首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Banded iron-formations (BIFs) form an important part of the Archaean to Proterozoic greenstone belts in the Southern Cameroon. In this study, major, trace and REE chemistry of the banded iron-formation are utilized to explore the source of metals and to constraint the origin and depositional environment of these BIFs. The studied BIF belongs to the oxide facies iron formations composed mainly of iron oxide (mainly magnetite) mesobands alternating with quartz mesobands. The mineralogy of the BIF sample consists of magnetite and quartz with lesser amount of secondary martite, goethite and trace of gibbsite and smectite. The major element chemistry of these iron-formations is remarkably simple with the main constituents being SiO2 and Fe2O3 which constitute 95.6–99.5% of the bulk rock. Low Al2O3, TiO2, and HFSE concentrations show that they are relatively detritus-free chemical sediments. The Pearson’s correlation matrix of major element reveals that there is a strong positive correlation (r = 0.99) of Al with Ti and no to weak negative correlation of Ti with Mn, Ca and weak positive correlation of Si with Ca, suggesting the null to very minor contribution of detrital material to chemical sediment. The trace elements with minor enrichments are transition metals such as Zn, Cr, Sr, V and Pb. This is an indicator of direct volcanogenic hydrothermal input in chemical precipitates. The studied BIF have a low ΣREE content, ranging between 0.41 and 3.22 ppm with an average of 0.87 ppm, similar to that of pure chemical sediments. The shale-normalized patterns show depletion in light REE, slightly enrichment in heavy REE and exhibit weak positive europium anomalies. These geochemical characteristics indicate that the source of Fe and Si was the result of deep ocean hydrothermal activity admixed with sea water. The absence of a large positive Eu anomaly in the studied BIF indicates an important role of low-temperature hydrothermal solutions. The chondrite-normalized REE patterns are characterized by LREE-enriched (Mean LaCN/YbCN = 8.01) and HREE depletion (Mean TbCN/YbCN = 1.61) patterns and show positive Ce anomalies. With the exception of one sample (LBR133), all of the BIF samples analyzed during this study have positive Ce anomalies on both chondrite- and PASS-normalized plots. This may indicate that the BIFs within the Elom area were formed within a redox stratified ocean. The positive Ce anomalies in the studied samples likely suggest that the basin in which Fe formations were deposited was reducing with respect to Ce, probably in the suboxic or anoxic seawaters.  相似文献   

2.
The Kouambo iron deposit contains banded iron formations (BIFs) and is located in the northwestern margin of the Congo craton. The BIFs are hosted in Palaeoproterozoic Nyong series, a dominantly metasedimentary formations, which were metamorphosed into greenschist to granulite facies. The Kouambo BIFs are medium- to coarse-grained banded rocks consisting of alternation of Si-rich and Fe-rich mesobands, and belong to oxide facies iron formations. Geochemistry analyses reveal that these iron formations are composed of > 96 wt% Fe2O3 and SiO2 and have low concentrations of Al2O3, TiO2 and trace HFSE, suggesting chemical precipitates of silica and iron. Moreover, these BIFs have low concentrations of Al2O3, TiO2 and trace HFSEs (high field strength elements, e.g., Zr, Hf, Ta, Pb and Th), suggesting that terrigenous detrital materials contributed insignificantly to the sedimentation. The Post-Archean Australian Shale (PAAS)-normalized REE-Y patterns display seawater-like profile: minor LREE depletion and HREE enrichment, positive Y anomalies. However, they display positive Eu and negative Ce anomalies, and low Y/Ho ratio (average 29), which suggest the influence of the hydrothermal fluids. The weak positive Eu/Eu*(PAAS) ratio (average 1.5), associated with the low V (17.5 ppm), Co (6.1 ppm) and Ni (27.5 ppm) contents similar to other Superior-type BIFs worldwide, are consistent with the deposition of the Kouambo BIFs in continental marginal sea or back-arc basin environment. In summary, the Kouambo BIFs show a seawater-like REE + Y signature, however, the positive Eu anomalies and reduced Y/Ho ratios relative to seawater indicates a possible mixing with hydrothermal fluids (∼ 0.5%).  相似文献   

3.
The Dagushan BIF-hosted iron deposit in the Anshan–Benxi area of the North China Craton (NCC) has two types of iron ore: quartz–magnetite BIF (Fe2O3T < 57 wt.%) and high-grade iron ore (Fe2O3T > 90 wt.%). Chlorite-quartz schist and amphogneiss border the iron orebodies and are locally present as interlayers with BIFs; chlorite-quartz schist and BIFs are enclosed by amphogneiss in some locations. The quartz–magnetite BIFs are enriched in HREEs (heavy rare earth elements) with positive La, Eu and Y anomalies, indicating their precipitation from marine seawater with a high-temperature hydrothermal component. Moreover, these BIFs have low concentrations of Al2O3, TiO2 and HFSEs (high field strength elements, e.g., Zr, Hf and Ta), suggesting that terrigenous detrital materials contributed insignificantly to the chemical precipitation. The high-grade iron ores exhibit similar geochemical signatures to the quartz–magnetite BIFs (e.g., REE patterns and Y/Ho ratios), implying that they have identical sources of iron. However, these ores have different REE (rare earth element) contents and Eu/Eu* values, and the magnetites contained within them exhibit diverse REE contents and trace element concentrations, indicating that the ores underwent differing formation conditions, and the high-grade ores are most likely the reformed product of the original BIFs.The chlorite-quartz schist and amphogneiss are characterized by high SiO2 and Al2O3 contents and exhibit variable abundances of REEs, enrichment in LREEs (light rare earth elements), negative anomalies in HFSEs (e.g., Nb, Ta, P and Ti) and positive anomalies in LILEs (large ion lithophile elements, e.g., Rb, Ba, U and K). A protolith reconstruction indicates that the protoliths of the chlorite-quartz schist are felsic volcanic rocks. SIMS and LA-ICP-MS zircon U–Pb dating indicate that this schist formed at approximately 3110 to 3101 Ma, which could represent the maximum deposition age of the Dagushan BIF. However, two groups of zircons from the amphogneiss are identified: 3104 to 3089 Ma zircons that are most likely derived from the chlorite-quartz schist and 2997 to 2995 Ma zircons, which are interpreted to represent the time of protolith crystallization. Thus, the Dagushan BIF most likely formed before 2997 to 2995 Ma. The ~ 3.1 Ga zircons yield εHf(t) values of − 8.07 to 5.46, whereas the ~ 3.0 Ga zircons yield εHf(t) values of − 3.96 to 2.09. These geochemical features suggest that the primitive magmas were derived from the depleted mantle with significant contributions of ancient crust.  相似文献   

