首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
海底地下水排泄(SGD)是全球水循环的一个组成部分,其输送的溶解物质不仅参与海洋的生物地球化学循环,而且影响近岸海域的生态环境。为了评估胶州湾海底地下水排泄状况,通过建立胶州湾内海水中226Ra的质量平衡模型来计算海底地下水排泄通量。胶州湾海水中226Ra的源主要有河流的输入、沉积物扩散输入和地下水的输入,海水系统在稳定状态下,这几种源应该与湾内海水和湾外海水的混合损失达到平衡。除了将地下水输入作为未知项外,对其他源和汇逐个进行量化,计算得知:2011年9-10月胶州湾的海底地下水排泄通量为7.85×106 m3·d-1;2012年4-5月胶州湾的海底地下水排泄通量为4.72×106 m3·d-1。在此基础上,对地下水输入胶州湾的营养盐进行了评价。  相似文献   

2.
用氡-222评价五缘湾的地下水输入   总被引:2,自引:0,他引:2       下载免费PDF全文
海底地下水排泄(SGD)近年来成为陆-海相互作用的研究热点,地球化学示踪方法是其主要研究手段,尝试用天然示踪剂氡-222评价厦门五缘湾的SGD。为了评价五缘湾SGD的入海通量及其变化,对五缘湾海水中222Rn和226Ra活度、大气中222Rn活度、风速、水温和水深进行了连续2 d的测量,对沉积物进行了培养实验用以获得其222Rn扩散通量和孔隙水中222Rn活度。基于海水中222Rn通量的质量平衡,对实测的海水中222Rn活度实施了母体支持、涨落潮影响、大气逃逸损失、沉积物扩散输入、混合损失的校正,保守估计SGD输入的222Rn通量在0~126.7 Bq/(m2·h)范围内变化,对海水中222Rn的平均贡献达54%。以井水和孔隙水中222Rn的加权平均值作为SGD端元的代表,获得SGD的输入速率为0~29.3 cm/d,平均输入速率9.3 cm/d。SGD输入速率的动态变化基本围绕12 h的周期波动,是对本海域正规半日潮的具体响应。假设SGD以平均速率在五缘湾海底输入,则五缘湾海底的SGD输入量为1.86×105 m3/d。以陆源地下淡水占SGD输入量的10%考虑,五缘湾的陆源地下淡水输入量约为1.86×104 m3/d。  相似文献   

3.
入海河口中河水与海水的混合是海洋学中一个重要的界面过程,两者混合尺度和混合速率关系到河流携带物质的扩散范围和归宿,采用天然示踪剂224Ra和226Ra计算河水与海水的混合速率。2010年8月28日,采集了闽江河口区地下水样20个、河水样13个、河水与海水的混合水样12个,分别测量了每个水样的盐度、224Ra活度和226Ra活度。结果表明:地下水中224Ra、226Ra活度普遍高于河水;所有水体中的224Ra活度普遍都高于226Ra活度;河水遇到海水后,224Ra活度出现较大幅度的增加,而226Ra活度的增加并不明显。基于224Ra与226Ra半衰期的差异,在只有河水与海水发生涡流混合的情况下,计算获得河水与海水的混合速率为140.2~142.5 m/h。  相似文献   

4.
用镭同位素评价海水滞留时间及海底地下水排泄   总被引:3,自引:0,他引:3  
海底地下水排泄(submarine groundwater discharge, SGD)难以直接测量, 镭同位素和氡-222等天然示踪剂使得间接评价SGD通量成为可能.为了评价五缘湾的水体滞留时间和SGD通量, 实测了湾内海水、湾外海水和地下水中224Ra和226Ra的活度, 利用224Ra和226Ra半衰期的差异, 采用224Ra与226Ra的活度比值计算湾内水团的年龄和平均滞留时间, 利用224Ra和226Ra的质量平衡模型计算SGD通量.五缘湾13个站位的水团年龄在0.6~2.4 d之间, 湾顶水团年龄相对较大, 平均海水滞留时间1.4 d.地下水输入五缘湾的224Ra和226Ra通量分别为5.17×106 Bq/d和5.28×106 Bq/d, 将该通量用地下水端元的活度转换成为SGD通量分别是0.21 m3/m2/d(224Ra平衡模型)和0.23 m3/m2/d(226Ra平衡模型), 两种模型的结果较接近, 其平均值0.22 m3/m2/d可作为五缘湾的海底地下水排泄通量.   相似文献   

