首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Understanding sequence stratigraphy architecture in the incised-valley is a crucial step to understanding the effect of relative sea level changes on reservoir characterization and architecture. This paper presents a sequence stratigraphic framework of the incised-valley strata within the late Messinian Abu Madi Formation based on seismic and borehole data. Analysis of sand-body distribution reveals that fluvial channel sandstones in the Abu Madi Formation in the Baltim Fields, offshore Nile Delta, Egypt, are not randomly distributed but are predictable in their spatial and stratigraphic position. Elucidation of the distribution of sandstones in the Abu Madi incised-valley fill within a sequence stratigraphic framework allows a better understanding of their characterization and architecture during burial. Strata of the Abu Madi Formation are interpreted to comprise two sequences, which are the most complex stratigraphically; their deposits comprise a complex incised valley fill. The lower sequence (SQ1) consists of a thick incised valley-fill of a Lowstand Systems Tract (LST1)) overlain by a Transgressive Systems Tract (TST1) and Highstand Systems Tract (HST1). The upper sequence (SQ2) contains channel-fill and is interpreted as a LST2 which has a thin sandstone channel deposits. Above this, channel-fill sandstone and related strata with tidal influence delineates the base of TST2, which is overlain by a HST2. Gas reservoirs of the Abu Madi Formation (present-day depth ~3552 m), the Baltim Fields, Egypt, consist of fluvial lowstand systems tract (LST) sandstones deposited in an incised valley. LST sandstones have a wide range of porosity (15 to 28%) and permeability (1 to 5080mD), which reflect both depositional facies and diagenetic controls. This work demonstrates the value of constraining and evaluating the impact of sequence stratigraphic distribution on reservoir characterization and architecture in incised-valley deposits, and thus has an important impact on reservoir quality evolution in hydrocarbon exploration in such settings.  相似文献   

2.
The upper portion of the Cuyo Group in the Zapala region, south‐eastern Neuquén Basin (Western Argentina), encompasses marine and transitional deposits (Lajas Formation) overlain by alluvial rocks (Challacó Formation). The Challacó Formation is covered by the Mendoza Group above a second‐order sequence boundary. The present study presents the stratigraphic framework and palaeophysiographic evolution of this Bajocian to Eo‐Calovian interval. The studied succession comprises the following genetic facies associations: (i) offshore and lower shoreface–offshore transition; (ii) lower shoreface; (iii) upper shoreface; iv) intertidal–subtidal; (v) supratidal–intertidal; (vi) braided fluvial to delta plain; (vii) meandering river; and (viii) braided river. The stratigraphic framework embraces four third‐order depositional sequences (C1 to C4) whose boundaries are characterized by the abrupt superposition of proximal over distal facies associations. Sequences C1 to C3 comprise mostly littoral deposits and display well‐defined, small‐scale transgressive–regressive cycles associated with fourth‐order depositional sequences. Such high‐frequency cycles are usually bounded by ravinement surfaces associated with transgressive lags. At last, the depositional sequence C4 delineates an important tectonic reorganization probably associated with an uplift of the Huincul Ridge. This is suggested by an inversion of the transport trend, north‐westward during the deposition of C1 to C3 depositional sequences (Lajas Formation) to a south‐west trend during the deposition of the braided fluvial strata related to the C4 depositional sequence (Challacó Formation).  相似文献   

3.
The Lower Cenomanian Bahariya Formation corresponds to a second-order depositional sequence that formed within a continental shelf setting under relatively low-rate conditions of positive accommodation (< 200 m during 3–6 My). This overall trend of base-level rise was interrupted by three episodes of base-level fall that resulted in the formation of third-order sequence boundaries. These boundaries are represented by subaerial unconformities (replaced or not by younger transgressive wave ravinement surfaces), and subdivide the Bahariya Formation into four third-order depositional sequences.