4.
The Changyi banded iron formation (BIF) in the eastern North China Craton (NCC) occurs within the Paleoproterozoic Fenzishan Group. The BIF shows alternating quartz-rich light and magnetite-rich dark bands with magnetite (15–65 vol.%), quartz (25–65 vol.%) and amphibole (15–30 vol.%) constituting the major minerals. Minor garnet, epidote, chlorite, calcite, biotite and pyrite occur locally. The BIF bands are interlayered with amphibolite, hornblende gneiss, biotite quartz schist, garnet biotite schist, biotite gneiss and leptynite, and are intruded by granites. LA-ICP-MS U–Pb dating on zircons separated from the BIF bands and the wallrocks constrains the depositional age as 2240–2193 Ma and metamorphic age as ~ 1864 Ma. The dominant composition of SiO2 + Fe2O3T (average value of 92.3 wt.%) of the BIF bands suggests their formation mainly through chemical precipitation. However, the widely varying contents of major elements such as Al2O3 (0.58–6.99 wt.%), MgO (1.00–3.86 wt.%), CaO (0.22–4.19 wt.%) and trace elements such as Rb (2.06–40.4 ppm), Sr (9.36–42.5 ppm), Zr (0.91–23.6 ppm), Hf (0.04–0.75 ppm), Cr (89.1–341 ppm), Co (2.94–30.4 ppm), and Ni (1.43–52.0 ppm) clearly indicate the incorporation of clastics, especially continental felsic clastics, as also confirmed by the presence of ancient detrital zircons in the BIF bands. When normalized against Post Archean Average Shale (PAAS), the seawater-like signatures of REE distribution patterns, such as LREE depletion, positive La and Y anomalies, and superchondritic Y/Ho ratios (average value of 36.3), support the deposition in seawater. Strong positive Eu anomalies (Eu/Eu*PAAS = 1.14–2.86) also suggest the participation of hydrothermal fluids. In addition, the sympathetic correlation between Cr, Co and Ni as well as the Co + Ni + Cu vs. ∑ REE and the Al2O3 vs. SiO2 relations further indicates that the iron and silica mainly originated from hydrothermal fluids. Combined with regional geological investigation and protolith restoration of the wallrocks, a continental rift environment is suggested for the Changyi BIF deposition. The appearance of negative CePAAS anomalies might suggest the influence of the Great Oxidation Event at the time of deposition. The Changyi BIF witnessed the major Paleoproterozoic rifting–collision events in the NCC and their unique distribution in the NCC contrasts with other examples elsewhere in the world.  相似文献   

5.
Precambrian banded iron formations (BIFs) represent an important source of mineable iron, as well as an archive recording secular changes in the chemistry of the Earth’s early oceans. Here we report petrographic and geochemical characteristics of unweathered drill core samples from the Bikoula BIF, a virtually uncharacterized oxide facies iron formation, hosted in the Mesoarchean Ntem complex, southern Cameroon. The BIF is cross-cut with syenitic veins. The entire succession is highly deformed and metamorphosed under granulite facies conditions. The BIF is characterized by alternating micro-bands of magnetite, quartz and pyroxene. Sulfides (pyrite, pyrrhotite, and chalcopyrite), oligoclase, ferro-pargasite, biotite and ilmenite occur as minor phases. The presence of pyroxene, ferro-pargasite and oligoclase, relatively high contents of major elements such as Al2O3 (0.76–7.52 wt.%), CaO (1.95–4.90 wt.%), MgO (3.78–5.59 wt.%), as well as positive correlations among Al2O3, TiO2, HFSEs, LILEs and transition metals (V, Cr, Ni, Cu and Zn), suggest that the BIF protolith included a significant amount of clastic material. Several samples have preserved seawater-like PAAS-normalized REE-Y patterns, including LREE depletion, and positive La and Y anomalies. Positive Eu anomalies observed in some of the analyzed samples indicate influx of hydrothermal fluids (possibly including Fe and Si) within the basin where the BIF precipitated. However, few samples show unusual negative Eu anomalies that likely result from a large proportion of clastic contamination. The lack of Ce anomalies suggests that the Bikoula BIF was deposited in a basin that was (at least partly) anoxic or suboxic, where it was possible to transport and concentrate dissolved Fe2+.  相似文献   

