首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We present results of U-Pb (SHRIMP II) geochronological study of the rocks of the Mukhal alkaline massif in the Vitim alkaline province, western Transbaikalia. The available K-Ar and Rb-Sr dates for the alkaline rocks (Saizhen complex) of the Vitim province, including the Mukhal massif, vary over a broad range of values. The obtained age of crystallization of the Mukhal urtites refines the time when the regional alkaline magmatism began. The age of zircons and magmatic processes within the Barguzin area (315–275 Ma) is close to the peak of main events, which occurred between 295 and 275 Ma. These processes took place at the early stage of evolution of the Late Paleozoic rift system in Central Asia, whose activity was associated with the activity of mantle superplume.  相似文献   

2.
Isotopic dates newly obtained for the northwestern portion of the Angara–Vitim batholith are consistent with preexisting data on the duration of the Late Paleozoic magmatic cycle: 55–60 Ma (from 325 to 280 Ma). These data also indicate that alkaline mafic magmatism in western Transbaikalia began simultaneously with the transition from crustal granite-forming processes to the derivation of granites of a mixed mantle–crustal nature, with gradual enrichment of the juvenile component in the source of the magmas. Analysis of the currently discussed geodynamic models of Late Paleozoic magmatism shows that a key role in all models of extensive granite-forming processes in the region is assigned to mafic mantle magmas, which can be generated in various geotectonic environments: subduction, delamination, decompression, and a mantle plume. The plume model is most consistent with the intraplate character of the Angara–Vitim batholith. The derivation of the vast volume of granitic material (approximately 1 million km3) should have required a comparable volume of mafic magma that should have been pooled in the middle crust of the Baikal fold area. However, the density structure of the region does not provide evidence of significant volumes of mafic rocks. This suggests that the mechanism of plume–lithospheric interaction that should have induced extensive crustal melting and the origin of vast granite areas was more complicated than simply conductive melting of crustal protoliths in contact with mafic intrusions.  相似文献   

3.
The evolution of Late Paleozoic granitoid magmatism in Transbaikalia shows a general tendency for an increase in the alkalinity of successively forming intrusive complexes: from high-K calc-alkaline granites of the Barguzin complex (Angara–Vitim batholith) at the early stage through transitional from calc-alkaline to alkaline granites and quartz syenites (Zaza complex) at the intermediate stage to peralkaline granitoids (Early Kunalei complex) at the last stage. This evolution trend is complicated by the synchronous development of granitoid complexes with different sets and geochemical compositions of rocks. The compositional changes were accompanied by the decrease in the scales of granitoid magmatism occurrence with time. Crustal metaterrigenous protoliths, possibly of different compositions and ages, were the source of granitoids of the Angara–Vitim batholith. The isotopic composition of all following granitoid complexes points to their mixed mantle–crustal genesis. The mechanisms of granitoid formation are different. Some granitoids formed through the mixing of mantle and crustal magmas; others resulted from the fractional crystallization of hybrid melts; and the rest originated from the fractional crystallization of mantle products or the melting of metabasic sources with the varying but subordinate contribution of crustal protoliths. Synplutonic basic intrusions, combined dikes, and mafic inclusions, specific for the post-Barguzin granitoids, are direct geologic evidence for the synchronous occurrence of crustal and mantle magmatism. The geodynamic setting of the Late Paleozoic magmatism in the Baikal folded area is still debatable. Three possible models are proposed: (1) mantle plume impact, (2) active continental margin, and (3) postcollisional rifting. The latter model agrees with the absence of mafic rocks from the Angara–Vitim batholith structure and with the post-Barguzin age of peralkaline rocks of the Vitim province.  相似文献   

4.
New data testifying to Late Paleozoic tectonometamorphic processes at the West Transbaikalian segment of the Central Asian Fold Belt have been obtained. Zircon dating (SHRIMP-II) of highly metamorphosed rocks showed that the processes took place at 295.3 ± 1.6 Ma. Based on these data, the Late Paleozoic ages of granitoids of the Angara–Vitim areal pluton (340–280 Ma) and some dike complexes in Transbaikalia (300–280 Ma), and the Late Paleozoic age of some carbonate-terrigenous strata dated earlier to the Early Paleozoic, we have substantiated the significant role of Hercynian tectogenesis in the consolidation of the regional continental crust. We have also shown that the Late Paleozoic endogenous events and accompanying sedimentation processes were related to the geodynamic conditions governed by the changing parameters of the subsidence of the Mongol-Okhotsk oceanic subduction slab beneath the Siberian continent. Changes in the slope and rate of the slab subsidence resulted in A-subduction conditions in the distal part of the suprasubduction plate, which led to the formation of accretion-collisional orogen and the Angara–Vitim areal pluton.  相似文献   