The construction of the sequence stratigraphic framework of the Bahariya Formation is based on the lateral and vertical changes between shelf, subtidal, coastal and fluvial facies, as well as on the nature of contacts that separate them. The internal (third-order) sequence boundaries are associated with incised valleys, which explain (1) significant lateral changes in the thickness of incised valley fill deposits, (2) the absence of third-order highstand and even transgressive systems tracts in particular areas, and (3) the abrupt facies shifts that may occur laterally over relatively short distances. Within each sequence, the concepts of lowstand, transgressive and highstand systems tracts are used to explain the observed lateral and vertical facies variability.

This case study demonstrates the usefulness of sequence stratigraphic analysis in understanding the architecture and stacking patterns of the preserved rock record, and helps to identify 13 stages in the history of base-level changes that marked the evolution of the Bahariya Oasis region during the Early Cenomanian.  相似文献   


4.
随着近年来塔里木盆地勘探开发的逐步深入,志留系地层已经成为众多学者的研究热点。本文应用层序地层研究方法,利用钻井、测井、地震及实验分析资料,通过对岩石地层、测井地层、生物地层、地震地层等资料的综合分析,将塔里木盆地志留系地层划分为3个三级层序,SQ1对应柯坪塔格组下段,SQ2对应柯坪塔格组中上段,SQ3对应塔塔埃尔塔格组。每个层序由海侵体系域和高位体系域组成,不发育低位体系域。对层序格架内的沉积类型和沉积相展布进行分析,认为主要发育扇三角洲相-有障壁潮坪相-浅海相。  相似文献   

5.
Sequence stratigraphy division and comparison of the Silurian in Tarim Basin were a hot research field in oil industry and academia. However, basic geological problems limited the exploration needed for further research. In this paper, 21 lithofacies and 5 facies associations were identified based on the grain size of sediments, sedimentary characteristics, and bioturbation conditions: (1) fluvial-dominate delta front facies association; (2) tidal flat facies association; (3) tidal channel facies association; (4) offshore-transition facies association; (5) shoreface facies association. The seismic, outcrops, and logging data were involved to divide the Silurian (including upper Ordovician Tierekeawati Fm.) at Tabei uplift into five sedimentary sequences. SQ1 (Tierekeawati Fm.) is mainly characterized by tidal flat facies association, while delta front facies association locally develops; SQ2 (the lower Kepingtage Fm.) generally consists of offshore-transition facies association; SQ3 (the upper Kepingtage Fm.) is mainly characterized by shoreface and delta front facies association. For SQ4 (Tataaiertage Fm.), the transgressive system tract (TST) is dominated by shoreface facies association, while the fluvial-dominate delta facies association widely develops in highstand system tract (HST). SQ5 (Yimugantawu Fm.) is mainly characterized by tidal flat facies association. From SQ1 to SQ2, an overall sea level transgressive process is shown, while an overall sea level regressive process is found from SQ2 to SQ5. The results are consistent with the progradation and regression trends of large regions reflected by sequence framework pattern. As to SQ3 sequence, TST and HST sandstones are the main reservoir intervals in the Silurian. Hercynian movement led to the strong uplift and extensive erosion in the Silurian at Tabei and Tazhong uplift, and is favorable to the formation of strata erosion unconformable traps.  相似文献   