6.
The Matomb region constitutes an important deposit of detrital rutile. The rutile grains are essentially coarse (> 3 mm), tabular and elongated, due to the short sorting of highly weathered detritus. This study reports the major, trace, and rare-earth element distribution in the bulk and rutile concentrated fractions. The bulk sediments contain minor TiO2 concentrations (1–2 wt%), high SiO2 contents (∼77–95 wt%) and variable contents in Al2O3, Fe2O3, Zr, Y, Ba, Nb, Cr, V, and Zn. The total REE content is low to moderate (86–372 ppm) marked by high LREE-enrichment (LREE/HREE ∼5–25.72) and negative Eu anomalies (Eu/Eu* ∼0.51–0.69). The chemical index of alteration (CIA) shows that the source rocks are highly weathered, characteristic of humid tropical zone with the development of ferrallitic soils. In the concentrated fractions, TiO2 abundances exceed 94 wt%. Trace elements with high contents include V, Nb, Cr, Sn, and W. These data associated with several binary diagrams show that rutile is the main carrier of Ti, V, Nb, Cr, Sn, and W in the alluvia. The REE content is very low (1–9 ppm) in spite of the LREE-abundance (LREE/HREE ∼4–40). The rutile concentrated fractions exhibit anomalies in Ce (Ce/Ce* ∼0.58 to 0.83; ∼1.41–2.50) and Eu (Eu/Eu* ∼0.42; 1.20–1.64). The high (La/Sm)N, (La/Yb)N and (Gd/Yb)N ratios indicate high REE fractionation.  相似文献   

7.
The Coniacian-Santonian high-phosphorus oolitic iron ore at Aswan area is one of the major iron ore deposits in Egypt. However, there are no reports on its geochemistry, which includes trace and rare earth elements evaluation. Texture, mineralogy and origin of phosphorus that represents the main impurity in these ore deposits have not been discussed in previous studies. In this investigation, iron ores from three localities were subjected to petrographic, mineralogical and geochemical analyses. The Aswan oolitic iron ores consist of uniform size ooids with snowball-like texture and tangentially arranged laminae of hematite and chamosite. The ores also possess detrital quartz, apatite and fine-grained ferruginous chamosite groundmass. In addition to Fe2O3, the studied iron ores show relatively high contents of SiO2 and Al2O3 due to the abundance of quartz and chamosite. P2O5 ranges from 0.3 to 3.4 wt.% showing strong positive correlation with CaO and suggesting the occurrence of P mainly as apatite. X-ray diffraction analysis confirmed the occurrence of this apatite as hydroxyapatite. Under the optical microscope and scanning electron microscope, hydroxyapatite occurred as massive and structureless grains of undefined outlines and variable size (5–150 μm) inside the ooids and/or in the ferruginous groundmass. Among trace elements, V, Ba, Sr, Co, Zr, Y, Ni, Zn, and Cu occurred in relatively high concentrations (62–240 ppm) in comparison to other trace elements. Most of these trace elements exhibit positive correlations with SiO2, Al2O3, and TiO2 suggesting their occurrence in the detrital fraction which includes the clay minerals. ΣREE ranges between 129.5 and 617 ppm with strong positive correlations with P2O5 indicating the occurrence of REE in the apatite. Chondrite-normalized REE patterns showed LREE enrichment over HREE ((La/Yb)N = 2.3–5.4) and negative Eu anomalies (Eu/Eu* = 0.75–0.89). The oolitic texture of the studied ores forms as direct precipitation of iron-rich minerals from sea water in open space near the sediment-water interface by accretion of FeO, SiO2, and Al2O3 around suspended solid particles such as quartz and parts of broken ooliths. The fairly uniform size of the ooids reflects sorting due to the current action. The geochemistry of major and trace elements in the ores reflects their hydrogenous origin. The oolitic iron ores of the Timsha Formation represent a transgressive phase of the Tethys into southern Egypt during the Coniacian-Santonian between the non-marine Turonian Abu Agag and Santonian-Campanian Um Barmil formations. The abundance of detrital quartz, positive correlations between trace elements and TiO2 and Al2O3, and the abundance mudstone intervals within the iron ores supports the detrital source of Fe. This prediction is due to the weathering of adjacent land masses from Cambrian to late Cretaceous. The texture of the apatite and the REE patterns, which occurs entirely in the apatite, exhibits a pattern similar to those in the granite, thus suggesting a detrital origin of the hydroxyapatite that was probably derived from the Precambrian igneous rocks. Determining the mode of occurrence and grain size of hydroxyapatite assists in the maximum utilization of both physical and biological separation of apatite from the Aswan iron ores, and hence encourages the use of these ores as raw materials in the iron making industry.  相似文献   

8.
The ~1.2 km long and ~250 m wide Chikkasiddavanahalli (C.S. Halli) hill range consists of mixed sulphidic-oxide banded iron formations (BIFs) and Fe-rich phyllites (±carbonaceous), which overlie carbonated schistose and massive meta volcanics. In stratigraphic succession, the lithologies represent the Ingaldhal Formation and are an integral part of the Chitradurga schist belt in the Western Dharwar Craton. The general strike at C.S. Halli varies from N–S to 340° with vertical to steep dips towards east and west. The sulphides, oxides and silicates exhibit intergrowth replacement textures developed during regional greenschist- and amphibolites- facies metamorphism. The BIFs show mesobands of recrystallised cherts and iron sulphides such as pyrite, arsenopyrite, and silicates such as subordinate grunerite, hornblende, chlorite, muscovite, actinolite and minor carbonates such as ankerite, calcite and magnesian siderite. Chemical data indicate depletion in Ti, Mn, Co, Cu, Cr and Ni in these iron formations. Most chondrite normalized REE patterns of the iron formation show moderate LREE and HREE enrichment coupled with strong positive Eu anomaly; the mineralized portions exhibit characteristic negative Ce and Eu anomalies (Eu/Eu1 0.21 to 3.00). The total REE abundance varies, correlates well with the iron contents of the BIFs, and similar to those exhibited by hydrothermal plumes [Chown, E.H., Dah, E.N., Mueller, W.G., 2000. The relation between iron formation and low temperature alteration in a Archean volcanic environment. Precambrian Research 101, 263–275]. Trace and REE data suggest that primary mantle-derived hydrothermal solutions were added to the pore fluids of sediments of the Chitradurga basin and supplied chemical constituents such as FeO, SiO2 and REE. Oxidation of FeO to Fe2O3 was caused by the photosynthesis of primitive stromatolite-building cyanobacteria. Geochemical data suggest a model involving epigenetic gold mineralisation in close association with shear zone deformation, quartz-calcite vein activity and sulphidation in the mixed sulphide oxide facies BIF and associated iron phyllites in the C.S. Halli area, Western Dharwar Craton, India.  相似文献   