5.
《地学前缘(英文版)》2020,11(4):1289-1303
This paper presents the results of geochronological(~(40)Ar-~(39)Ar,U-Pb SHRIMP Ⅱ),petrological and geochemical studies of the Late Paleozoic complexes of alkaline rocks(Zimovechinsky,Tuchinsky and Koma) located within the Vitim Plateau(the western part of the Mongol-Okhotsk Orogenic Belt).The rocks were formed at 310-280 Ma.It is coeval with Late Paleozoic magmatism within the Central Asian Orogenic Belt.The ε_(Nd)(T) values show large variations from-2.1 to +3.3 as well as the initial Sr(I) isotopic ratios from 0.7042 to 0.7138,that demonstrate strong isotopic heterogeneity of the magmatic source.The geochemical characteristics of the rocks show pronounced positive Pb and negative Ti,Zr-Hf anomalies that can be explained by involvement of the subducted component in primary melts.The rocks intruded in a setting of extension at the active continental margin of the Siberian Craton during subduction of Mongol-Okhotsk oceanic crust under the Siberian Craton.  相似文献   

6.
陈丹玲  刘良  廖小莹  任云飞  宫相宽 《地球科学》2019,44(12):4017-4027
北秦岭构造带早古生代的构造格局和演化过程一直是地学界比较关注也是存在较大争议的问题之一.在已有研究基础上,系统总结了本课题组近年来在北秦岭早古生代高压-超高压变质作用研究方面的进展,从变质作用角度对北秦岭早古生代的构造演化提供重要限定.丹凤斜长角闪岩中柯石英的发现为区内超高压变质作用的存在提供了最直接的矿物学证据;东秦岭秦岭杂岩中的斜长角闪岩普遍经历了高压-超高压榴辉岩相变质,具面状分布的特征,是陆壳俯冲/深俯冲作用的产物;高压-超高压榴辉岩和围岩片麻岩都记录了顺时针的P-T-t轨迹,峰期变质时代为500~490 Ma,之后主体又经历约470~450 Ma和约420~400 Ma两期抬升退变质叠加和部分熔融作用;高压-超高压岩石两期退变质和部分熔融发生的时代与北秦岭460~440Ma和~420Ma的两期岩浆事件的时代一致,说明北秦岭早古生代岩浆作用是深俯冲陆壳板片断离和碰撞造山结束后地壳伸展作用的岩浆响应;高压-超高压榴辉岩原岩形成时代约800 Ma,具有与南秦岭新元古代中晚期岩浆岩一致的地球化学特征,北秦岭超高压岩石的形成可能是商丹洋关闭后洋壳拖曳着南秦岭陆壳物质向北发生大陆深俯冲的结果,商丹洋在500 Ma主体应该已经关闭;秦岭岩群是部分而不是整体经历了大陆的深俯冲,现今的秦岭岩群是一个俯冲碰撞杂岩带而不是一个岩石地层单元或微陆块;北秦岭早古生代造山作用在中泥盆世已经结束,整体处于构造隆升后的剥蚀阶段,是南秦岭刘岭群碎屑岩的主要蚀源区,刘岭群沉积盆地形成于碰撞造山后的伸展构造背景而非弧前环境.   相似文献   

7.
The 2000 km Uralian Paleozoic orogen is situated on the western flank of the Uralo-Mongolian folded belt. It is characterized by an abundant variety of magmatic rocks and related ore deposits. Uralian Paleozoic magmatism is entirely subduction-related. It is proposed that the Uralian orogen represents a cold mobile belt in which the mantle temperature was 200 to 500 °C cooler than in the adjacent areas; a situation which is similar to the modern West Pacific Triangle Zone including Indonesia, the Philippine Islands, and southern Asia. During the course of the geological evolution of the Uralian orogen, the nature of the magmatism has changed from basic rocks of indisputable mantle origin (460–390 Ma) to mantle-crust gabbro-granitic complexes (370–315 Ma) followed by pure crustal granite magmatism (290–250 Ma). This order in rock type and age reflects the evolution of Paleozoic magmatic complexes from the beginning of subduction to the final stages of the orogen development.  相似文献   