6.
The Bridport Sand Formation is an intensely bioturbated sandstone that represents part of a mixed siliciclastic‐carbonate shallow‐marine depositional system. At outcrop and in subsurface cores, conventional facies analysis was combined with ichnofabric analysis to identify facies successions bounded by a hierarchy of key stratigraphic surfaces. The geometry of these surfaces and the lateral relationships between the facies successions that they bound have been constrained locally using 3D seismic data. Facies analysis suggests that the Bridport Sand Formation represents progradation of a low‐energy, siliciclastic shoreface dominated by storm‐event beds reworked by bioturbation. The shoreface sandstones form the upper part of a thick (up to 200 m), steep (2–3°), mud‐dominated slope that extends into the underlying Down Cliff Clay. Clinoform surfaces representing the shoreface‐slope system are grouped into progradational sets. Each set contains clinoform surfaces arranged in a downstepping, offlapping manner that indicates forced‐regressive progradation, which was punctuated by flooding surfaces that are expressed in core and well‐log data. In proximal locations, progradational shoreface sandstones (corresponding to a clinoform set) are truncated by conglomerate lags containing clasts of bored, reworked shoreface sandstones, which are interpreted as marking sequence boundaries. In medial locations, progradational clinoform sets are overlain across an erosion surface by thin (<5 m) bioclastic limestones that record siliciclastic‐sediment starvation during transgression. Near the basin margins, these limestones are locally thick (>10 m) and overlie conglomerate lags at sequence boundaries. Sequence boundaries are thus interpreted as being amalgamated with overlying transgressive surfaces, to form composite erosion surfaces. In distal locations, oolitic ironstones that formed under conditions of extended physical reworking overlie composite sequence boundaries and transgressive surfaces. Over most of the Wessex Basin, clinoform sets (corresponding to high‐frequency sequences) are laterally offset, thus defining a low‐frequency sequence architecture characterized by high net siliciclastic sediment input and low net accommodation. Aggradational stacking of high‐frequency sequences occurs in fault‐bounded depocentres which had higher rates of localized tectonic subsidence.  相似文献   

7.
The spatial and temporal distribution of diagenetic alterations has been constrained in relationship to depositional facies and sequence stratigraphy of the Upper Ordovician glaciogenic quartzarenite sandstones in the Murzuq Basin, SW Libya, which were deposited during the Haritanian glaciation when the basin was laying along the continental margin of Gondwana. Eogenetic alterations encountered include: (i) replacement of detrital silicates, mud matrix and pseudomatrix by kaolinite in paraglacial, tide-dominated deltaic, in foreshore to shoreface (highstand systems tract; HST) and in post-glacial, Gilbert-type deltaic (lowstand systems tract; LST) sandstones, particularly below the sequence boundaries (SB). Kaolinite formation is attributed to the influx of meteoric water during relative sea level fall and basinward shift of the shoreline. (ii) Cementation by calcite (δ18OVPDB = − 3.1‰ to + 1.1‰ and δ13CVPDB = + 1.7‰ to + 3.5‰) and Mg-rich siderite in the paraglacial, tide-dominated deltaic and foreshore to shoreface HST sandstones, in the glacial, tide-dominated estuarine (transgressive systems tract; TST) sandstones and in the post-glacial, shoreface TST sandstones is interpreted to have occurred from marine pore-waters. (iii) Cementation by Mg-poor siderite, which occurs in the post-glacial, Gilbert-type deltaic LST sandstones and in the paraglacial, tide-dominated deltaic and foreshore to shoreface HST sandstones, is interpreted to have occurred from meteoric waters during relative sea level fall and basinward shift of the shoreline. (iv) Pervasive cementation by iron oxides has occurred in the glacial, shoreface–offshore TST sandstones and post-glacial, shoreface TST sandstones immediately below the maximum flooding surfaces (MFS), which was presumably enhanced by prolonged residence time of the sediments under oxic diagenetic conditions at the seafloor. (v) Formation of grain-coating infiltrated clays mainly in the glacial, fluvial incised-valley LST sandstones and in the post-glacial, Gilbert-type deltaic LST sandstones as well as, less commonly, in the paraglacial, foreshore to shoreface HST sandstones and in the tide-dominated deltaic HST sandstones below the SBs.