9.
Banded iron formations (BIFs) within the Lvliang region of Shanxi Province, China, are hosted by sediments of the Yuanjiacun Formation, part of the Paleoproterozoic Lvliang Group. These BIFs are located in a zone where sedimentation changed from clastic to chemical deposition, indicating that these are Superior-type BIFs. Here, we present new major, trace, and rare earth element (REE) data, along with Fe, Si, and O isotope data for the BIFs in the Yuanjiacun within the Fe deposits at Yuanjiacun, Jianshan, and Hugushan. When compared with Post Archean Australian Shale (PAAS), these BIFs are dominated by iron oxides and quartz, contain low concentrations of Al2O3, TiO2, trace elements, and the REE, and are light rare earth element (LREE) depleted and heavy rare earth element (HREE) enriched. The BIFs also display positive La, Y, and Eu anomalies, high Y/Ho ratios, and contain 30Si depleted quartz, with high δ18O values that are similar to quartz within siliceous units formed during hydrothermal activity. These data indicate that the BIFs within the Yuanjiacun Formation were precipitated from submarine hydrothermal fluids, with only negligible detrital contribution. None of the BIF samples analyzed during this study have negative Ce anomalies, although a few have a positive Ce anomaly that may indicate that the BIFs within the Yuanjiacun Formation formed during the Great Oxidation Event (GOE) within a redox stratified ocean. The positive Ce anomalies associated with some of these BIFs are a consequence of oxidization and the formation of surficial manganese oxide that have preferentially adsorbed Ho, LREE, and Ce4 +; these deposits formed during reductive dissolution at the oxidation–reduction transition zone or in deeper-level reducing seawater. The loss of Ce, LREE, and Ho to seawater and the deposition of these elements with iron hydroxides caused the positive Ce anomalies observed in some of the BIF samples, although the limited oxidizing ability of surface seawater at this time meant that Y/Ho and LREE/HREE ratios were not substantially modified, unlike similar situations within stratified ocean water during the Late Paleoproterozoic. Magnetite and hematite within the BIFs in the study area contain heavy Fe isotopes (56Fe values of 0.24–1.27‰) resulting from the partial oxidation and precipitation of Fe2 + to Fe3 + in seawater. In addition, mass-independent fractionation of sulfur isotopes within pyrite indicates that these BIFs were deposited within an oxygen-deficient ocean associated with a similarly oxygen-deficient atmosphere, even though the BIFs within the Yuanjiacun Formation formed after initiation of the GOE.  相似文献   

10.
The Yamansu skarn iron deposit is hosted in Early Carboniferous submarine lava flow and volcaniclastic rocks of the Yamansu Formation in Eastern Tianshan Mountains, NW China. The lava flows are predominantly basaltic, with minor andesites. Laser ablation inductively coupled plasma mass spectrometry (LAICP-MS) U–Pb zircon dating of the basalts and skarns yields almost coeval ages of 324.4 ± 0.94 and 323.47 ± 0.95 Ma, respectively. The basalts contain clinopyroxene and plagioclase phenocrysts with a considerable amount of Fe–Ti oxide minerals in the groundmass as interstitial phases, probably suggesting that olivine–, clinopyroxene- and plagioclase fractionated within the magma chamber. Geochemically, the basalts are characterized by slight variations in SiO2 (42.90–46.61 wt.%), P2O5 (0.08–0.12 wt.%), MnO (0.35–0.97 wt.%) and TiO2 (0.74–0.82 wt.%), and relatively large variations in CaO (6.93–15.13 wt.%), Al2O3 (14.71–19.93 wt.%), total Fe2O3 (8.14–12.66 wt.%) and MgO (4.96–8.52 wt.%). They possess flat to light rare earth element (REE)-depleted patterns and display variable degrees of depletions in high field-strength elements (HFSE), suggesting a transitional feature between MORB and arc volcanic rocks, and indicating a back-arc tectonic setting. Furthermore, the geochemical signature also suggests that the volcanic rocks of Yamansu Formation were produced by partial melting of the spinel-facies, asthenospheric mantle peridotite which had been metasomatized by slab-derived fluids. The broadly overlapping ages of the basalts and skarn mineralization suggests that the skarn formation in the Yamansu deposit is related to subaqueous volcanism. In combination with the available information including fluid inclusions and stable isotope data, we infer that the hydrothermal fluids that generated the skarns could be a mixture of evolved magma-derived fluids and convecting sea water driven by the heat from the shallow active magma chamber. The Yamansu basalts provided the source of iron for the skarn mineralization. We envisage the submarine volcanism, skarn alteration and iron mineralization in the Yamansu iron deposit as a continuous process, different from either conventional intrusion-related skarn type or submarine volcanic exhalation sedimentation type.  相似文献   