8.
The Late Paleozoic intrusive rocks, mostly granitoids, totally occupy more than 200,000 km2 on the territory of Transbaikalia. Isotopic U-Pb zircon dating (about 30 samples from the most typical plutons) shows that the Late Paleozoic magmatic cycle lasted for 55–60 m.y., from ~330 Ma to ~275 Ma. During this time span, five intrusive suites were emplaced throughout the region. The earliest are high-K calc-alkaline granites (330–310 Ma) making up the Angara–Vitim batholith of 150,000 km2 in area. At later stages, formation of geochemically distinct intrusive suites occurred with total or partial overlap in time. In the interval of 305–285 Ma two suites were emplaced: calc-alkaline granitoids with decreased SiO2 content (the Chivyrkui suite of quartz monzonite and granodiorite) and the Zaza suite comprising transitional from calc-alkaline to alkaline granite and quartz syenite. At the next stage, in the interval of 285–278 Ma the shoshonitic Low Selenga suite made up of monzonite, syenite and alkali rich microgabbro was formed; this suite was followed, with significant overlap in time (281–276 Ma), by emplacement of Early Kunalei suite of alkaline (alkali feldspar) and peralkaline syenite and granite. Concurrent emplacement of distinct plutonic suites suggests simultaneous magma generation at different depth and, possibly, from different sources. Despite complex sequence of formation of Late Paleozoic intrusive suites, a general trend from high-K calc-alkaline to alkaline and peralkaline granitoids, is clearly recognized. New data on the isotopic U-Pb zircon age support the Rb-Sr isotope data suggesting that emplacement of large volumes of peralkaline and alkaline (alkali feldspar) syenites and granites occurred in two separate stages: Early Permian (281–278 Ma) and Late Triassic (230–210 Ma). Large volumes and specific compositions of granitoids suggest that the Late Paleozoic magmatism in Transbaikalia occurred successively in the post-collisional (330–310 Ma), transitional (305–285 Ma) and intraplate (285–275 Ma) setting.  相似文献   

9.
New structural, petrological, chemical, isotope, and paleomagnetic data have provided clues to the Late Riphean–Paleozoic history of the Uda–Vitim island arc system (UVIAS) in the Transbaikalian sector of the Paleoasian ocean, as part of the Transbaikalian zone of Paleozoids. The island arc system consists of three units corresponding to main evolution stages: (i) Upper Riphean (Late Baikalian), (ii) Vendian–Lower Paleozoic (Caledonian), and (iii) Middle–Upper Paleozoic (Hercynian). The earliest stage produced the base of the system composed of Late Riphean ophiolite (971–892 Ma, U-Pb) and volcanic (837–789 Ma, U-Pb) and sedimentary rocks (hemipelagic siliceous sediments and dolerite sills) which represent the Barguzin–Vitim oceanic basin and the Kelyana island arc. The main event of the second stage was the formation of the large UVIAS structure (over 150,000 km2) which comprised the Transbaikalian oceanic basin, the forearc and backarc basins, and the volcanic arc itself, and consisted of many volcanic-tectonic units exceeding 100 km2 in area (Eravna, Oldynda, Abaga, etc.). Lithology, stratigraphy, major–element compositions, and isotope ages of Vendian–Cambrian volcanic rocks and associated sediments indicate strong differentiation of calc-alkaline series and the origin of the island arc system upon oceanic crust, in a setting similar to that of the today’s Kuriles–Kamchatka island arc system. The Middle–Upper Paleozoic stage completed the long UVIAS history and left its imprint in sedimentary and volcanic rocks in superposed trough basins. The rocks were studied in terms of their biostratigraphic and isotope age constraints, as well as major- and trace-element compositions, and were interpreted as products of weathering and tectonic-magmatic rework of the UVIAS units.  相似文献   

