of all ellipticals observed. In spiral galaxies extended UV-disks have been discovered by the GALEX; they are certainly illuminated by the current star formation, but what has provoked star formation in the areas of very low gas density, beyond the distribution of older stars, is a puzzle yet. The UV-spectra of starburst galaxies or starforming galactic nuclei are characterized by weak emission lines, if any, quite dissimilar to their optical spectra.  相似文献   

9.
We discuss the importance of feedback via photoionization and Compton heating on the co-evolution of massive black holes (MBHs) at the centre of spheroidal galaxies, and their stellar and gaseous components. We first assess the energetics of the radiative feedback from a typical quasar on the ambient interstellar medium (ISM). We then demonstrate that the observed   M BH–σ  relation could be established following the conversion of most of the gas of an elliptical progenitor into stars, specifically when the gas-to-stars mass ratio in the central regions has dropped to a low level  ∼0.01  or less, so that gas cooling is no longer able to keep up with the radiative heating by the growing central massive black hole (MBH). A considerable amount of the remaining gas will be expelled and both MBH accretion and star formation will proceed at significantly reduced rates thereafter, in agreement with observations of present-day ellipticals. We find further support for this scenario by evolving over an equivalent Hubble time a simple, physically based toy model that additionally takes into account the mass and energy return for the spheroid evolving stellar population, a physical ingredient often neglected in similar approaches.  相似文献   

10.
Stars and planetary systems are formed out of molecular clouds in the interstellar medium. Although the sequence of steps involved in star formation are generally known, a comprehensive theory which describes the details of the processes that drive formation of stars is still missing. The Square Kilometre Array (SKA), with its unprecedented sensitivity and angular resolution, will play a major role in filling these gaps in our understanding. In this article, we present a few science cases that the Indian star formation community is interested in pursuing with SKA, which include investigation of AU-sized structures in the neutral ISM, the origin of thermal and non-thermal radio jets from protostars and the accretion history of protostars, and formation of massive stars and their effect on the surrounding medium.  相似文献   

11.
The epoch of reionization (EoR) sets a fundamental benchmark in cosmic structure formation, corresponding to the formation of the first luminous objects that act to ionize the neutral intergalactic medium (IGM). Recent observations at near-IR and radio wavelengths imply that we are finally probing into this key epoch of galaxy formation at z 6. The Square Kilometer Array (SKA) will provide critical insight into the EoR, in a number of ways. First, the ability of the SKA to image the neutral IGM in 21-cm emission is a truly unique probe of the process of reionization, and is recognized as the next necessary and fundamental step in our study of the evolution of large scale structure and cosmic reionization. Second, study of HI 21-cm absorption toward the first radio loud objects probes small to intermediate scale structure in the neutral ‘cosmic web’, as well as HI in the first collapsed structures (proto-disks and mini-halos). And third, the incomparable sensitivity of the SKA allows for the study of the molecular gas, dust, and star formation activity in the first galaxies, as well as the radio continuum emission from the first accreting massive black holes. Such objects will be obscured at optical wavelengths due to absorption by the neutral IGM.  相似文献   

12.
Using the spectroscopic sample of the Sloan Digital Sky Survey Data Release 1 (SDSS DR1), we measure how gas was transformed into stars as a function of time and stellar mass: the baryonic conversion tree (BCT). There is a clear correlation between early star formation activity and present-day stellar mass: the more massive galaxies have formed approximately 80 per cent of their stars at   z > 1  , while for the less massive ones the value is only approximately 20 per cent. By comparing the BCT with the dark matter merger tree, we find indications that star formation efficiency at   z > 1  had to be approximately a factor of two higher than today (∼10 per cent) in galaxies with present-day stellar mass larger than  2 × 1011 M  , if this early star formation occurred in the main progenitor. Therefore, the λ cold dark matter (LCDM) paradigm can accommodate a large number of red objects. On the other hand, in galaxies with present-day stellar mass less than  1011 M  , efficient star formation seems to have been triggered at   z ∼ 0.2  . We show that there is a characteristic mass  ( M *∼ 1010 M)  for feedback efficiency (or lack of star formation). For galaxies with masses lower than this, feedback (or star formation suppression) is very efficient while for higher masses it is not. The BCT, determined here for the first time, should be an important observable with which to confront theoretical models of galaxy formation.  相似文献   

13.
We present an outline of our study of the effects of star formation on the different components of the interstellar medium in the discs of spiral galaxies, both globally and as a function of arm and interarm environment. We are in the process of obtaining images of 57 spiral galaxies at low inclinations, and analysing them to study the distribution of recent massive star formation, old stars, young stars, gas and dust. We will dissect the images into arm and interarm regions and compare and contrast the morphology and scale lengths within these regions inHα, HI, the near infrared, optical and (where available) CO. Modelling will show how the scale lengths are affected by star formation, how this differs between arms and interarms, and whether the Schmidt Law varies from the global values in the arm and interarm regions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Stars inject energy into the interstellar medium (ISM) by radiation, stellar winds, and supernova explosions. This energy injection causes the ISM to be inhomogeneous, which in turn alters the manner in which the energy is transferred through the ISM. A significant fraction of the energy is injected by massive stars, which formHii regions in the ISM. The structure and evolution ofHii regions in a cloudy medium deffers significantly from that in a homogeneous one. The strong stellar winds produced by massive stars form bubbles in the ISM, and the structure of these bubbles is often dominated by the structure of theHii region in which they are embedded. Finally, when the star explodes as a supernova, the evolution and appearance of the resulting remnant is determined by the structure of the bubble andHii region formed by the star during its lifetime.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.  相似文献   