11.
The Devonian (ca. 385–360 Ma) Kola Alkaline Province includes 22 plutonic ultrabasic–alkaline complexes, some of which also contain carbonatites and rarely phoscorites. The latter are composite silicate–oxide–phosphate–carbonate rocks, occurring in close space-time genetic relations with various carbonatites. Several carbonatites types are recognized at Kola, including abundant calcite carbonatites (early- and late-stage), with subordinate amounts of late-stage dolomite carbonatites, and rarely magnesite, siderite and rhodochrosite carbonatites. In phoscorites and early-stage carbonatites the rare earth elements (REE) are distributed among the major minerals including calcite (up to 490 ppm), apatite (up to 4400 ppm in Kovdor and 3.5 wt.% REE2O3 in Khibina), and dolomite (up to 77 ppm), as well as accessory pyrochlore (up to 9.1 wt.% REE2O3) and zirconolite (up to 17.8 wt.% REE2O3). Late-stage carbonatites, at some localities, are strongly enriched in REE (up to 5.2 wt.% REE2O3 in Khibina) and the REE are major components in diverse major and minor minerals such as burbankite, carbocernaite, Ca- and Ba-fluocarbonates, ancylite and others. The rare earth minerals form two distinct mineral assemblages: primary (crystallized from a melt or carbohydrothermal fluid) and secondary (formed during metasomatic replacement). Stable (C–O) and radiogenic (Sr–Nd) isotopes data indicate that the REE minerals and their host calcite and/or dolomite have crystallized from a melt derived from the same mantle source and are co-genetic.  相似文献   

12.
In Douala (Littoral Cameroon), the Cretaceous to Quaternary formation composed of marine to continental sediments are covered by ferrallitic soils. These sediments and soils have high contents of SiO2 (≥70.0 wt%), intermediate contents of Al2O3 (11.6–28.4 wt%), Fe2O3 (0.00–20.5 wt%) and TiO2 (0.04–4.08 wt%), while K2O (≤0.18 wt%), Na2O (≤0.04 wt%), MgO (≤0.14 wt%) and CaO (≤0.02 wt%) are very low to extremely low. Apart from silica, major oxides and trace elements (REE included) are more concentrated in the fine fraction (<62.5 μm) whose proportions of phyllosilicates and heavy minerals are significant. The close co-associations between Zr, Hf, Th and ∑REE in this fraction suggest that REE distribution is controlled by monazite and zircon. CIA values indicate intense weathering. Weathering products are characterized by the association Al2O3 and Ga in kaolinite; the strong correlation between Fe2O3 and V in hematite and goethite; the affinity of TiO2 with HFSE (Hf, Nb, Th, Y and Zr) in heavy minerals. The ICV values suggest mature sediments. The PCI indicates a well-drained environment whereas U/Th and V/Cr ratios imply oxic conditions. La/Sc, La/Co, Th/Cr, Th/Sc and Eu/Eu* elemental ratios suggest a source with felsic components. Discrimination diagrams are consistent with the felsic source. The REE patterns of some High-K granite and granodiorite of the Congo Craton resemble those of the samples, indicating that they derive from similar source rocks.  相似文献   

13.
Mesoarchean to Neoarchean orthogneisses (2.95–2.79 Ga) in the Fiskenæsset region, southern West Greenland, are composed of an older suite of metamorphosed tonalites, trondhjemites, and granodiorites (TTGs), and a younger suite of high-K granites. The TTGs are characterized by high Al2O3 (14.2–18.6 wt.%), Na2O (3.4–5.13 wt.%), and Sr (205–777 ppm), and low Y (0.7–17.4 ppm) contents. On chondrite- and N-MORB-normalized trace element diagrams, the TTGs have the following geochemical characteristics: (1) highly fractionated REE patterns (La/Ybcn = 14–664; La/Smcn = 4.3–11.0; Gd/Ybcn = 1.5–19.7); (2) strong positive anomalies of Sr (Sr/Sr* = 1.0–15.9) and Pb (Pb/Pb* = 1.4–34.9); and (3) large negative anomalies of Nb (Nb/Nb* = 0.01–0.34) and Ti (Ti/Ti* = 0.1–0.6). The geochemical characteristics of the TTGs and trace element modeling suggest that they were generated by partial melting of hydrous basalts (amphibolites) at the base of a thickened magmatic arc, leaving a rutile-bearing eclogite residue. Field observations suggest that spatially and temporarily associated tholeiitic basalts (now amphibolites) in the Fiskenæsset region might have been the sources of TTG melts. The high-K granites have steep REE patterns (La/Ybcn = 3.8–506; La/Smcn = 2.7–18.9; Gd/Ybcn = 0.92–12.1) and display variably negative Eu anomalies (Eu/Eu* = 0.37–0.96) and moderate Sr (84–539 ppm) contents. Four outlier granite samples have variably positive Eu (Eu/Eu* = 1.0–12) anomalies. Given that the granodiorites have higher K2O/Na2O than the tonalites and trondhjemites, it is suggested that the granites were derived from partial melting of the granodiorites. It is speculated that the dense eclogitic residues, left after TTG melt extraction, were foundered into the sub-arc mantle, leading to basaltic underplating beneath the lower rust. Melting of the granodiorites in response to the basaltic underplating resulted in the production of high-K granitic melts. Formation of the Fiskenæsset TTGs, the foundering of the eclogitic residues into the mantle, and the emplacement of the high-K granites led to the growth of Archean continental crust in the Fiskenæsset region.  相似文献   