10.
海南岛北部古生界时代:碎屑锆石U-Pb年代学约束   总被引:1,自引:0,他引:1  
海南岛古生界主要分布于南部三亚地块,并在琼中地块零星出露。相对于三亚地块,琼中地块内的古生界由于缺乏古生物化石证据及精细年代学数据,其地层划分及时代归属问题一直广受争议,严重限制了对海南岛北部古生代构造属性的认识。目前,利用沉积岩碎屑锆石年龄限定地层的沉积时代已得到广泛应用。本文在野外地质调查基础上,对海南岛北部邦溪、儋州、琼海等地区原划属为古生界的相关样品进行了锆石激光U-Pb年代学研究。锆石U-Pb年代学分析表明:于邦溪地区原划为奥陶系南碧沟组中采集的变质砂岩和儋州、琼海地区原划为志留系陀烈组中采集的变质砂岩的碎屑锆石给出的最年轻206Pb/238 U表观年龄分别为373、352和369 Ma,其年龄谱系与屯昌地区二叠系砂岩相类似,总体上年龄峰值为370 Ma左右,另外在约447、980、1 969~1 520和2 681~2 328Ma呈现次要峰值。结合其他资料,本文认为前人在海南岛北部划属的下古生界中至少有部分岩石应划属石炭系—下二叠统。上述研究丰富了海南岛古生界的年代学资料,也为海南岛构造演化等问题提供了新的约束。  相似文献   

11.
张喜  王信水  江拓  高俊 《地球科学》2022,47(3):1038-1058
位于中亚造山带西段和塔里木克拉通之间的天山造山带的古生代构造演化历史目前还存在很大争议,其广泛发育的古生代岩浆岩则是揭示俯冲增生过程和构造体制转换的重要岩石探针.本文对我国西天山巴仑台地区的7个古生代岩浆岩进行了系统的年代学和地球化学研究.LA-ICP-MS锆石U-Pb定年限定它们的结晶年龄在319~307 Ma之间,...  相似文献   

12.
New data on the geology, age, and composition of the Late Cenozoic volcanic rocks of the Vitim Depression, a satellite of the Vitim Lava Plateau (VLP), have been obtained. Two-stage volcanic activity has been revealed. In the Middle Miocene (14–13 Ma), a basalt and trachybasalt (hawaiite) lava covers were formed. In the Pleistocene (1.6–0.7 Ma), basanite erupted from scoria cones. Both stages of volcanism were coeval to similar pulses of volcanism within the VLP. However, unlike the latter, there were no Pliocene and Late Miocene eruptions within the Vitim Depression. Additionally, the Vitim Depression basalts have depleted geochemical characteristics comparative to those of the VLP. These features of the Vitim Depression volcanics imply their autonomous formation, whereas the synchroneity of the initial and final stages of volcanism in the depression and in the VLP reflects the existence of a common regulating mechanism of igneous activity.  相似文献   

13.
Abstract: The Bayankhongor region in central Mongolia consists of a Paleozoic subduction system including Precambrian microcontinents (Baidrag and Burd Gol zones), obducted ophiolites and accretionary sedimentary rocks (Bayankhongor and Dzag zones), and forearc sedimentary rocks (Khangay zone). Arc magmatism in the Bayankhongor region is characterized by dominance of Early Paleozoic ilmenite-series and Late Paleozoic magnetite-series granitoids. These granitoids accompany many hydrothermal deposits of such various types as porphyry, skarn and vein. K-Ar dating on four deposits in the region revealed that the South porphyry Cu-Au, Huh Bulgiin Hundii skarn Cu-Au, Han Uul shear zone-hosted Au and Taats Gol pegmatite W-Au deposits formed at 240±5 Ma, 252±5 Ma, 283±6 Ma and 329±7 Ma, respectively.
Thus the former three are related to the Permian to earliest Triassic magnetite-series granitoids, whereas the W-Au pegmatite at Taats Gol to the Early Carboniferous ilmenite-series granitoids. Porphyry and skarn Cu-Au mineralization occurred at latest Permian to earliest Triassic, when the Andean-type arc magmatism was immediately followed by the collision between the Baidrag and Tarbagatai microcontinents.  相似文献   