5.
地下水-地表水相互作用是水资源管理和地表水生态系统保护中重要的一个环节,氡同位素(222Rn)由于其在地下水与地表水中含量差异显著、性质保守、检测难度低,广泛运用于地下水-地表水相互作用的研究当中。本文通过总结分析222Rn在不同地表水体(海水、河水、湖水等)中的应用,指出刻画地下水氡浓度的异质性是估算地下水排泄的重点和难点。在估算海底地下水排泄(SGD)时,氡的混合损失项估算不确定、海水氡浓度时空变异性、SGD的多组分特征等可能给估算结果带来较大不确定性;在估算河流地下水排泄时难以确定氡的大气逃逸量;研究人员对氡在示踪地表水补给地下水方面的研究程度相对不足。本文从科学研究和实际生产方面,对222Rn的研究应用提出以下潜在方向:(1)降低地下水氡空间变异性对估算地下水排泄量的影响;(2)针对不同水体、不同水文条件,准确刻画氡的大气逃逸量;(3)拓展222Rn示踪能够解决的科学问题;(4)将氡质量平衡模型计算与不确定分析相结合,实现软件化。  相似文献   

6.
运用γ谱仪,对采自福建省兴化湾外近海海域的D37和FJ3-12孔进行了 210Pb 、226Ra和 137Cs 活度的测试,得到这3种核素活度随深度变化特征。分别运用 210Pb 法的CFCS模式(恒定通量恒定沉积模式,Constant Flux and Constant Sedimentation)和CRS模式(恒定供给速率模式,Constant Rate of Supply)以及 137Cs 时标法计算平均沉积速率,发现3种方式的计算结果存在一定差异。在排除粒度变化对核素剖面的影响后,对比不同取样深度的结果发现,指数衰减剖面不完整度(取样深度未达 210Pb 的本底值区)对运用CFCS和CRS模式计算平均沉积速率均有不利影响,其中对CRS模式的影响随剖面不完整性愈强而愈显著。为此提出了相关校正方法作为参考,即先根据CFCS模式估算平均沉积速率和相应的210Pbex累积量,再通过CRS法建立钻孔年龄框架,由此可计算得出D37和FJ3-12孔的平均沉积速率分别为2.76cm/yr和4.53cm/yr。  相似文献   

7.
利用15N同位素成对标记法并结合MCMC数值模型,研究岩溶区乔灌地开垦种植砂糖桔4年后土壤氮转化特征。结果显示:乔灌地开垦种植砂糖桔后,土壤有机氮矿化速率由2.93 mg N·kg-1·d-1显著下降至0.60 mg N·kg-1·d-1,土壤无机氮的供应能力降低,土壤有机氮矿化速率与土壤有机碳、全氮和全钙含量呈显著正相关性,与铁、铝、钾和黏粒比例呈显著负相关性;土壤铵态氮微生物同化速率由1.76 mg N·kg-1·d-1显著降低为0.10 mg N·kg-1·d-1,在砂糖桔地铵态氮微生物同化速率与有机氮矿化速率的比值仅为0.17。乔灌地土壤自养硝化速率高达11.06 mg N·kg-1·d-1,而硝态氮微生物同化作用微弱,硝态氮异化还原速率仅为0.64 mg N·kg-1·d-1,导致硝态氮净产生速...  相似文献   

8.
中国北方基岩海岛水文地质条件独特,气候变化和人类活动不同程度地影响着海岛地下水与海水相互作用过程,然而对包括海水入侵(SWI)和海底地下水排泄(SGD)的水文过程的定量认识比较缺乏。本研究基于2012—2016年我国北方某基岩群岛降水、地下水水位、水质动态监测数据,运用数理统计、空间插值和水力学方法,分析了基岩海岛地下水与海水相互作用的特征和影响因素。结果表明,降水和开采是影响地下水、海水相互作用的主要因素,地下水水位变化滞后于降水事件约10 d;南岛东北岸、南岸的大部分地区没有发生海水入侵,地下水向海排泄过程较稳定,2012—2016年SGD速率均值为0.2 m/d,向海NO3-N通量均值为81.8 mmol/(m2·d);北岛东南地区是海水入侵的严重区域,地下水水位长期低于海平面且逐年下降,2012—2016年SWI速率均值为0.3 m/d,向陆NO3-N通量均值为69.6 mmol/(m2·d)。分别计算南、北两岛枯水季(2014年4月)、丰水季(2013年9月)SGD水...  相似文献   