14.
Phosphorites in Egypt occur in the Eastern Desert, the Nile Valley and the Western Desert at Abu Tartur area and present in Duwi Formation as a part of the Middle Eastern to North African phosphogenic province of Late Cretaceous to Paleogene age (Campanian–Maastrichtian). The Maghrabi-Liffiya phosphorite sector is considered as the most important phosphorite deposits in the Abu Tartur area due to its large reserve thickness and high-grade of lower phosphorite bed beside high content of REE. Back scattered electron (BSE) images show framboidal pyrite filling the pores of the phosphatic grains, suggesting diagenetic reducing conditions during phosphorites formation.Electron Probe Micro Analyzer (EPMA) chemical mapping was conducted to examine the variation and distributions of selected elements (P, F, La, Fe, Yb, Si, Ce, W, Eu, S, Ca, Y and Er) within the shark teeth, coprolites and bone fragments. In the teeth W, S, Fe are concentrated along the axis of the teeth, the bone fragments show high concentration of W, Yb, Er and Eu, whereas coprolites are nearly homogenous in composition contains S, Er with some Si as micro-inclusions. Fluorapatite is considered as main phosphate mineral whereas pyrite occurs as pore-filling within the phosphatic grains and cement materials. Maghrabi-Liffiya samples show a wide range in the P2O5 content, between 19.8 wt.% and 29.8 wt.% with an average of 24.6 wt.% and shows low U content ranging from 15 ppm to 34 ppm with an average of 22 ppm. The total REE content in nine samples representing the Maghrabi-Liffiya ranges from 519 to 1139 ppm with an average of about 879 ppm. The calculation of LREE (La–Gd) show indeed a marked enrichment relative to the HREE (Tb–Lu) where LREE/HREE ratio attains 8.4 indicating a strong fractionation between the LREE and HREE. Chondrite-normalized REE patterns of the studied phosphorite samples show a negative Eu anomaly.  相似文献   

15.
16.
The major and trace element characteristics of black shales from the Lower Cretaceous Paja Formation of Colombia are broadly comparable with those of the average upper continental crust. Among the exceptions are marked enrichments in V, Cr, and Ni. These enrichments are associated with high organic carbon contents. CaO and Na2O are strongly depleted, leading to high values for both the Chemical Index of Alteration (77–96) and the Plagioclase Index of Alteration (86–99), which indicates derivation from a stable, intensely weathered felsic source terrane. The REE abundances and patterns vary considerably but can be divided into three main groups according to their characteristics and stratigraphic position. Four samples from the lower part of the Paja Formation (Group 1) are characterized by LREE-enriched chondrite-normalized patterns (average LaN/YbN = 8.41) and significant negative Eu anomalies (average Eu/Eu1 = 0.63). A second group of five samples (Group 2), also from the lower part, have relatively flat REE patterns (average LaN/YbN = 1.84) and only slightly smaller Eu anomalies (average Eu/Eu1 = 0.69). Six samples from the middle and upper parts (Group 3) have highly fractionated patterns (average LaN/YbN = 15.35), resembling those of Group 1, and an identical average Eu/Eu1 of 0.63. The fractionated REE patterns and significant negative Eu anomalies in Groups 1 and 3 are consistent with derivation from an evolved felsic source. The flatter patterns of Group 2 shale and strongly concave MREE-depleted patterns in two additional shales likely were produced during diagenesis, rather than reflecting more mafic detrital inputs. An analysis of a single sandstone suggests diagenetic modification of the REE, because its REE pattern is identical to that of the upper continental crust except for the presence of a significant positive Eu anomaly (Eu/Eu1 = 1.15). Felsic provenance for all samples is suggested by the clustering on the Th/Sc–Zr/Sc and GdN/YbN–Eu/Eu1 diagrams. Averages of unmodified Groups 1 and 3 REE patterns compare well with cratonic sediments from the Roraima Formation in the Guyana Shield, suggesting derivation from a continental source of similar composition. In comparison with modern sediments, the geochemical parameters (K2O/Na2O, LaN/YbN, LaN/SmN, Eu/Eu1, La/Sc, La/Y, Ce/Sc) suggest the Paja Formation was deposited at a passive margin. The Paja shales thus represent highly mature sediments recycled from deeply weathered, older, sedimentary/metasedimentary rocks, possibly in the Guyana Shield, though Na-rich volcanic/granitic rocks may have contributed to some extent.  相似文献   