14.
钱兵  张照伟  吕鹏瑞  王亚磊 《地球科学》2018,43(12):4375-4389
牛鼻子梁地区首次发现的高镁闪长岩对于探讨柴北缘地区岩石圈地幔演化历史具有重要意义.为确定该类岩石成因及地球动力学过程,对其开展矿物学、岩石主-微量元素分析、锆石U-Pb定年和Hf同位素分析工作.岩石地球化学特征显示,岩石均为钙碱性岩石,具有富Mg(Mg#=62~72)、Cr、Ni、LREE(LREE/HREE=2.84~4.61)值、低FeOT/MgO(0.70~1.12)比值特征,属于高镁闪长岩;所有样品均表现出富集大离子亲石元素(Rb、Ba、Th、U、K)和LREE,而相对亏损高场强元素Nb、Ta、Ti、P和HREE,与典型的"赞岐岩"地球化学特征一致;锆石U-Pb同位素年代学研究表明岩石形成时代为388 Ma,为中泥盆世岩浆作用的产物.锆石Hf同位素特征显示岩石εHf(t)均为正值(4.4~11.6),表明岩浆起源于亏损地幔.结合区域构造演化过程认为,牛鼻子梁高镁闪长岩是由早古生代(540~520 Ma)消减带流体交代地幔楔后的富集地幔经历晚古生代(400~388 Ma)岩石圈伸展作用部分熔融的产物.   相似文献   

15.
董永胜  李才  陈辉  陈文  张彦 《岩石学报》2011,27(4):1198-1208
青藏高原冈底斯地块东南部的德玛拉岩群为一套角闪岩相变质岩系,一直被认为是前寒武纪变质基底,但并没有可靠的年代学证据。论文对采自其中的黑云角闪片岩和黑云母石英片岩进行了锆石LA-ICP-MS U-Pb定年和黑云母39Ar-40Ar定年,测试表明,黑云角闪片岩原岩锆石U-Pb年龄为217.1Ma,由黑云母39Ar-40Ar获得的变质年龄为22.3Ma,黑云母石英片岩中碎屑锆石主要为岩浆成因,年龄范围主要集中在520~600Ma和900~1100Ma,黑云母39Ar-40Ar变质年龄为16.3Ma和22.3Ma。上述结果虽不能完全否定西藏东南部察隅地区前寒武纪基底变质岩系的存在,但至少说明现今的德玛拉岩群中还包含有遭受中生代岩浆侵入的古生代沉积岩,它们在新生代经历了变质和岩浆作用的再造,是一套变质杂岩。  相似文献   

16.
兴东群是佳木斯地块的结晶基底和多个铁、金、钨矿床(点)的含矿地层。为厘定其形成时代,揭示其地质和成矿意义,选取黑龙江省林口地区的兴东群大盘道组,在剖面实测、岩相学研究基础上,开展了代表性岩石的碎屑锆石U-Pb年代学研究。结果表明,所测大盘道组的主要岩石类型为大理岩与石英片岩,其原岩为灰岩及泥岩,变质程度可达角闪岩相,沉积于浅海陆棚相环境;石英片岩中碎屑锆石的LA-ICP-MS U-Pb年龄为(2338±20)Ma751±18Ma,存在952 Ma、898 Ma、820 Ma及761 Ma 4个年龄峰值。结合羊鼻山地区大盘道组地层内有~520 Ma的花岗岩侵入以及该区域经历了~500 Ma的泛非期变质作用,确定大盘道组原岩沉积于新元古代—早古生代。本文测年结果显示有4个年龄峰值,其中898 Ma和761 Ma与前人报道的峰期年龄为898~891 Ma和757~751 Ma的两期岩浆事件相对应,另两组所测锆石也均为岩浆成因锆石,反映该区兴东群的物源复杂,且以岩浆岩为主。多期次岩浆作用使大盘道组富集Au、Cu、Pb、Zn、Fe等金属成矿元素,为羊鼻山铁钨矿床、孟家岗铁矿床和七星河金矿床等金属矿床形成提供了丰富的成矿物质基础。  相似文献   

17.
文章对桂东南糯垌—安平地区出露的阳起石化斜长角闪岩(变质基性岩)和中—基性火山角砾岩进行了锆石U-Pb年代学和全岩地球化学分析研究,结果表明,糯垌地区岩体的形成时代晚于123 Ma,安平地区火山角砾岩记录了两期重要的岩浆活动,一组为燕山期(或之后),年龄上限为~138 Ma,一组为早古生代加里东期(452~450 Ma...  相似文献   