9.
基于~(222)Rn质量平衡模型的胶州湾海底地下水排泄   总被引:1,自引:0,他引:1  
海底地下水排泄(SGD)作为全球水循环的一个组成部分,近年来成为陆海相互作用的研究热点。地球化学示踪法是研究海底地下水排泄的主要手段。本文以环境同位素222Rn作为示踪剂,通过构建222Rn质量平衡模型来评价胶州湾的海底地下水排泄,并进一步估算地下水输入的营养盐。222Rn质量平衡模型的源项考虑了河流的输入、沉积物的扩散、母体226Ra的支持,汇项考虑了222Rn的自身衰变、222Rn散逸到大气的损失以及与湾外海水的混合损失,源汇项的差值则作为地下水输入的222Rn通量。结果表明,2011年9—10月胶州湾海底地下水排泄通量为24.2 L?m–2?d–1,2012年4—5月胶州湾海底地下水排泄通量为7.8 L?m–2?d–1。丰水季节地下水输入胶州湾的营养盐低于河流输入的,但是枯水季节地下水输入的营养盐接近河流输入的,特别是输入的活性磷酸盐和硅酸盐很接近。  相似文献   

10.
李栋  赵敏  刘再华  陈波 《地学前缘》2022,29(3):155-166
河流输送到海洋的溶解无机碳(DIC)和有机碳(OC)受自然和人为双重因素的影响。了解DIC和OC的年龄、来源和转化,有助于掌握全球碳收支和提高现在以及未来自然和人类对河流碳循环影响的估算精度。本研究以普定岩溶水-碳循环试验场泉(地下水)-池(地表水)耦联系统为研究对象,利用双碳同位素(13C- 14C)方法,结合水生植物生长和传统水文地球化学特征,揭示了地下水-地表水系统中DIC和颗粒有机碳(POC)的来源及其转化机制。研究发现:(1)泉-池系统中DIC和POC的Δ14C具有相同的变化趋势,泉水中Δ14C值低于池水中Δ14C值,反映后者可能有“较年轻”的CO2的加入;(2)池水水化学和碳同位素变化由土地利用类型和池中水生植物共同控制;(3)池水中颗粒有机碳(POC)浓度明显高于泉水,且其Δ14C值表现出与沉水植物和DIC的一致性(表观年龄均为3 200900 a),说明池水POC主要源于池中水生植物光合作用利用了碳酸盐风化产生的老碳(DIC),使新形成的有机质在表观年龄上“偏老”;(4)池水水体内源有机碳对水体POC的贡献在75%以上,内源有机碳通量(以C计)在250 t·km-2·a-1至660 t·km-2·a-1之间,相对于其他土地利用类型,草地对应的地表水系统具有最大的内源有机碳占比和通量,指示了沉水植物控制型浅水水体初级生产对有机碳循环的重要作用。综上,我们认为在岩溶区通过土地利用调整来调控水生植物群落对于增加碳汇具有重要潜力。  相似文献   

11.
Previous work has documented large fluxes of freshwater and nutrients from submarine groundwater discharge (SGD) into the coastal waters of a few volcanic oceanic islands. However, on the majority of such islands, including Moorea (French Polynesia), SGD has not been studied. In this study, we used radium (Ra) isotopes and salinity to investigate SGD and associated nutrient inputs at five coastal sites and Paopao Bay on the north shore of Moorea. Ra activities were highest in coastal groundwater, intermediate in coastal ocean surface water, and lowest in offshore surface water, indicating that high-Ra groundwater was discharging into the coastal ocean. On average, groundwater nitrate and nitrite (N + N), phosphate, ammonium, and silica concentrations were 12, 21, 29, and 33 times greater, respectively, than those in coastal ocean surface water, suggesting that groundwater discharge could be an important source of nutrients to the coastal ocean. Ra and salinity mass balances indicated that most or all SGD at these sites was saline and likely originated from a deeper, unsampled layer of Ra-enriched recirculated seawater. This high-salinity SGD may be less affected by terrestrial nutrient sources, such as fertilizer, sewage, and animal waste, compared to meteoric groundwater; however, nutrient-salinity trends indicate it may still have much higher concentrations of nitrate and phosphate than coastal receiving waters. Coastal ocean nutrient concentrations were virtually identical to those measured offshore, suggesting that nutrient subsidies from SGD are efficiently utilized.  相似文献   