17.
The Neoproterozoic (593–532 Ma) Dahongliutan banded iron formation (BIF), located in the Tianshuihai terrane (Western Kunlun orogenic belt), is hosted in the Tianshuihai Group, a dominantly submarine siliciclastic and carbonate sedimentary succession that generally has been metamorphosed to greenschist facies. Iron oxide (hematite), carbonate (siderite, ankerite, dolomite and calcite) and silicate (muscovite) facies are all present within the iron-rich layers. There are three distinctive sedimentary facies BIFs, the oxide, silicate–carbonate–oxide and carbonate (being subdivided into ankerite and siderite facies BIFs) in the Dahongliutan BIF. They demonstrate lateral and vertical zonation from south to north and from bottom to top: the carbonate facies BIF through a majority of the oxide facies BIF into the silicate–carbonate–oxide facies BIF and a small proportion of the oxide facies BIF.The positive correlations between Al2O3 and TiO2, Sc, V, Cr, Rb, Cs, Th and ∑REE (total rare earth element) for various facies of BIFs indicate these chemical sediments incorporate terrigenous detrital components. Low contents of Al2O3 (<3 wt%), TiO2 (<0.15 wt%), ∑REE (5.06–39.6 ppm) and incompatible HFSEs (high field strength elements, e.g., Zr, Hf, Th and Sc) (<10 ppm), and high Fe/Ti ratios (254–4115) for a majority of the oxide and carbonate facies BIFs suggest a small clastic input (<20% clastic materials) admixtured with their original chemical precipitates. The higher abundances of Al2O3 (>3 wt%), TiO2, Zr, Th, Cs, Sc, Cr and ∑REE (31.2–62.9 ppm), and low Fe/Ti ratios (95.2–236) of the silicate–carbonate–oxide facies BIF are consistent with incorporation of higher amounts of clastic components (20%–40% clastic materials). The HREE (heavy rare earth element) enrichment pattern in PAAS-normalized REE diagrams exhibited by a majority of the oxide and carbonate facies BIFs shows a modern seawater REE signature overprinted by high-T (temperature) hydrothermal fluids marked by strong positive Eu anomalies (Eu/Eu1PAAS = 2.37–5.23). The low Eu/Sm ratios, small positive Eu anomaly (Eu/Eu1PAAS = 1.10–1.58) and slightly MREE (middle rare earth element) enrichment relative to HREE in the silicate–carbonate–oxide facies BIF and some oxide and carbonate facies BIFs indicate higher contributions from low-T hydrothermal sources. The absence of negative Ce anomalies and the high Fe3+/(Fe3+/Fe2+) ratios (0.98–1.00) for the oxide and silicate–carbonate–oxide BIFs do not support ocean anoxia. The δ13CV-PDB (−4.0‰ to −6.6‰) and δ18OV-PDB (−14.0‰ to −11.5‰) values for siderite and ankerite in the carbonate facies BIF are, on average, ∼6‰ and ∼5‰ lower than those (δ13CV-PDB = −0.8‰ to + 3.1‰ and δ18OV-PDB = −8.2‰ to −6.3‰) of Ca–Mg carbonates from the silicate–carbonate–oxide facies BIF. This feature, coupled with the negative correlations between FeO, Eu/Eu1PAAS and δ13CV-PDB, imply that a water column stratified with regard to the isotopic omposition of total dissolved CO2, with the deeper water, from which the carbonate facies BIF formed, depleted in δ13C that may have been derive from hydrothermal activity.Integration of petrographic, geochemical, and isotopic data indicates that the silicate–carbonate–oxide facies BIF and part of the oxide facies BIF precipitated in a near-shore, oxic and shallow water environment, whereas a majority of the oxide and carbonate facies BIFs deposited in anoxic but Fe2+-rich deeper waters, closer to submarine hydrothermal vents. High-T hydrothermal solutions, with infusions of some low-T hydrothermal fluids, brought Fe and Si onto a shallow marine, variably mixed with detrital components from seawaters and fresh waters carrying continental landmass and finally led to the alternating deposition of the Dahongliutan BIF during regression–transgression cycles.The Dahongliutan BIF is more akin to Superior-type rather than Algoma-type and Rapitan-type BIF, and constitutes an additional line of evidence for the widespread return of BIFs in the Cryogenian and Ediacaran reflecting the recurrence of anoxic ferruginous deep sea and anoxia/reoxygenation cycles in the Neoproterozoic. In combination with previous studies on other Fe deposits in the Tianshuihai terrane, we propose that a Fe2+-rich anoxic basin or deep sea probably existed from the Neoproterozoic to the Early Cambrian in this area.  相似文献   

18.
The Naga Ophiolite Belt is a part of the Naga-Arakan-Yoma flysch trough that occurs along the Indo-Myanmar border. It is represented by peridotites, mafic-ultramafic cumulates, mafic volcanics, mafic dykes, plagiogranites, pelagic sediments and minor felsic to intermediate intrusives. Minor plagiogranites, gabbros and thin serpentinite bands occur juxtaposed near Luthur, with the slate-phyllite-metagreywacke sequence (Phokpur Formation) adjacent to the contact. The development of tonalites, trondhjemites and diorites in the oceanic crust, which is grouped as plagiogranites, offers an opportunity to study the process of formation of silicic melts from mafic crust. Plagiogranites from Naga Ophiolite Belt contains moderate SiO2 (51.81–56.71 wt.%), low K2O (0.08–1.65 wt.%) and high Na2O (4.3–5.03 wt.%). The Naga Ophiolite Belt plagiogranites like ocean-ridge granites contain low K2O, high Na2O and CaO. The rocks investigated from Naga Ophiolite Belt contain TiO2 concentrations above the lower limit for fractionated Mid Oceanic Ridge Basalt which is above 1 wt% of TiO2 and the ternary plots of A (Na2O + K2O) F(FeOT) M(MgO) and TiO2-K2O-SiO2/50 indicate that the plagiogranite are tholeiitic in character and gabbro samples are calc-alkaline in nature. The plagiogranites are enriched in Rb, Ba, Th, U, Nb and Sm against chondrite with negative anomalies on Sr and Zr whereas Y and Yb are depleted to Mid Oceanic Ridge Basalt. The chondrite normalized REE patterns of the plagiogranite display enrichments in LREE (LaN/SmN: 2.37–3.62) and flat HREE (Eu/Eu*: 0.90–1.06). The Mid Oceanic Ridge Basalt normalization of gabbro is characterized by strong enrichment of LILE like Ba and Th. The REE pattern is about 50–100 times chondrite with slight enrichment of LREE (LaN/SmN = 2.21–3.13) and flat HREE (Eu/Eu*: 0.94–1.19). The major-element and trace element data of the NOB plagiogranites and their intrusive nature with host gabbroic rock suggest that the plagiogranites were produced by fractional crystallization of basaltic parental magmas at Mid Oceanic Ridge.  相似文献   