18.
A mosaic of terranes or blocks and associated Late Paleozoic to Mesozoic sutures are characteristics of the north Sanjiang orogenic belt (NSOB). A detailed field study and sampling across the three magmatic belts in north Sanjiang orogenic belt, which are the Jomda–Weixi magmatic belt, the Yidun magmatic belt and the Northeast Lhasa magmatic belt, yield abundant data that demonstrate multiphase magmatism took place during the late Paleozoic to early Mesozoic. 9 new zircon LA–ICP–MS U–Pb ages and 160 published geochronological data have identified five continuous episodes of magma activities in the NSOB from the Late Paleozoic to Mesozoic: the Late Permian to Early Triassic (c. 261–230 Ma); the Middle to Late Triassic (c. 229–210 Ma); the Early to Middle Jurassic (c. 206–165 Ma); the Early Cretaceous (c. 138–110 Ma) and the Late Cretaceous (c. 103–75 Ma). 105 new and 830 published geochemical data reveal that the intrusive rocks in different episodes have distinct geochemical compositions. The Late Permian to Early Triassic intrusive rocks are all distributed in the Jomda–Weixi magmatic belt, showing arc–like characteristics; the Middle to Late Triassic intrusive rocks widely distributed in both Jomda–Weixi and Yidun magmatic belts, also demonstrating volcanic–arc granite features; the Early to Middle Jurassic intrusive rocks are mostly exposed in the easternmost Yidun magmatic belt and scattered in the westernmost Yangtza Block along the Garzê–Litang suture, showing the properties of syn–collisional granite; nearly all the Early Cretaceous intrusive rocks distributed in the NE Lhasa magmatic belt along Bangong suture, exhibiting both arc–like and syn–collision–like characteristics; and the Late Cretaceous intrusive rocks mainly exposed in the westernmost Yidun magmatic belt, with A–type granite features. These suggest that the co–collision related magmatism in Indosinian period developed in the central and eastern parts of NSOB while the Yanshan period co–collision related magmatism mainly occurred in the west area. In detail, the earliest magmatism developed in late Permian to Triassic and formed the Jomda–Wei magmatic belt, then magmatic activity migrated eastwards and westwards, forming the Yidun magmatic bellt, the magmatism weakend at the end of late Triassic, until the explosure of the magmatic activity occurred in early Cretaceous in the west NSOB, forming the NE Lhasa magmatic belt. Then the magmatism migrated eastwards and made an impact on the within–plate magmatism in Yidun magmatic belt in late Cretaceous.  相似文献   

19.
藏北羌塘早古生代岩浆作用及其构造演化对研究青藏高原早期演化历史以及羌塘盆地基底性质结构等具有重要科学意义。本文在综述前人研究基础上,系统总结了藏北羌塘地区早古生代岩浆岩的时空分布特征及年代学格架,初步探讨了青藏高原早古生代构造-岩浆事件对冈瓦纳大陆北缘构造演化以及羌塘盆地基底属性的约束。羌塘地区早古生代岩浆岩主要分布在日湾茶卡、都古尔、戈木日、本松错等地区,岩性以变质辉长岩、变质玄武岩、安山岩、花岗岩、变质流纹岩以及花岗片麻岩等为主。基于区域地质调查和年代学研究结果,羌塘地区早古生代发生了多期岩浆作用,分别为~500 Ma、~482 Ma、~474 Ma、~455 Ma、~438 Ma。这些岩浆岩可能是泛非造山运动结束后,冈瓦纳大陆北缘岩石圈伸展减薄的产物,并构成了羌南-保山板块早古生代的结晶基底,但有关伸展减薄的机制问题仍需开展进一步的研究工作,这些地质记录对恢复和反演青藏高原冈瓦纳大陆北缘的陆缘性质具有重要约束意义。  相似文献   

20.
The paper reports Ar-Ar, Rb-Sr, and U-Pb (SHRIMP II) geochronologic data on carbonatites in Transbaikalia, related metasomatically altered rocks, and comagmatic silicate alkaline rocks. Metamorphic processes at two carbonatite occurrences were dated at 550–559 Ma (U-Pb and Rb-Sr methods). Geochronologic data make it possible to distinguish two major epochs when carbonatite were formed: Late Mesozoic in southwestern Transbaikalia and Late Riphean-Vendian in northern Transbaikalia. Small carbonatite occurrences are also known in the Vitim and Baikal alkaline provinces, which were formed in the Middle-Late Paleozoic. The Late Mesozoic carbonatite-forming epoch is definitely correlated with the development of the Western Transbaikalia rift structure and the Late Riphean-Vendian epoch, with the breakup of Laurasia in the Late Riphean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号