12.
Submarine groundwater discharge(SGD)is being increasingly recognized as a significant source of nutri-ent into coastal waters,and generally comprises two components:submarine fresh groundwater dis-charge(SFGD)and recirculated saline groundwater discharge(RSGD).The separate evaluation of SFGD and RSGD is extremely limited as compared to the conventional estimation of total SGD and associated nutrient fluxes,especially in marginal-scale regions.In this study,new high-resolution radium isotopes data in seawater and coastal groundwater enabled an estimation of SGD flux in a typical marginal sea of the Yellow Sea.By establishing 226Ra and 228Ra mass balance models,we obtained the SGD-derived radium fluxes,and then estimated the SFGD and RSGD fluxes through a two end-member model.The results showed that the total SGD flux into the Yellow Sea was equivalent to approximately 6.6 times the total freshwater discharge of surrounding rivers,and the SFGD flux accounted for only 5.2%-8.8%of the total SGD.Considering the nutrient concentrations in coastal fresh and saline groundwater,we obtained the dissolved inorganic nutrient fluxes(mmol m-2 yr-1)to be 52-353 for nitrogen(DIN),0.21-1.4 for phosphorus(DIP),34-226 for silicon(DSi)via SFGD,and 69-262 for DIN,1.0-3.9 for DIP,70-368 for DSi via RSGD,with the sum of nutrient fluxes equaling to(1.8-9.3)-fold,(1.3-5.6)-fold and(2.0-9.5)-fold of the riverine inputs.Compared to the conventional estimation of the total SGD flux,the nutrient fluxes derived from the separation of SFGD and RSGD were(1.6-2.1),(1.6-1.8)and(4.0-4.9)times lower for DIN,DIP and DSi,respectively,indicating that the estimates by separating SFGD and RSGD could be conservative and representative results of the Yellow Sea.Furthermore,we suggested that SGD played an important role in nutrient sources among all the traditional nutrient inputs sources,providing 15%-48%,33%-68%and 14%-43%of the total DIN,DIP and DSi input fluxes into the Yellow Sea,and the high nutrient stoichiometric ratios(i.e.,DIN/DIP)in SGD probably contributed to the increasing ratios in the Yellow Sea.In addition delivering large amounts of nutrient into the Yellow Sea,SGD would create primary productivity of 10-49,1.6-6.8 and 8.8-42 g C m-2 yr-1 based on N,P and Si,which were equivalent to 5.2%-27%,0.9%-3.7%and 4.7%-23%of the total primary productivity,respectively.In par-ticular,the SFGD-derived DIN flux can be converted to primary productivity of 4.2-28 g C m-2 yr-1 thus demonstrating the disproportionately large role of SFGD in ecological environment of the Yellow Sea rel-ative to its flux.Therefore,we conclude that SGD,particularly SFGD,plays an important role as a nutrient source for the Yellow Sea,and not only affects nutrient budgets and structures but also enhances the pri-mary productivity.  相似文献   

13.
Land-based pollutants such as fertilizers and wastewater can infiltrate into aquifers and discharge into surrounding coastal water bodies as submarine groundwater discharge (SGD). Oceanic islands, with a large coast length to land area ratio, may be hot spots of SGD into the global ocean. Although SGD may be a major pathway of dissolved nutrients, carbon and metals to coastal waters, studies have been limited due to the difficulties in measuring this often diffuse process. This study used radium isotopes (223Ra, 224Ra, 226Ra) to investigate SGD and the associated fluxes of nutrients into Tauranga Harbour, New Zealand. We calculated the apparent water mass ages of the harbour to be between ~4.1 and 7.8 days, which was similar to a previous numerical model of ~2–8 days. A 226Ra mass balance was constructed to quantify SGD fluxes at the harbour scale. A minimum SGD flux rate of 0.53 cm day?1 was calculated by using the maximum groundwater end-member value from 22 sample sites. However, using the geometric mean from these samples as a representative end-member, a final value of 2.83 cm day?1 or a flux of 3.09 × 106 m3 day?1 was calculated. These values were between ~1 and 2.8 times greater than all the major river and creeks discharging into the harbour during the sampling period. Due to the higher observed nutrient concentrations in groundwater, the SGD-derived dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON) and total dissolved phosphorus (TDP) fluxes were calculated to be 1.07, 0.87 and 0.05 mmol m2 day?1, respectively. These SGD inputs were ~5 times (for nitrogen) and ~8 times (for phosphorus) greater than the input from surrounding rivers and streams. The average N:P ratio in groundwater samples was 36:1 (which was greatly in excess of the Redfield ratio of 16). The harbour water had a N:P ratio of ~17:1. A positive relationship between radium isotopes and N:P ratios in the harbour further supported the hypothesis that SGD can have major implications for primary production, including recurrent algal bloom events which occur in the harbour. We suggest SGD as a major driver of nutrient dynamics in Tauranga Harbour and potentially other similar coastal lagoon systems and estuaries on oceanic islands.  相似文献   