Mesogenetic alterations include mainly the formation of abundant quartz overgrowths in the glacial, fluvial incised-valley LST sandstones, post-glacial, Gilbert-type deltaic LST sandstones and glacial, shoreface TST sandstones, in which early carbonate cements are lacking. Illite, chlorite and albitized feldspars, which occur in small amounts, are most common in the glacial, tide-dominated estuarine TST sandstones and paraglacial, shoreface HST sandstones. This study demonstrates that the spatial and temporal distribution of diagenetic alterations and their impact on reservoir-quality evolution in glacial, paraglacial and post-glacial sandstones can be better elucidated when linked to the depositional facies and sequence stratigraphic framework.  相似文献   


8.
Upper Carboniferous Coal Measures strata have been interpreted traditionally in terms of cyclothems bounded by marine flooding surfaces (marine bands) and coal seams. Correlation of such cyclothems in an extensive grid of closely spaced coal exploration boreholes provides a robust stratigraphic framework in which to study the Lower Coal Measures (Namurian C–Westphalian A) of the Ruhr district, north-west Germany. Three distinct types of cyclothem are recognized, based on their bounding surfaces and internal facies architecture. (1) Type 1 cyclothems are bounded by marine bands. Each cyclothem comprises a thick (30–80 m), regionally extensive, coarsening-upward delta front succession of interbedded shales, siltstones and sandstones, which may be deeply incised by a major fluvial sandstone complex. The delta front succession is capped by a thin (<1 m), regionally extensive coal seam and an overlying marine band defining the top of the cyclothem. (2) Type 2 cyclothems are bounded by thick (≈1 m), regionally extensive coal seams with few splits. The basal part of a typical cyclothem comprises a thick (15–50 m), widespread, coarsening-upward delta front or lake infill succession consisting of interbedded shales, siltstones and sandstones. Networks of major (>5 km wide, 20–40 m thick), steep-sided, multistorey fluvial sandstone complexes erode deeply into and, in some cases, through these successions and are overlain by the coal seam defining the cyclothem top. (3) Type 3 cyclothems are bounded by regionally extensive coal seam groups, characterized by numerous seam splits on a local (0·1–10 km) scale. Intervening strata vary in thickness (15–60 m) and are characterized by strong local facies variability. Root-penetrated, aggradational floodplain heteroliths pass laterally into single-storey fluvial channel-fill sandstones and coarsening-upward, shallow lake infill successions of interbedded shales, siltstones and sandstones over distances of several hundred metres to a few kilometres. Narrow (<2 km) but thick (20–50 m) multistorey fluvial sandstone complexes are rare, but occur in a few type 3 cyclothems. Several cyclothems are observed to change character from type 1 to type 2 and from type 2 to type 3 up the regional palaeoslope. Consequently, we envisage a model in which each cyclothem type represents a different palaeogeographic belt within the same, idealized delta system, subject to the same allogenic and autogenic controls on facies architecture. Type 1 cyclothems are dominated by deltaic shorelines deposited during a falling stage and lowstand of sea level. Type 2 cyclothems represent the coeval lower delta plain, which was deeply eroded by incised valleys that fed the falling stage and lowstand deltas. Type 3 cyclothems comprise mainly upper delta plain deposits in which the allogenic sea-level control was secondary to autogenic controls on facies architecture. The marine bands, widespread coals and coal seam groups that bound these three cyclothem types record abandonment of the delta system during periods of rapid sea-level rise. The model suggests that the extant cyclothem paradigm does not adequately describe the detailed facies architecture of Lower Coal Measures strata. Instead, these architectures may be better understood within a high-resolution stratigraphic framework incorporating sequence stratigraphic key surfaces, integrated with depositional models derived from analogous Pleistocene–Holocene fluvio-deltaic strata.  相似文献   