15.
Knowledge of the molecular component of the ISM is fundamental to understand star formation. The H2 component appears to dominate the gas mass in the inner parts of galaxies, while the HI component dominates in the outer parts. Observation of the CO and other lines in normal and starburst galaxies have questioned the CO-to-H2 conversion factor, and detection of CO in dwarfs have shown how sensitive the conversion factor is to metallicity. Our knowledge has made great progress in recent years, because of sensitivity and spatial resolution improvements. Large-scale CO maps of nearby galaxies are now available, which extend our knowledge on global properties, radial gradients, and spiral structure of the molecular ISM. Millimetric interferometers reveal high velocity gradients in galaxy nuclei, and formation of embedded structures, like bars within bars. Galaxy interactions are very effective to enhance gas concentrations and trigger starbursts. Nuclear disks or rings are frequently observed, that concentrate the star formation activity. Since the density of starbursting galaxies is strongly increasing with redshift, the CO lines and the mm dust emission are a privileged tool to follow evolution of galaxies and observe the ISM dynamics at high redshift: they could give an answer about the debated question of the star-formation history, since many massive remote starbursts could be dust-enshrouded.  相似文献   

16.
Recent images taken with the Hubble Space Telescope ( HST ) of the interacting disc galaxies NGC 4038/4039 (the Antennae) reveal clusters of many dozens and possibly hundreds of young compact massive star clusters within projected regions spanning about 100 to 500 pc. It is shown here that a large fraction of the individual star clusters merge within a few tens to a hundred Myr. Bound stellar systems with radii of a few hundred parsecs, masses ≲ 109 M⊙ and relaxation times of 1011 − 1012 yr may form from these. These spheroidal dwarf galaxies contain old stars from the pre-merger galaxy and much younger stars formed in the massive star clusters, and possibly from later gas accretion events. The possibility that star formation in the outer regions of gas-rich tidal tails may also lead to superclusters is raised. The mass-to-light ratio of these objects is small, because they contain an insignificant amount of dark matter. After many hundred Myr such systems may resemble dwarf spheroidal satellite galaxies with large apparent mass-to-light ratios, if tidal shaping is important.  相似文献   

17.
Simple theoretical arguments indicate that cooled interstellar gas in bright elliptical galaxies forms into a young stellar population having a bottom-heavy but optically luminous initial mass function extending to approximately 2 M middle dot in circle. When the colors and spectral features of this young population are combined with those of the underlying old stellar population, the apparent ages are significantly reduced, similar to the relatively young apparent ages observed in many elliptical galaxies. Galactic mergers are not required to resupply young stars. The sensitivity of continuous star formation to LB and LX&solm0;LB is likely to account for the observed spread in apparent ages among elliptical galaxies. Local star formation is accompanied by enhanced stellar Hbeta equivalent widths, stronger optical emission lines, more thermal X-ray emission, and lower apparent temperatures in the hot gas. The young stars should cause M&solm0;L to vary with galactic radius, perturbing the fundamental plane of the old stars alone.  相似文献   

18.
High surface brightness galaxies are also galaxies with high star-forming activity. About a half of them omit, on the average, twice as much energy in the IR than in the blue. The rates of star formation are 10–30 times higher than those in normal galaxies. On average 100–300 solar masses gas are converted into stars every year and 10–30 are massive stars.  相似文献   

19.
The λ21-cm line is an excellent tracer of the neutral interstellar medium (ISM). Atomic hydrogen (HI) is found in a variety of environments, from dense clouds to the diffuse galactic halo, and its filling factor is often high, so structures with sizes over a wide range of scales can be mapped with this line. Galactic HI surveys show small scale structure that is consistent with a spectrum of interstellar turbulence similar to what is measured in the ionized component of the ISM. But our sampling of the spectrum of this turbulence is limited to a few size ranges, based on the sensitivities of existing telescopes for emission and absorption studies. The Square Kilometer Array (SKA) will provide the sensitivity and resolution to give continuous coverage of the turbulence spectrum from hundreds of parsecs to a few tens of Astronomical Units. By showing us the full spectrum of interstellar turbulence in the neutral medium, the physical processes driving hydrodynamic and magneto-hydrodynamic instabilities will be illuminated. Ultimately the turbulence governs the passage of the gas from the warm phases of the medium to the cold phases where gravitational collapse can initiate star formation. The SKA is needed to fill in this missing link in the cycle of star formation and chemical enrichment that drives the evolution of galaxies. In the Milky Way halo, SKA mapping of HI high velocity clouds will trace the structure and motion of both the warm phase gas and the hot medium. The interaction between these two phases of halo gas is a great unsolved problem in Galactic astrophysics.  相似文献   

20.
It is well known that galaxies accumulating large quantities of gas undergo violent bursts of star formation. This is believed to be due to tidal interactions of galaxies leading to the infall of gas into their central regions. Bursts of star formation in this scenario are transitory phenomena and can be induced only by external sources.However, in some cases there is no direct evidence of tidal interactions in starburst galaxies.We discuss another possibility of bursting phenomena in galaxies connected with nonlinear feedback processes in mass-exchange between components of star-forming region. We consider a three-component model including cold clouds, warm gas and massive stars and take into account the delay processes in the transformation of hot gas ejected by massive stars and evaporated from cold phase, into the warm phase. Self-regulating mechanism of phase transition of small clouds into warm gas due to heating radiation of massive stars is also taken into account.The analysis of stability of the system shows that it could be unstable even in case of a small efficiency in the birth of massive stars. The evolution of unstable nonlinear perturbations leads to the development of self-sustained nonlinear oscillations of star formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号