14.
Submarine groundwater discharge (SGD) is now recognized as an important source of nutrients and freshwater to some coastal environments. We studied a shallow coastal lagoon (Little Lagoon, AL, USA) in the northern Gulf of Mexico that lacks riverine inputs but has been suspected to receive significant SGD. We observed persistent salinity gradients between the east and west ends of the lagoon and the pass connecting it to the Gulf of Mexico. Covariance between salinity in the lagoon and the groundwater tracer 222Rn indicated that SGD was responsible for the salinity gradients and is the primary source of freshwater to the lagoon. Cluster analysis of 246 biweekly samples based on temperature, salinity, and two proxies of SGD revealed two hydrographic regimes with different drivers for nutrient inputs. In samples characterized by high discharge and low temperatures (generally December–April), total nitrogen (TN) was negatively correlated with salinity, while total phosphorus (TP) was positively correlated with temperature. Total nitrogen in the groundwater was very high (0.36–4.80 mM) while total phosphorus was relatively low (0.3–2.3 μM), consistent with SGD as the source of TN during the high-discharge periods. In periods with low discharge and higher temperatures (approx. May–November), TN and TP had strong positive correlations with temperature and are inferred to originate from benthic efflux. Seasonal changes in nutrient stoichiometry in the lagoon water column also indicate an alternation between low TN/TP sediments and high TN/TP groundwater as the primary sources of nitrogen in this system.  相似文献   

15.
We hypothesize that nutrient cycling in a Gulf of Mexico subterranean estuary (STE) is fueled by oxygen and labile organic matter supplied by tidal pumping of seawater into the coastal aquifer. We estimate nutrient production rates using the standard estuarine model and a non-steady-state box model, separate nutrient fluxes associated with fresh and saline submarine groundwater discharge (SGD), and estimate offshore fluxes from radium isotope distributions. The results indicate a large variability in nutrient concentrations over tidal and seasonal time scales. At high tide, nutrient concentrations in shallow beach groundwater were low as a result of dilution caused by seawater recirculation. During ebb tide, the concentrations increased until they reached a maximum just before the next high tide. The dominant form of nitrogen was dissolved organic nitrogen (DON) in freshwater, nitrate in brackish waters, and ammonium in saline waters. Dissolved organic carbon (DOC) production was two-fold higher in the summer than in the winter, while nitrate and DON production were one order of magnitude higher. Oxic remineralization and denitrification most likely explain these patterns. Even though fresh SGD accounted for only ∼5% of total volumetric additions, it was an important pathway of nutrients as a result of biogeochemical inputs in the mixing zone. Fresh SGD transported ∼25% of DOC and ∼50% of total dissolved nitrogen inputs into the coastal ocean, with the remainder associated with a one-dimensional vertical seawater exchange process. While SGD volumetric inputs are similar seasonally, changes in the biogeochemical conditions of this coastal plain STE led to higher summertime SGD nutrient fluxes (40% higher for DOC and 60% higher for nitrogen in the summer compared to the winter). We suggest that coastal primary production and nutrient dynamics in the STE are linked.  相似文献   

16.
Understanding the transference of water resources within hydrogeological systems, particularly in coastal aquifers, in which groundwater discharge may occur through multiple pathways (through springs, into rivers and streams, towards the sea, etc.), is crucial for sustainable groundwater use. This research aims to demonstrate the usefulness of the application of conventional recharge assessment methods coupled to isotopic techniques for accurately quantifying the hydrogeological balance and submarine groundwater discharge (SGD) from coastal carbonate aquifers. Sierra Almijara (Southern Spain), a carbonate aquifer formed of Triassic marbles, is considered as representative of Mediterranean coastal karst formations. The use of a multi-method approach has permitted the computation of a wide range of groundwater infiltration rates (17–60%) by means of direct application of hydrometeorological methods (Thornthwaite and Kessler) and spatially distributed information (modified APLIS method). A spatially weighted recharge rate of 42% results from the most coherent information on physiographic and hydrogeological characteristics of the studied system. Natural aquifer discharge and groundwater abstraction have been volumetrically quantified, based on flow and water-level data, while the relevance of SGD was estimated from the spatial analysis of salinity, 222Rn and the short-lived radium isotope 224Ra in coastal seawater. The total mean aquifer discharge (44.9–45.9 hm3 year?1) is in agreement with the average recharged groundwater (44.7 hm3 year?1), given that the system is volumetrically equilibrated during the study period. Besides the groundwater resources assessment, the methodological aspects of this research may be interesting for groundwater management and protection strategies in coastal areas, particularly karst environments.  相似文献   