9.
Mio-Pliocene deposits of the forebulge–backbulge depozones of the Beni-Mamore foreland Basin indicate tidally to fluvially dominated sedimentation. Seven facies assemblages have been recognized: FAA–FAG. FAA represents a distal bottom lake assemblage, FAB and FAD are interpreted as tidal flat deposits, FAC and FAG are interpreted as fluvial systems, FAE sediments are deposited in a subtidal/shoreface setting, and FAG represents a meandering fluvial system. The identification of stratigraphic surfaces (SU, MFS, and MRS) and the relationship among the facies assemblages permit the characterization of several systems tracts: a falling-stage systems tract (FSST) followed by a lowstand systems tract (LST), a transgressive systems tract (TST), and a highstand systems tract (HST). The FSST and LST may have been controlled by the uplift of the Beni-Mamore forebulge, whereas TST may result from a quiescent stage in the forebulge. Subaerial unconformity two (SU2) records the passage from a tide-influenced depositional system to a fully continental depositional system. The Miocene tidal-influenced deposits in the Beni–Mamore Basin suggest that it experienced a connection, either with the South Atlantic Ocean or the Caribbean Sea or both.  相似文献   

10.
The Upper Cretaceous succession of the Leonese Area (NW Spain) comprises mixed clastic and carbonate sediments. This succession is divided into two lithostratigraphic units, the Voznuevo Member and the Boñar Formation, which represent fluvial, shoreface, intertidal, subtidal and open‐shelf sedimentary environments. Regional seismic interpretation and sequence stratigraphic analysis have allowed the study of lateral and vertical changes in the sedimentary record and the definition of third‐order levels of stratigraphic cyclicity. On the basis of these data, the succession can be divided into two second‐order depositional sequences (DS‐1 and DS‐2), incorporating three system tracts in a lowstand to transgressive to highstand system tract succession (LST–TST–HST). These sequences are composed of fluvial systems at the base with palaeocurrents that flowed westward and south‐westward. The upper part of DS‐1 (Late Albian–Middle Turonian) shows evidence of intertidal to subtidal and offshore deposits. DS‐2 (Late Turonian–Campanian) comprises intertidal to subtidal, tidal flat, shallow marine and lacustrine deposits and interbedded fluvial deposits. Two regressive–transgressive cycles occurred in the area related to eustatic controls. The evolution of the basin can be explained by base‐level changes and associated shifts in depositional trends of successive retrogradational episodes. By using isobath and isopach maps, the main palaeogeographic features of DS‐1 and DS‐2 were constrained, namely coastline positions, the existence and orientation of corridors through which fluvial networks were channelled and the location of the main depocentres of the basin. Sedimentation on the Upper Cretaceous marine platform was mainly controlled by (i) oscillations of sea level and (ii) the orientation of Mesozoic faults, which induced sedimentation along depocentres. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Eighteen coastal-plain depositional sequences that can be correlated to shallow- to deep-water clinoforms in the Eocene Central Basin of Spitsbergen were studied in 1 × 15 km scale mountainside exposures. The overall mud-prone (>300 m thick) coastal-plain succession is divided by prominent fluvial erosion surfaces into vertically stacked depositional sequences, 7–44 m thick. The erosion surfaces are overlain by fluvial conglomerates and coarse-grained sandstones. The fluvial deposits show tidal influence at their seaward ends. The fluvial deposits pass upwards into macrotidal tide-dominated estuarine deposits, with coarse-grained river-dominated facies followed further seawards by high- and low-sinuosity tidal channels, upper-flow-regime tidal flats, and tidal sand bar facies associations. Laterally, marginal sandy to muddy tidal flat and marsh deposits occur. The fluvial/estuarine sequences are interpreted as having accumulated as a series of incised valley fills because: (i) the basal fluvial erosion surfaces, with at least 16 m of local erosional relief, are regional incisions; (ii) the basal fluvial deposits exhibit a significant basinward facies shift; (iii) the regional erosion surfaces can be correlated with rooted horizons in the interfluve areas; and (iv) the estuarine deposits onlap the valley walls in a landward direction. The coastal-plain deposits represent the topset to clinoforms that formed during progradational infilling of the Eocene Central Basin. Despite large-scale progradation, the sequences are volumetrically dominated by lowstand fluvial deposits and especially by transgressive estuarine deposits. The transgressive deposits are overlain by highstand units in only about 30% of the sequences. The depositional system remained an estuary even during highstand conditions, as evidenced by the continued bedload convergence in the inner-estuarine tidal channels.  相似文献   