19.
Major, trace and rare earth element (REE) compositions of upper Proterozoic metavolcanic and metasedimentary rocks from the Tsaliet and Tembien Groups in the Werri district of northern Ethiopia were determined to examine their tectonic setting of eruption, provenance and source area weathering conditions. Tsaliet Group metavolcanic rocks in the Werri area have sub-alkaline chemistry characterized by low to intermediate SiO2 contents, high Al2O3, low MgO and very low Cr and Ni. High field strength element (HFSE) abundances are highly variable. ∑REE abundances vary from 66.7 to 161.3 ppm, and chondrite-normalized REE patterns are moderately fractionated, with LaN/YbN values of between 3.1 and 9.0. Europium anomalies are variable (Eu/Eu* 0.80–1.21) but are generally positive (average Eu/Eu* 1.06). On tectonic discrimination diagrams, most samples have either volcanic-arc chemistry or fall in the overlap field with mid-oceanic ridge basalt (MORB). However, primitive mantle-normalized trace element abundances are comparable with sub-alkaline basalts from developed island arcs. 147Sm/144Nd ratios range from 0.1167 to 0.1269 (n = 3), yielding initial εNd(800 Ma) of +3.8 to +4.9 and mean TDM model age of 0.96 Ga, indicative of derivation from juvenile Neoproterozoic mantle. Metasediments from three locations (Werri1, Werri2 and Tsedia) in the Werri and Tsedia Slates have similar Al2O3, TiO2 and HFSE contents but variable and low Na2O, CaO and K2O. Cr and Ni are slightly enriched in the Werri2 and Tsedia suites. SiO2 is very variable, with average values of 70.75, 72.2 and 66.4 wt.% in the Werri1, Werri2 and Tsedia suites, respectively. ∑REE abundances in the metasediments (14.74–108.1) are lower than in the metavolcanics, and are slightly less fractionated, with LaN/YbN ratios of 0.8–5.9. Europium anomalies vary (Eu/Eu* 0.80–1.21) but are insignificant on average (Eu/Eu* 0.96). High values for the Chemical Index of Alteration (generally 70–90), and Plagioclase Index of Alteration (>75) in the Werri metasediments indicate moderate to severe chemical weathering in their source. Average major and trace element compositions of the metasediments and their REE patterns are comparable with the metavolcanics. 147Sm/144Nd ratios of the metasediments range from 0.1056 to 0.1398 (n = 4), with initial εNd(800 Ma) of +3.4 to +5.0 and mean TDM model age of 0.97 Ga, indicating derivation from juvenile Neoproterozoic crust similar to the underlying metavolcanics, with minimal (4–10%) contribution from older crust. The most sensitive tectonic setting discriminators indicate the Werri metasediments represent developed oceanic island arc sediments. The chemical similarity of the Werri metavolcanics to the nearby Adwa metavolcanics, Nakfa terrane in Eritrea, and volcanic units in central Saudi Arabia imply that juvenile Neoproterozoic Arabian Nubian Shield crust extended south at least as far as the Werri area of northern Ethiopia. The comparable geochemistry of the metasediments and their underlying lithologies attests to their derivation from this juvenile crustal material.  相似文献   

20.
Shilu is a large porphyry–skarn deposit in the Yunkai district in Guangdong Province, South China. The Shilu granitic intrusion in the mine area is a granodiorite which is genetically related to Cu mineralization. Plagioclase in the granodiorite has a zoned texture and is mainly andesine with minor amounts of labradorite, whereas the K-feldspars exhibit Carlsbad twins and some are also characterized by a zonal texture. K-feldspars from the granodiorite show high contents of Or (87–92 wt.%) with minor Ab (8–13 wt.%) and negligible An value of 0–0.3 wt.%. Biotite can be classified as magnesio-biotite, and is characterized by Mg-rich [Mg/(Mg + Fe) = 0.54–0.60] and AlVI-low (average values = 0.11). Hornblende is chiefly magnesiohornblende and tschermakite. LA-ICP-MS zircon U–Pb age of the Shilu granodiorite is 107 ± 0.7 Ma, which is consistent with molybdenites Re–Os age of 104.1 ± 1.3 Ma. Geochemical data indicate that the Shilu granodiorite is silica-rich (SiO2 = 63.43–65.03 wt.%) and alkali-rich (K2O + Na2O = 5.45–6.05 wt.%), as well as calcium-rich (CaO = 4.76–5.1 wt.%). Trace element geochemistry results show enrichments in large ion lithophile elements (e.g., Rb, K, and Ba) and depletions in some high field strength elements (e.g., Nb, P, Ta, and Ti). The total rare earth element (REE) content of the granodioritic rocks is low (∑ REE < 200 ppm), and is characterized by light REE enrichment [(La/Yb)N > 9] and moderately negative Eu anomalies (Eu/Eu* = 0.83–0.90). These mineralogical, geochronological, and geochemical results suggest that the Shilu granodiorite has a mixed crust–mantle source with a geochemical affinity to I-type granitoids. Hornblende thermobarometry yielded magmatic crystallization temperatures of 686–785 °C and crystallization pressures between 1.0 and 2.34 kbar, which is converted to depths in a range of 3.31 to 7.71 km. Biotite thermobarometry yielded similar temperatures and lower pressures of 680–780 °C and 0.8–2 kbar (depth 2.64–6.6 km), respectively. The parent magma had a high oxygen fugacity. The Shilu granodiorite has a relatively low εNd/t–t value and high (87Sr/86Sr)i value, and Nd isotopes yield two-stage depleted mantle Nd model ages of 969–1590 Ma. Our new data, combined with previous studies, imply that the granodiorite and the associated Shilu Cu–Mo deposit was formed in an extensional environment, closely related to remelting of residual subducted slab fragments in the Jurassic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号