17.
Several recent studies have suggested that submarine groundwater discharge (SGD) occurs in the Venice lagoon with discharge rates on the same order or larger than the surface runoff, as demonstrated previously in several other coastal zones around the world. Here, the first set of 222Rn data, along with new 226Ra data are reported, in order to investigate the occurrence and magnitude of SGD specifically in the southern basin of the lagoon. The independent connection with the Adriatic Sea (at the Chioggia inlet), in addition to the relative isolation of the water body from the main lagoon, make this area an interesting case study. There is probably only minimal fresh groundwater flux to the lagoon because the surrounding aquifer is subsiding and mainly has a lower hydraulic head than seawater.The data show that the Ra and Rn activities are in slight excess in the lagoon compared to the open sea, with values on the same order as those observed in the northern and central basins. Taking into account the water exchange rate between the lagoon and adjacent seawater provided by previous hydrodynamic numerical modelling, it is shown that this excess cannot be supported at steady state by only riverine input and by diffusive release from the sediment interstitial water. High activities observed in groundwater samples collected from 16 piezometers tapping into the shallow aquifer over the coastal lowland substantiate that the excess radioactivity in the lagoon may indeed be due to the advection of groundwater directly into the lagoon bottom water through the sediment interface. However, the data show that the groundwater composition is extremely heterogeneous, with high Ra activities concentrated within a narrow coastal strip where the contact between fresh and saline water takes place, while Rn strongly decreases when approaching the lagoon shore across the 20 km coastal plain. Assuming that the average groundwater activities measured in the coastal strip are representative of the SGD composition, a SGD flux of 7.7 ± 3.5 × 105 and 2.5 ± 2 × 106 m3/d is calculated using a 226Ra and 222Rn budget, respectively, (i.e. about 1-3 times the surface runoff), substantially lower than in previous studies. The influence of all assumptions on SGD estimates (groundwater heterogeneity, diffusive sediment flux, one-box versus multi-boxes model calculations) is discussed, and a sensitivity analysis of the influence of imperfect exchange and mixing at the lagoon outlets that affects the lagoon composition is provided. Finally, the results confirm that the SGD flux, calculated with these assumptions, is largely (∼80%) composed of saline lagoon water circulating through the sediment under the lagoon margin, and that the fresh water discharge associated with SGD is at most a minor term in the lagoon hydrologic balance.  相似文献   

18.
Submarine groundwater discharge (SGD) has become increasingly recognized as an important source of freshwater and nutrients to coastal waters worldwide. Although groundwater nutrients have been found to cause algal blooms in many temperate coastal waters, little is known about the biological response to these nutrients in the tropics. On the leeward coast of Hawaii Island, SGD is the dominant freshwater and nutrient source to coastal waters. Kiholo Bay, HI and Kaloko-Honokohau National Historical Park, HI are two nearshore regions with well-documented SGD with high nutrient concentrations; however, little is known about how biological processes within the surface waters respond to these inputs. This study examined how potential gross primary production (pGPP), respiration (RESP), and potential metabolism (pMET) within surface waters differed inside and outside of groundwater plumes at these two sites and between wet and dry seasons. pGPP and RESP were both significantly higher within groundwater plumes, suggesting that SGD stimulated these biological processes; however, RESP responded to a much greater extent than pGPP, resulting in heterotrophic surface waters. RESP also varied seasonally, with greater rates during the dry season compared to the wet one; pGPP did not vary seasonally. Autotrophic conditions were found within groundwater plumes at Kiholo Bay, while heterotrophic conditions were found within them at Kaloko-Honokohau and were greater during the dry season. Overall, our results show that coastal biological processes respond to SGD and that their responses vary over short spatial and temporal scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号