12.
二连盆地吉尔嘎朗图凹陷是一个陆相断陷聚煤盆地,下白垩统赛汉塔拉组是其主要含煤地层,作者利用岩心、钻孔资料对其岩相类型、沉积相、层序地层及聚煤作用特征进行研究。(1)赛汉塔拉组主要由砂砾岩、砂岩、粉砂岩、泥岩、碳质泥岩及厚层褐煤组成,发育扇三角洲平原相、扇三角洲前缘相、辫状河三角洲平原相、辫状河三角洲前缘相、滨浅湖相,分别属于扇三角洲沉积体系、辫状河三角洲沉积体系和湖泊沉积体系。(2)识别出2种层序界面:不整合面和下切谷冲刷面,将赛汉塔拉组划分为2个三级层序。从层序Ⅰ到层序Ⅱ,煤层厚度逐渐增大,聚煤作用逐渐增强。(3)在滨浅湖环境下厚煤层主要形成于湖侵体系域早期,在扇/辫状河三角洲环境下厚煤层主要形成于湖侵体系域晚期,煤层厚度在凹陷中部最大,向西北和东南方向均变小。聚煤作用明显受基底沉降作用影响,可容空间增加速率与泥炭堆积速率相平衡,从而形成了区内巨厚煤层。  相似文献   

13.
本文采用地震和钻测井资料,建立了松辽盆地北部浅层的层序地层格架,分析了各体系域内沉积相的特征。在此基础上,研究了储层和盖层的发育特征,并探讨了储盖组合的配置关系。认为储集岩主要为四方台组层序格架中的湖侵体系域河流相砂岩和湖退体系域中的三角洲相砂岩及滨浅湖滩坝砂岩,平面上主要集中在齐家,古龙凹陷、龙虎-大安阶地、长垣南部和三肇凹陷等地区。盖层主要为每一层序中最大湖泛面上下的稳定泥岩段,其中四方台组下部层序中的泥岩段为局部盖层,四方台组中上部及明一段层序中的泥岩段为较有利的区域盖层。  相似文献   

14.
渤海是一个仅通过渤海海峡与北黄海相接的半封闭陆架浅海,晚第四纪以来的地层演化过程复杂,目前尚不清楚,且海相地层的形成时代存在争议.为了研究渤海西部晚第四纪以来的地层层序,对高分辨率浅地层剖面声学地层与典型钻孔沉积地层的进行对比分析.研究表明:高分辨率浅地层剖面自下而上划定的7个声学地层单元(U5、U4-2、U4-1、U3、U2、U1-2、U1-1)与钻孔岩心划分的沉积地层单元具有良好的对应关系.与MIS4期、MIS2期低海面时期的沉积间断密切相关的两个层序界面R5、R3,将渤海西部晚第四纪(MIS5期)以来的地层层序自下而上划分为3个层序(SQ3、SQ2、SQ1):SQ3识别出下部海侵体系域与高水位体系域、上部海退体系域,分别对应MIS5期海平面相对较高时期的滨-浅海相交替沉积(U5)、MIS4期早期滨海相沉积(U4-2);SQ2自下而上由低水位体系域[MIS4期中晚期与黄河、滦河相关的河湖相沉积(U4-1)]与海侵体系域[MIS3期早中期滨海相沉积(U3)]组成;SQ1自下而上包括低水位体系域[末次冰盛期与滦河相关的河湖相沉积(U2)]、海侵体系域[全新世早中期滨海相沉积(U1-2)]高水位体系域[全新世高海面以来的浅海相沉积(U1-1)].研究区的地层发育受控于海平面变化、沉积物供应、渤海海峡地形及活动构造的共同作用.   相似文献   

15.
在对北羌塘拗陷侏罗系地层发育特征分析基础上,通过典型剖面沉积相、层序界面特征、准层序叠置序列、体系域构成等研究,将侏罗系地层划分为5个三级层序。其中第1层序(SQ1)对应于雀莫错组地层,第2层序(SQ2)对应于布曲组中下部地层,第3层序(SQ3)对应于布曲组上部和夏里组下部地层,第4层序(SQ4)对应于夏里组中上部和索瓦组下部地层,第5层序(SQ5)对应于索瓦组上部和雪山组地层。在此基础上,开展了北羌塘拗陷内侏罗系层序地层对比。研究区层序地层的划分与对比研究,对羌塘盆地地层划分与对比、分析盆地古地理微地貌、预测盆地埋藏区生储盖发育特征等都具有重要意义。  相似文献   

16.
17.
The Upper Cretaceous Twentymile Sandstone of the Mesaverde Group in NW Colorado, USA, has been analysed with respect to its pinch‐out style and the stratigraphic position of tidally influenced facies within the sandstone tongue. Detailed sedimentological analysis has revealed that the Twentymile Sandstone as a whole is a deltaic shoreface sandstone tongue up to 50 m thick proximally. Facies change character vertically from very fine‐grained, storm wave‐dominated shelf sandstones and mudstones to fine‐grained, wave‐dominated sandstones and, finally, to fine‐ to coarse‐grained tidally dominated sandstones. The pinch‐out style is characterized by a basinward splitting of the massive proximal sandbody into seven coarsening‐upward fourth‐order sequences consisting of a lower shaly part and an upper sandy part (sandstone tongue). These are stacked overall to reflect the regressive‐to‐transgressive development of the tongue. Each of the lower sandstone tongues 1–3 are gradationally based, very fine‐grained and dominated by hummocky cross‐stratification and were deposited on the lower to upper shoreface. Sandstone tongues 4 and 5 prograded further basinwards than the underlying tongues, are erosively based, fine‐ to coarse‐grained and mainly hummocky, herringbone and trough cross‐stratified. Especially in tongue 5, tidal indicators, such as bipolar foresets and double mud drapes, are common. These tongues were deposited as upper shoreface and tidal channel sandstones respectively. Sandstone tongues 6 and 7 retrograded in relation to tongue 5, are very fine‐ to fine‐grained and hummocky cross‐stratified. These tongues were deposited in lower shoreface to offshore transition environments. The two lower fourth‐order sequences were deposited during normal regressions during slowly rising or stable relative sea level and represent the highstand systems tract. The three succeeding fourth‐order sequences, which show succeedingly increasing evidence of tidal influence, were deposited during falling and lowstand of relative sea level and represent the falling stage (forced regressive) and lowstand systems tracts. The uppermost two fourth‐order sequences were deposited during rapidly rising sea level in the transgressive systems tract. The maximum tidal influence occurred during lowstand progradation, in contrast to most other published examples reporting maximum tidal influence during transgression.  相似文献   

18.
Gas-bearing deposits in the Lower Mingyuefeng Formation of Paleogene, Lishui Sag, East China Sea Shelf Basin consist of shoreface sandstones of the highstand systems tract (HST) and transgressive systems tract (TST), and deltaic sandstones of the lowstand systems tract (LST) and falling stage systems tract (FSST). Detailed petrographic observations suggest that the diagenetic features and related evolution of these deposits cannot be simply characterized and demonstrated in the depth domain. However, the occurrence of diagenetic minerals systematically depends on the studied interval within the HST, TST, LST, and FSST; therefore, diagenesis in this region can be better constrained when studied in the context of the depositional environments and sequence stratigraphic framework. The eogenetic processes in such settings include: (1) microcrystalline siderite precipitated as concretions in almost all environments and systems tracts, which inhibited further mechanical compaction; (2) grain dissolution and kaolinitization occurred in shoreface HST sandstones and deltaic LST and FSST sandstones; (3) glaucony was locally observed, which did not clearly reflect the controls of facies or sequence stratigraphy; and (4) cementation by pyrite aggregates occurred in the shoreface HST sandstones and deltaic LST sandstones. The mesogenetic diagenesis includes: (1) partial conversion of kaolinite into dickite in deltaic LST sandstones, and minor chlorite cementation in deltaic FSST sandstones; (2) transformation of kaolinite into illite and quartz cementation in deltaic LST and FSST sandstones; (3) frequent precipitation of ankerite and ferroan calcite in shoreface TST sandstones and early HST sandstones, forming baffles and barriers for fluid flow, with common calcite in shoreface HST sandstones as a late diagenetic cement; and (4) formation of dawsonite in the deltaic LST and FSST sandstones, which is interpreted to be a product of the invasion of a CO2-rich fluid, and acts as a good indicator of CO2-bearing reservoirs. This study has thus constructed a reliable conceptual model to describe the spatial and temporal distribution of diagenetic alterations. The results may provide an entirely new conceptual framework and methodology for successful gas exploration in the continental margins of offshore China, thus allowing us to predict and unravel the distribution and quality evolution of clastic reservoirs at a more detailed and reliable scale.  相似文献   

19.
雪峰古陆边缘沅陵地区的上石炭统岩性特殊,以灰岩为主平白云质灰岩、砾屑灰岩与砾岩、砂岩相互成层,交替出现,因此,相对海平面升降变化在这种类型沉积中表现明显,利用层序地层的研究。上石炭统为1个三级层序,底部以I型层序与震旦系留茶坡组硅质岩接触;顶部仍以I型层序边界与下二叠统黔阳组成邻。包括低水位体系域、海进体系域和高水位体系域;依据准层序的叠是分为两个准层序组,即海进体系域和高水位体系域。  相似文献   

20.
The Maastrichtian Patti Formation, which consists of shale - claystone and sandstone members, constitutes one of the three Upper Cretaceous lithostratigraphic units of the intracratonic southeastern Bida Basin, in central Nigeria. Well exposed outcrops of this formation were investigated at various locations around the confluence of the Niger and Benue Rivers. The lithostratigraphic sections were measured and their peculiar sedimentological features such as textures, physical and biogenic sedimentary structures, facies variations and associations were documented and used to interpret the depositional environments and develop a paleogeographic model. Some selected representative samples of the sedimentary depositional facies were also subjected to grain size analysis.Three shoreline sedimentary depositional facies composed of shoreface, tidal channel, and tidal marsh to coastal swamp facies were recognized in the study area. Continental sedimentary depositional facies such as fluvial channel, swamp, and overbank were also documented. The sandstones of the shoreface and tidal channel facies are medium- to coarse-grained, moderately sorted (standard deviation ranges from 0.45–1.28 averaging 0.72), and quartzarenitic. The fluvial channel sandstone facies are coarse- to very coarse-grained, mostly poorly sorted (standard deviation ranges from 0.6–1.56 averaging 1.17), and subarkosic. Typical sedimentary structures displayed by the shoreface and tidal channel facies include burrows, clay drapes, hummocky and herringbone cross stratifications, whereas the fluvial channel sandstone facies are dominated by massive and planar cross beddings. The tidal marsh to coastal swamp shales and ferruginised siltstone facies are fossiliferous and bioturbated, whereas the nonmarine swamp siltstones contain vegetal imprints and lignite interbeds. The overbank claystone facies are massive and kaolinitic.In the study area, a regressive to transgressive model is proposed for the Patti Formation. This model correlates with stratigraphically equivalent sediments of the Ajali and Mamu Formations in the adjacent Anambra Basin to a great extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号